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Abstract

Consider an important meeting to be held in a team-based
organization. Taking availability constraints into account, an
online scheduling poll is being used in order to decide upon
the exact time of the meeting. Decisions are to be taken during
the meeting, therefore each team would like to maximize its
relative attendance (i.e. the proportional number of its team
members attending the meeting). We introduce a correspond-
ing game, where each team can declare a lower total avail-
ability in the scheduling poll in order to improve its relative
attendance—the pay-off. We are especially interested in situ-
ations where teams can form coalitions.
We provide an efficient algorithm that, given a coalition, finds
an optimal way for each team in a coalition to improve its
pay-off. In contrast, we show that deciding whether such a
coalition exists is NP-hard. We also study the existence of
Nash equilibria: Finding Nash equilibria for various small
sizes of teams and coalitions can be done in polynomial time
while it is coNP-hard if the coalition size is unbounded.

1 Introduction

An organization is going to hold a meeting, where people
are to attend. Since people come from different places and
have availability constraints, an open online scheduling poll
is taken to decide upon the meeting time. Each individual
can approve or disapprove of each of the suggested time
slots. In order to have the highest possible attendance, the or-
ganization will schedule the meeting at a time slot with the
maximum sum of declared availabilities. During the meet-
ing, proposals will be discussed and decisions will be made.
Usually, people have different interests in the decision mak-
ing, e.g. they are from different teams who each want their
own proposals to be put through. We consider people with
the same interest as members of the same team and as a re-
sult, each team (instead of each individual) may declare the
number of its members that can attend the meeting at each
suggested time slot.

For a simple illustration, suppose that three teams,
t1, t2, and t3, are about to hold a meeting, either at
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9am or at 10am. Two members from t1, one member
from t2, and three members from t3 are available at 9am,
while exactly two members of
each team are available at 10am.
The availabilities of the teams can
be illustrated as an integer matrix
(illustrated on the right hand side):

A :=

c1 c2( )
2 2 t1
1 2 t2
3 2 t3

A time slot is a winner if it receives the maximum sum of
declared availabilities. Thus, if the three teams declare their
true availabilities, then both 9am and 10am co-win (since six
people in total are available at 9am and 10am each), and the
meeting will be scheduled at either 9am or 10am.

Now, if a team (i.e. people with the same interest) wants
to influence any decision made during the meeting, then it
will want to send as many of its available team members to
the meeting as possible because this will maximize its rel-
ative power—the proportion of its own attendees. For our
simple example, if the meeting is to be held at 9am, then
the relative powers of teams t1, t2, and t3 are 1/3, 1/6, and
1/2, respectively. A team may change its availabilities de-
clared in the poll from time to time. However, teams must
not report a number which is higher than their true availabil-
ity since it cannot send more members than available. Given
this constraint, it is interesting to know whether any team
can increase its relative attendance by misreporting its avail-
ability, possibly changing the winning time slot to one where
their relative powers are maximized.

For the case where several time slots co-win, it is not clear
which co-winning time slot will be used. To be on the safe
side, the teams must maximize the relative power of each co-
winning time slot. In other words, our teams are pessimistic
and consider their pay-off as the minimum over all the rel-
ative powers at each co-winning time slot. In our example,
this means that the pay-off of team t2 would be 1/6, since
this is its relative power at 9am, which is smaller than its
relative power, 1/3, at 10am. The pay-offs of teams t1 and
t3 are both 1/3. In this case, team t2 can be strategic by up-
dating its availability and declare zero availability at 9am; as
a result, the meeting would be held at 10am, where team t2
has better pay-off with relative number of 1/3.

We do not allow arbitrary deviations from the real avail-
abilities of teams; specifically, we do not allow a team to
declare as available a higher number than actually available.
Further, we do not allow a team to send more team members
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to the meeting than it declared as available, because this is
often mandated by the circumstances. For example, the or-
ganizer might need to arrange a meeting room and specify
the number of participants in the meeting up-front (similarly,
if the meeting is to be carried in a restaurant, the number of
chairs at the table shall be decided beforehand); or the orga-
nizer might need to obtain buses to transport the participants.
Thus, the teams must send exactly the declared number of
members to the meeting. For instance, it is not possible for
team t2 to declare 3 at 9am since only one of its team mem-
bers is available. A formal description of the corresponding
game, called team power game (TPG, in short), and a dis-
cussion on our example are given in Section 2.

