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Abstract

We consider voting under metric preferences: both voters and
candidates are associated with points in a metric space, and
each voter prefers candidates that are closer to her to ones that
are further away. In this setting, it is often desirable to select
a candidate that minimizes the sum of distances to the voters.
However, common voting rules operate on voters’ preference
rankings and therefore may be unable to identify the best can-
didate. A relevant measure of the quality of a voting rule is
then its distortion, defined as the worst-case ratio between the
performance of a candidate selected by the rule and that of an
optimal candidate. Anshelevich, Bhardwaj and Postl (2015)
show that some popular rules such as Borda and Plurality do
badly in this regard: their distortion scales linearly with the
number of candidates. On the positive side, Anshelevich et
al. identify a few voting rules whose distortion is bounded
by a constant; however, these rules are rarely used in prac-
tice. In this paper, we analyze the distortion of two widely
used (classes of) voting rules, namely, scoring rules and Sin-
gle Transferable Vote (STV). We show that all scoring rules
have super-constant distortion, answering a question that was
left open by Anshelevich et al.; however, we identify a scor-
ing rule whose distortion is asymptotically better than that
of Plurality and Borda. For STV, we obtain an upper bound
of O(lnm), where m is the number of candidates, as well
as a super-constant lower bound; thus, STV is a reasonable,
though not a perfect rule from this perspective.

1 Introduction

Voting rules aggregate preferences of multiple agents over
a set of available candidates, enabling the agents to choose
an option that reflects their collective opinion. Often, vot-
ers’ preferences are determined by the candidate’s positions
on several issues, such as the levels of taxation or military
spending. In this case, each voter and each candidate can
be identified with a point in the issue space, and voters tend
to prefer candidates who are close to them to the ones that
are further away. This setting can be formally modeled by
embedding the input election into a metric space, i.e., a
set of points S endowed with a distance measure d: vot-
ers’ preferences are consistent with this embedding if voter
v prefers candidate a to candidate b whenever d(v, a) <
d(v, b). The spatial model of preferences has received a
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considerable amount of attention in the social choice liter-
ature due to its intuitive appeal (Davis and Hinich 1966;
Plott 1967; Enelow and Hinich 1984; 1990; McKelvey,
Ordeshook, and others 1990; Merrill and Grofman 1999;
Schofield 2007). Recently Elkind et al. (2017) used the spa-
cial model to illustrate principles governing different multi-
winner election rules.

Now, when preferences are driven by distances, it is nat-
ural to measure the quality of a candidate c by computing
the sum of distances or the maximum distance from c to
the voters; these two approaches correspond to, respectively,
the utilitarian and the egalitarian social welfare associated
with c. We may then want to select a candidate that opti-
mizes the relevant notion of welfare. Of course, this task is
not difficult if we are given access to voters’ and candidates’
locations. However, typically voters are unable to precisely
pinpoint their position with respect to each issue, and even
the issue space itself may not be known to the designer of the
aggregation function. Thus, it is more realistic to expect the
voters to simply provide their rankings of candidates, which
are determined by the underlying metric space: each voter
ranks the candidates by the distance from her. We can then
apply one of the many commonly used voting rules (Zwicker
2015) to select an election winner.

Of course, we cannot expect a voting rule that operates
on ranked ballots to always identify an alternative that max-
imizes the social welfare. Consider for instance, the follow-
ing example, which can be found in the work of Anshele-
vich, Bhardwaj, and Postl (2015): voters and candidates are
positioned on the real line, with candidate a at−1, candidate
b at 1, n+1 voters at−.0001, and n voters at 1. Then the util-
itarian social cost associated with a and b is approximately
3n and n, respectively. However, any rule that operates on
ranked ballots would see that the majority of voters prefer a
to b, so any sensible deterministic rule should favor a. Thus,
some amount of distortion is unavoidable. Nevertheless, we
may want to identify a voting rule with the best possible dis-
tortion, measured as the ratio of the social cost provided by
the optimal candidate and the social cost provided by a can-
didate selected by the rule, or to bound the distortion of a
given voting rule.

Anshelevich, Bhardwaj, and Postl (2015) investigate the
latter question for a number of well-known voting rules.
Their first result is disappointing: Plurality and the Borda
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rule, which are arguably the most popular voting rules, fare
very poorly in this regard. Specifically, the distortion of
these rules scales linearly with the number of candidates m.
For other popular rules, such as k-Approval and Veto, distor-
tion cannot even be bounded as a function of m and scales
linearly with the number of voters. Anshelevich et al. then
consider a number of other voting rules, and identify some
rules whose distortion can be bounded by a small constant;
notably, this list includes the Copeland rule and any rule that
selects from the uncovered set. However, while these voting
rules are familiar to (computational) social choice theorists,
they are rarely used in practice. Of course, the results of
Anshelevich et al. may lead to these rules becoming more
popular. However, meanwhile, it remains an important task
to assess the distortion provided by voting rules that are cur-
rently used by decision-making bodies.