As already remarked, to improve the pay-off, a team may
lie about the number of its available members. Sometimes,
teams can even form a coalition and update their availabili-
ties strategically. In our example, after team t2 misreported
its availabilities such that each team receives a pay-off of
1/3, teams t1 and t3 may collaborate: if both teams keep
their declared availabilities at 9am but declare zero availabil-
ity at 10am (note that team t2 does not change its updated
availabilities), then 9am will be the unique winner (with total
availability of 5); as a result, t1 and t3 receive better pay-offs
of 2/5 and 3/5, respectively. Such a successful deviation
from the declared availabilities of the teams in a coalition
(while keeping the declared availabilities of the teams not in
the coalition unchanged) is called an improvement step.

After some teams perform an improvement step, other
teams may also want to update their availabilities to im-
prove. This iterative process leads to the question of
whether there is a stable situation where improvement is
impossible—a Nash equilibrium. Of course, when search-
ing for equilibria, it is natural to ask how hard it is to decide
whether an improvement step is possible.

In this paper, we are interested in the computational com-
plexity of the following problems: (1) finding an improve-
ment step (if it exists) for a specific coalition, (2) finding
an improvement step (if it exists) for any coalition, and (3)
finding a t-strong Nash equilibrium (if it exists).

Main Contributions. We show that, depending on the size
of the coalition (i.e., the number of teams that could deviate
from their declared availabilities), the computational com-
plexity of finding an improvement step for a given coali-
tion and deciding whether an improvement step exists for
an arbitrary coalition ranges from being polynomial-time
solvable to being NP-hard; further, deciding whether an im-
provement step exists for any coalition of size at most t
is W[2]-hard when parameterizing by the coalition size t.
We show that a 1-strong Nash equilibrium always exists for
some special profiles and we provide a simple polynomial-
time algorithm for finding it in these cases. Finally, we show
that deciding whether a t-strong Nash equilibrium exists is
coNP-hard. Our results are summarized in Table 1. Due to
space constraints, many proofs are deferred to our technical
report (Bredereck et al. 2016).

Related Work. Recently, online scheduling polls such as
Doodle / Survey Monkey caught the attention of several re-
searches. Reinecke et al. (2013) initiated empirical investi-

Table 1: Complexity results for the team power game.
“Unary” (resp. “Binary”) means that the input and the strat-
egy profiles are encoded in unary (resp. binary). Variable t
stands for the number of teams in a coalition, while amax

stands for the maximum true availability. An entry labeled
with “P” means polynomial-time solvability. An entry la-
beled with “FPT for k” means solvability in f(k) · |I|O(1)

time, where f is a function solely depending on k and |I|
denotes the size of the given input. An entry labeled with
“W[2]-hard for k” implies that the corresponding problem
is not “FPT for k” unless W[2] = FPT (this is considered
unlikely in parameterized complexity theory).

(1) Finding an improvement step for a given coalition
Unary in P (Thm. 1)
Binary in FPT for t (Thm. 2)1

(2) Deciding the existence of an improvement step
for any coalition

Binary in P for constant t (Cor. 1)
amax = 1 NP-complete (Thm. 3)
amax = 1 W[2]-hard for t (Thm. 3)

(3) Finding a 1-strong Nash equilibrium
amax ≤ 3 in P, always exists (Thm. 4)
amax ≥ 4 open (Rem. 2)

Finding a 2-strong Nash equilibrium
amax = 1 in P, always exists (Prop. 1)
amax ≥ 2 open, does not always exist

Deciding the existence of a t-strong Nash equilibrium
amax = 2 coNP-hard (Thm. 5)

1We conjecture it to be even in P. Strong NP-hardness is excluded
by Theorem 1.

gations of scheduling polls and identified influences of na-
tional culture on people’s scheduling behavior, by analyz-
ing actual Doodle polls from 211 countries. Zou, Meir, and
Parkes (2015) also analyzed actual Doodle polls, and de-
vised a model to explain their experimental findings. They
observed that people participating in open polls tend to be
more “cooperative” and additionally approve time slots that
are very popular or unpopular; this is different to the be-
havior of people participating in closed polls. Obraztsova et
al. (2015) formally modeled the behavior observed by Zou,
Meir, and Parkes (2015) as a game, where approving addi-
tional time slots may result in pay-off increase. While the
game introduced by Obraztsova et al. (2015) captures the
scenario that each individual player tries to appear to be co-
operative, our team power game models the perspective that
each individual team (player) as a whole tries to maximize
its relative power in the meeting, which means that approv-
ing more time slots is not necessarily a good strategy.

Quite different in flavor, Lee (2014) considered a com-
putational problem from the point of view of the poll ini-
tiator, whose goal is to choose the time slots to poll over,
in order to optimize a specific cost function. Finally, since
scheduling polls might be modeled as approval elections,
we mention the vast amount of research done on approval
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elections in general, e.g., (Brams and Fishburn 1978) and on
iterative approval voting in particular, e.g., (Dery et al. 2015;
Lev and Rosenschein 2012; Meir et al. 2010).

2 Preliminaries

We begin this section by defining the rules of the game
which is of interest here. Then, we formally define the re-
lated computational problems we consider in this paper.
Throughout, by [n] we mean the set {1, 2, . . . , n}.

Rules of the Game. The game is called the team power
game (TPG, in short). It consists of n players, the teams,
t1, t2, . . . , tn, and m possible time slots, c1, c2, . . . , cm.
Each team ti is associated with a true availability vector
Ai = (a1i , a

2
i , . . . , a

m
i ), where aji ∈ N is the (true) avail-

ability of team ti for time slot cj . Importantly, each team
is only aware of its own availability vector. During the
game, each team ti announces a declared (availability) vec-
tor Bi = (b1i , b

2
i , . . . , b

m
i ), where bji ≤ aji is the declared

availability of team ti for time slot cj ; using standard game-
theoretic terms, we define the strategy of team ti to be its
declared availability vector Bi. We use A and B to de-
note the matrices consisting of a row for each team’s true
and declared availability vectors. That is, for i ∈ [n] and
j ∈ [m], A := (aji ), B := (bji ). Given a declared availabil-
ity matrix B, the co-winners of the corresponding schedul-
ing poll, denoted as winners(B), are the time slots with
the maximum sum of declared availabilities: winners(B) :=

argmax
cj∈{c1,c2...,cm}

{∑i∈[n] b
j
i}.

Before we define the pay-off of each team, we intro-
duce the notion of relative power. The relative power
team-power(B, ti, cj) of team ti at time slot cj equals the
number of members from ti who will attend the meeting at
time slot cj , divided by the total number of attendees at this

time slot: team-power(B, ti, cj) :=
bji∑

k∈[n] b
j
k

.

In order to define the pay-off of each team, we need to
decide how to proceed when several time slots tie as co-
winners. In this paper we consider a maximin version of
the game, where ties are broken adversarially. That is, the
pay-off of team ti is defined to be the minimum, over all
co-winners, of its relative power:

pay-off(B, ti) := min
cj∈winners(B)

team-power(B, ti, cj).

When we refer to an input for TPG, we mean a true avail-
ability matrix A ∈ Nn×m where each row Ai represents the
true availability of a team ti for the m time slots. When we
refer to a strategy profile (in short, strategy) for input A we
mean a declared availability matrix B ∈ Nn×m where each
row Bi represents the declared availability vector of team ti.

Computational Problems Related to the Game. Given a
coalition, i.e., a subset of teams, a deviation of the teams
in the coalition from their current strategy profile is an im-
provement step if, by this deviation, each team in the coali-
tion strictly improves its pay-off. Given a positive integer t,
a t-strong Nash equilibrium for some input A is a strategy
profile B such that no coalition of at most t teams has an

improvement step wrt. B. We are interested in the following
computational questions:

1. Given an input, a strategy profile, and a coalition of at
most t teams, does this coalition admit an improvement step
compared to the given strategy profile?

2. Given an input, a strategy profile, and a positive inte-
ger t, is there any coalition of at most t teams which has an
improvement step compared to the given strategy profile?

3. Given an input and a positive integer t, does a t-strong
Nash equilibrium for this input exist?

We are particularly interested in understanding the depen-
dency of the computational complexity of the above prob-
lems on the number t of teams in a coalition. Specifically, we
consider (1) t being a constant (modeling situations where
not too many teams are willing to cooperate or where coop-
eration is costly) and (2) t being unbounded.

Illustrating Example. Consider the input matrix A given
in Section 1, which specifies the true availabilities of three
teams t1, t2, t3 over two time slots c1, c2. If all teams de-
clared their true availabilities, then both time slots win
with total availability 6. The pay-offs of the teams t1, t2, t3
are 1/3, 1/6, 1/3, respectively. Team t2 can improve its
pay-off by declaring (0, 2) (i,e., declaring 0 for c1 and 2
for c2). As a result, c2 would become the unique win-
ner with total availability 6 and team t2 would receive a
better pay-off: 1/3. Thus, the profile B for A where all
teams declare their true availabilities (i.e., where B = A)
is not a 1-strong Nash equilibrium.
Nevertheless, A does admit the fol-
lowing 1-strong Nash equilibrium:

B′ :=

(
2 2
1 2
3 0

)

The declared availability matrix B′, however, is not a 2-
strong Nash equilibrium, since if team t1 and t2 would form
a coalition and declare the same availability vector (0, 2),
then c2 would be the unique winner with total availability 4
and both t1 and t2 would have a better pay-off: 1/2.

3 Improvement Steps

We begin with the following lemma, which basically says
that, in search for an improvement step, a fixed coalition of
teams needs only to focus on a single time slot.

Lemma 1. If a coalition has an improvement step wrt. a
strategy profile B, then it also has an improvement step E =

(eji ) wrt. B, where there is one time slot ck such that each
team ti in the coalition declares zero availability for all
other time slots (i.e., eji = 0 holds for each team ti in the
coalition and each time slot cj �= ck).

By Lemma 1, we know that if a fixed coalition has an im-
provement step for a strategy profile B, then it admits an
improvement step that involves only one time slot. Assume
that it is time slot ck. In order to compute an improvement
step for the coalition, we first declare zero availabilities for
the teams in the coalition, for all other time slots. Then, we
have to declare specific availabilities for the teams in the
coalition, for time slot ck. This is where the collaboration
between the teams comes into play: even though each team,
in order to improve its pay-off, might wish to declare as high
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as possible availability for time slot ck (i.e., its true availabil-
ity), the teams shall collaboratively decide on the declared
availabilities, since a too-high declared availability for one
team might make it impossible for another team (even when
declaring the maximum possible amount, i.e., the true avail-
ability) to improve its pay-off. It turns out that this problem
is basically equivalent to the following problem (which, in
our eyes, is interesting also on its own).

Relation to Horn Constraint Systems. Consider the fol-
lowing number problem, called t-THRESHOLD COVERING,
which, given a natural number vector (a1, a2, . . . , at) ∈
Nt, a rational number vector (p1, p2, . . . , pt) ∈ Qt with∑

i∈[t] pi ≤ 1, and a natural number p ∈ N, searches
for a natural number vector (x1, x2, . . . , xt) where for each
i ∈ [t] the following holds: (1) 1 ≤ xi ≤ ai and (2) xi/(p+∑

i∈[t] xi) > pi.
Intuitively, the vector (a1, . . . , at) corresponds to the true

availabilities of the teams in the coalition in time slot ck,
while the solution vector (x1, . . . , xt) corresponds to the de-
clared availabilities of the teams in the coalition in time slot
ck; accordingly, the first constraint makes sure that each de-
clared availability is upper-bounded by its true availability.
Further, the vector (p1, . . . , pt) corresponds to the current
pay-offs of the teams in the coalition, while p corresponds
to the sum of the declared availabilities of the teams not in
the coalition at time slot ck; accordingly, the second con-
straint makes sure that, for each team in the coalition, the
new pay-off is strictly higher than its current pay-off. More
formally, we argue that the coalition {t1, t2, . . . , tt} has an
improvement step compared to strategy profile B, involv-
ing only time slot ck, if and only if the instance (A∗, P, p)
for t-THRESHOLD COVERING has a solution, where A∗ :=
(ak1 , . . . , a

k
t ), P := (pay-off(B, t1), . . . , pay-off(B, tt)),

and p :=
∑

i∈[n]\[t] b
k
i .

Remark 1. Since the values pi (i ∈ [t]) are rational num-
bers, we can rearrange the second constraint in the de-
scription of t-THRESHOLD COVERING to obtain an integer
linear feasibility problem. This means that t-THRESHOLD
COVERING is a special variant of the so-called HORN CON-
STRAINT SYSTEM problem which, given a matrix U =
(ui,j) ∈ Rn′×m′

with each row having at most one positive
element, a vector b ∈ Rn′

, and a positive integer d, decides
the existence of an integer vector x ∈ {0, 1, . . . , d}m′

such
that U · x ≥ b; HORN CONSTRAINT SYSTEM is weakly
NP-hard and can be solved in pseudo-polynomial time (La-
garias1985 ; Lagarias1985 ).

Taking a closer look at t-THRESHOLD COVERING, we
observe the following: if we would know the sum of the
variables (x1, . . . , xt), then we would be able to directly
solve our problem by checking every constraint and taking
the smallest feasible value (i.e., given

∑
i∈[t] xi, we would

set each xi to be the minimum over all values satisfying
xi/(p+

∑
i∈[t] xi) > pi). This yields a simple polynomial-

time algorithm for finding an improvement step for the
likely case where all availabilities are polynomially upper-
bounded in the input size; technically, this means where the
input profile A is encoded in unary.

Theorem 1. Consider an input A and a strategy profile B.
Let s be the sum of all entries in A. Finding an improve-
ment step (if it exists) for a given coalition is solvable in
O(s2) time.

Indeed, t-THRESHOLD COVERING can be reduced to
finding the sum

∑
i∈[t] xi. If the input is encoded in binary,

however, then this sum might be exponentially large in the
number of bits that encode our input, thus we cannot sim-
ply enumerate all possible values. If the coalition size t or a
certain parameter � that measures the number of “large” true
availabilities is a constant, then we still have polynomial-
time algorithms for which the degree of the polynomial in
the running time does not depend on the specific parameter
value. Specifically, by the famous Lenstra’s theorem (1983,
later improved by Kannan (1987) and by Frank and Tar-
dos (1987)), we have the following result.

Theorem 2. Consider an input A and a strategy profile B.
Let L be the length of the binary encoding of A. For each of
the following times T , there is a T -time algorithm that finds
an improvement step, compared to B, for a given coalition
of t teams:

1. T = O(t2.5t+o(t) · L2) and

2. for each constant value c, T = f(�c) · t2 · Lc2+2,

where f is a computable function and �c := maxj |{i ∈
[t] : aji > Lc}| is the maximum over the numbers of teams ti
in the coalition that have true availabilities aji with aji > Lc

for the same time slot cj .

Using Theorem 2, and checking all
∑t

i=1

(
n
i

)
possible

coalitions of size at most t, we obtain the following.

Corollary 1. Given an input and a strategy profile, we can
find, in polynomial time, a coalition of a constant number
of teams and, for this coalition, find an improvement step
compared to the given profile.

In general, however, deciding whether an improvement
step exists is computationally intractable as the next result
shows. We briefly note that, under standard complexity as-
sumptions, a problem being W[2]-hard for parameter k pre-
sumably excludes any algorithm with running time f(k) ·
|I|O(1), where f is a computable function depending only
on k and |I| is the size of the input.

Theorem 3. Given an input and a strategy profile, deciding
whether there is a coalition of size t that has an improve-
ment step is W[2]-hard wrt. t even if all teams are of size
one. It remains NP-complete if there is no restriction on the
coalition size.

Proof. (Sketch). To show W[2]-hardness, we provide a pa-
rameterized reduction from the SET COVER problem, which
is W[2]-complete wrt. the set cover size k (Downey and
Fellows 2013): Given sets F = {S1, . . . , Sm} over a uni-
verse U = {u1, . . . , un} of elements and a positive in-
teger k, SET COVER asks whether there is a size-k set
cover F ′ ⊆ F , i.e., |F ′| = k and

⋃
Si∈F ′ Si = U . The idea

of such a parameterized reduction is, given a SET COVER in-
stance (F , U, k), to produce, in f(k) · (|F|+ |U |)O(1) time,
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an equivalent instance (A,B, t) such that t ≤ g(k), where f
and g are two computable functions. Let (F , U, k) denote a
SET COVER instance. For technical reasons, we assume that
each set cover contains at least three sets.
Time slots. For each element uj ∈ U , we create one ele-
ment slot ej . Let E := {e1, . . . , en} denote the set contain-
ing all element slots. We create two special time slots: α (the
original winner) and β (the potential new winner).
Teams and true availabilities A = (aji ). For each
set Si ∈ F , we create a set team ti that has true availabil-
ity 1 at time slot α, at time slot β, and at each element slot ej
with uj ∈ Si. We introduce several dummy teams, as fol-
lows. Intuitively, the role of these dummy teams is to allow
to set specific sums of availabilities for the time slots; the
crucial observation in this respect is that the dummy teams
do not have any incentive to change their true availabilities,
therefore we can assume that they do not participate in any
coalition. For each element uj , let #(uj) denote the num-
ber of sets from F that contain uj . For each element slot ej ,
we create (2m − 1 − #(uj)) dummy teams such that each
of these dummy teams has availability 1 at element slot ej
and availability 0 for all other time slots. Similarly, for time
slot α, we create m additional dummy teams, each of which
has availability 1 for time slot α and availability 0 for all
other time slots. For time slot β, we create 2m− 1− k fur-
ther dummy teams, each of which has availability 1 for time
slot β and availability 0 for all other time slots.
Declared availabilities B = (bji ). Each dummy team de-
clares availability for the time slot where it is available. Each
set team declares availability for all time slots where it is
available except for time slot β where all set teams declare
availability 0.

We set the size of the coalition t to be k. This completes
the reduction which can be computed in polynomial time.
Indeed, it is also a parameterized reduction. A formal cor-
rectness proof as well as the extension to the case of unre-
stricted coalition sizes to show the NP-hardness result are
deferred to our technical report (Bredereck et al. 2016).

Taking a closer look at the availability matrix constructed
in the proof of Theorem 3, we observe the following.

Corollary 2. Deciding the existence of an improvement step
for any coalition is NP-hard, even for very sparse availabil-
ity matrices, i.e., even if each team has only one team mem-
ber and is truly available at no more than four time slots.

4 Nash Equilibria

We move on to consider the existence of Nash equilibria.
Somewhat surprisingly, it seems that, a 1-strong Nash equi-
librium always exists. Unfortunately, we can only prove this
when the maximum availability amax := maxi∈[n],j∈[m] a

j
i

is at most three. Extending our proof strategy to amax ≥ 4
seems to require a huge case analysis.

Theorem 4. If the maximum availability amax is at most
three, then TPG always admits a 1-strong Nash equilibrium.

Proof. (Sketch). Let A = (aji ) be the input profile. We begin
by characterizing two simple cases for which 1-strong Nash
equilibria always exist.

Safe single-team slot. Suppose that a time slot cj exists
where only one team, ti, is available with some availabil-
ity a∗ (i.e., aji = a∗), all other teams are not available in
this time slot (i.e., aji′ = 0 for all i′ �= i), and no other
team, ti′ , i′ �= i, is available with availability greater than a∗
at any time slot. Then, we obtain a 1-strong Nash equilib-
rium B = (bli) by setting bji := aji , and, for each i′ ∈ [n]

and each j′ �= j, setting bj
′

i′ := 0; to see why B is a Nash
equilibrium, notice that the only team (namely ti) i.e. avail-
able at time slot cj already receives the best possible pay-off
(namely 1) and no other team can prevent cj from being a co-
winner, which would be necessary to improve their pay-off
(which is 0). We call such time slot cj a safe single-team slot.
Safe multiple-team slot. Suppose that a time slot cj ex-
ists where multiple teams have non-zero true availabili-
ties and no single team is powerful enough to prevent cj
from co-winning, by declaring zero availability. That is, for
each team ti and each time slot cj′ �= cj , it holds that
aj

′
i ≤ ∑

i′ �=i a
j
i′ . Again, we obtain a 1-strong Nash equilib-

rium B = (bji ) by setting bjl := ajl for each team tl and set-
ting bj

′
l := 0 for each other time slot cj �= cj′ . We call such

time slot cj a safe multiple-team slot. For example, the fol-
lowing input profile contains two safe multiple-team slots,
namely c1 and c4:

A :=

c1 c2 c3 c4⎛
⎝

⎞
⎠1 2 0 0 t1

2 0 2 0 t2
1 0 0 1 t3
0 1 1 3 t4

We are ready to consider instances amax ≤ 3. We only
show the case with amax = 2. The remaining cases are de-
ferred our technical report (Bredereck et al. 2016).
Instances with amax = 2. Consider the maximum availabil-
ity sum x of all time slots, i.e., the maximum column sum of
the matrix A. Clearly, x ≥ amax. We proceed by considering
the different possible values of x.
Cases with x = 2: If x is two, then there is a time slot where
only one team is available with availability amax = 2. Thus,
there is a safe single-team slot.
Cases with x = 3: If x is three, then, since we have
amax = 2, it follows that either (1) there is a safe single-
team slot where only one team is available with availability
amax = 2 or (2) there is a time slot cj where a single team ti
has availability amax = 2 and another team ti′ has avail-
ability 1. In the first case, there is a safe single-team, so let
us consider the second case. To this end, let cj be the time
slot such that a single team ti has availability amax = 2
and another team ti′ has availability 1. Next, we show how
to construct a 1-strong Nash equilibrium B = (bji ). First,
for each team ti, set bji := aji and bj

′
i := 0, j′ �= j. This

makes time slot cj the unique winner. Team ti receives pay-
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off 2/3 and team ti′ receives pay-off 1/3. Second, for each
time slot cj′ �= cj , if aj

′
i′ > 0, then set bj

′
i′ := 1; otherwise,

find any team tk �= ti with non-zero availability aj
′

k = 1 and
set bj

′
k := 1. In this way, every time slot except cj has total

availability one (if there is at least one team with non-zero
availability for this slot). Thus, cj remains a unique winner
and the declared total availabilities of other time slots make
it impossible for any team to improve: First, team ti cannot
improve because it would receive the same pay-off 2/3 for
every time slot which it could make a new single winner (re-
call that no safe single-team slot exists). Second, team ti′
also cannot improve because it cannot create a new sin-
gle winner at all. Last, neither of the remaining teams can
improve because they cannot prevent cj from co-winning.
Hence, we have a 1-strong Nash equilibrium.
Cases with x ≥ 4: Every time slot cj with availability sum x

is a safe multiple-team slot since ∀j′ : aj′i ≤ amax = 2 and
∀i : ∑

i′ �=i a
j
i′ ≥ x− amax ≥ 2.

Remark 2. We do not know any instances without 1-strong
Nash equilibria. However, we could not generalize our proof
even for instances with amax = 4. Nevertheless, some gen-
eral observations from our proof hold for every amax. In par-
ticular, if there is a column with only one entry with amax

(a special case of a safe single-team slot) or if the maxi-
mum column sum is at least 2amax (a special case of a safe
multiple-team slot), then a 1-strong Nash equilibrium exists.

Since our proof is constructive, we obtain the following.

Corollary 3. If the maximum availability amax is at most
three, then a 1-strong Nash equilibrium for TPG can be
found in polynomial time.

The situation where t ≥ 2 is quite different already with
only two teams. By a proof similar to the case of t = 1 and
amax = 2, we can show that a 2-strong Nash equilibrium
always exists for t = 2 and amax = 1:

Proposition 1. If the maximum availability amax is one,
then a 2-strong Nash equilibrium for TPG always exists and
can be found in polynomial time.

Complementing Theorem 4, we demonstrate that 2-strong
Nash equilibria do not always exist, even when amax = 2;
to this end, consider the following example.

A :=

c1 c2( )
2 0 t1
2 2 t2
0 2 t3

The main crux of this example is that t1 (or, symmetrically,
t3) can cooperate with t2; in such cooperation, t2 can choose
whether to be ‘in favor’ of t1 or t3, by declaring either
b12 = 2 and b22 = 0 (favoring t1), or b12 = 0 and b22 = 2 (fa-
voring t3). Moreover, t1 or t3 can ‘reward’ t2 by not declar-
ing its true availability 2, but only 1. In such a cooperation,
both t2 and t1 (or t2 and t3) strictly improve their pay-offs.

Next, we show that if the coalition size is unbounded, then
finding a Nash equilibrium becomes coNP-hard.

Theorem 5. Deciding whether a Nash equilibrium exists for
a given input is coNP-hard.

Proof. (Sketch). We reduce from the complement of the
following NP-complete problem (Gonzalez 1984): RE-
STRICTED X3C, which given sets F = {S1, . . . , S3n}, each
containing exactly 3 elements from E = {e1, . . . , e3n} such
that (1) n ≥ 2 and (2) each element ei appears in exactly 3
sets, asks whether there is a size-n exact cover F ′ ⊆ F , i.e.,
|F ′| = n and

⋃
Si∈F ′ Si = U .

Given an instance (F , E) of the complement of RE-
STRICTED X3C we construct a game. For each element ei
(i ∈ [3n]) we construct a time slot ei. We construct one addi-
tional time slot, denoted by α. For each set Sj (j ∈ [3n]) we
construct a team sj . For a team sj , we set its availability for
time slot ei, namely aji , to be n if ei ∈ Sj , and otherwise 0.
We set the availability of all teams to be 1 in time slot α. We
consider 2n-strong Nash-equilibria; thus, we consider coali-
tions containing up to 2n teams. This finishes the description
of the polynomial-time reduction. The correctness proof can
be found in our technical report (Bredereck et al. 2016).

5 Conclusion

We introduced a game considering power of teams (referred
to as TPG) that is naturally motivated by online scheduling
polls where teams declare and update their availabilities in a
dynamic process to increase their relative power. Our work
leads to several directions for future research.
Tie-breaking rules: In this paper the teams are pessimistic,
i.e., in case of several co-winners, the pay-off is defined as
the minimum of the relative number, over the co-winners.
This corresponds to situations where ties are broken adver-
sarially. We chose this tie-breaking as a standard and natural
one, and as one which models teams which are pessimistic in
nature, where having too low power in the team might have
very bad consequences. Naturally, one might study other tie-
breaking rules such as breaking ties uniformly at random or
breaking ties lexicographically; we mention that most of our
results seem to transfer to lexicographic tie-breaking.
More refined availability constraints: In the online
scheduling polls considered in this paper, the availability
constraints expressed by the participants are dichotomous:
each participant can only declare either “available” or “not
available” at each time slot. Sometimes, the availability con-
straints of people participating in scheduling polls are more
fine-grained; for example, a participant might not be sure
whether she is available or not for some of the suggested
time slots, but can only provide a “maybe available” an-
swer for these time slots. Correspondingly, it is interesting
to study TPG when we allow participants to express more
refined availability constraints, maybe even allowing them
to fully rank the time slots according to their constraints.
Nash modification problem: Taking the point of view of
the poll convener (who desires to reach a Nash equilibrium),
we suggest to study the following problem: given an input
for TPG, what is the minimum number of time slots that
shall be removed so that the modified input will have a Nash
equilibrium?
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Gajos, K. Z. 2013. Doodle around the world: Online
scheduling behavior reflects cultural differences in time per-
ception and group decision-making. In Proceedings of
CSCW-2013, 45–54.
Zou, J. Y.; Meir, R.; and Parkes, D. C. 2015. Strategic voting
behavior in Doodle polls. In Proceedings of CSCW-2015,
464–472.

396