In this paper, we consider two (families of) rules that ar-
guably satisfy this criterion, namely, scoring rules and Sin-
gle Transferable Vote (STV). Scoring rules can be seen as
a generalization of both Plurality and the Borda rule: each
position in a voter’s preference list is associated with a nu-
merical score, and the rule selects a candidate with the max-
imum sum of scores. Scoring rules are used in a variety of
applications because of their simplicity and intuitive appeal:
for instance, Eurovision winners are chosen by a scoring
rule. STV is an iterative elimination rule that is used to elect
members of governing bodies (at local or national level) in
several countries, including Australia, New Zealand, United
Kingdom and United States.

Our Contribution We prove bounds on distortion of scor-
ing rules and STV in the utilitarian setting (i.e., where
the goal is to select a candidate that minimizes the sum
of distances to the voters). Anshelevich, Bhardwaj, and
Postl (2015) leave open the question of whether there ex-
ists a scoring rule whose distortion is bounded by a con-
stant. We answer this question in the negative, by show-
ing that the distortion of every m-candidate scoring rule is
at least 1 + 2

√
lnm− 1. The technique used in our proof

can be applied to get stronger bounds for specific families
of rules: for instance, we recover the results of Anshelevich
et al. for Plurality, Veto, k-Approval and the Borda rule, and
obtain a bound of Ω

(
m

lnm

)
for the harmonic rule (see Sec-

tion 2 for definitions). One may wonder if our result can
be strengthened to obtain a linear lower bound for all scor-
ing rules (recall that the known bounds for Plurality and the
Borda rule are linear). We demonstrate that this is not the
case, by showing that the distortion of the harmonic rule
is O

(
m√
lnm

)
. Thus, not all scoring rules are equally bad

from the perspective of distortion. For STV our upper and
lower bounds are very close to each other: the distortion of
STV is upper-bounded by O(lnm) and lower-bounded by
Ω(
√
lnm). Thus, while STV does not perform quite as well

as the Copeland rule, its distortion is much better than that
of Plurality or Borda.

Related Work The notion of distortion was proposed by
Procaccia and Rosenschein (2006) for a more general model,
where voters have utilities for all candidates and the goal is

to select a candidate that maximizes the total utility. This
model was further explored by Caragiannis and Procac-
cia (2011) and Boutilier et al. (2015); in particular, Boutilier
et al. introduce the harmonic rule, which plays an im-
portant role in our analysis. Anshelevich, Bhardwaj, and
Postl (2015) initiated the study of distortion in the metric
model and proved upper and lower bounds on distortion of a
variety of voting rules, both in the utilitarian and in the egal-
itarian model. Subsequently, Anshelevich and Postl (2016)
extended this analysis to randomized voting rules. Feldman,
Fiat, and Golomb (2016) analyze distortion under the addi-
tional constraint of strategyproofness; in particular, they pro-
pose a universally truthful randomized mechanism whose
distortion does not exceed 2.

2 Preliminaries

Given a positive integer k, let [k] = {1, . . . , k}.
An election is a triple E = (C, V,P), where C =

{c1, . . . , cm} is a set of m candidates, V = {v1, . . . , vn}
is a set of n voters, and P = (�1, . . . ,�n) is a list of vot-
ers’ preference rankings; throughout the paper we assume
that each voter’s preference ranking is a total order over C.
We write a �i b to indicate that voter vi strictly prefers
candidate a to candidate b. We write posv(c) to denote the
position of candidate c in the preference ranking of voter v:
if posv(c) = 1 then c is v’s most preferred candidate.

Voting Rules A voting rule is a mapping R that, given
an election E = (C, V,P), outputs a non-empty subset W
of C. The candidates in W are called the election winners
under R. In this paper we consider a class of voting rules
known as scoring rules as well as a rule called Single Trans-
ferable Vote.

A vector w = (ω1, . . . , ωm) ∈ Qm is a weight vector
if ω1 ≥ . . . ≥ ωm ≥ 0. Given an election (C, V,P) with
|C| = m and a weight vector w, the w-score of a candidate
c ∈ C is computed as

∑
v∈V ωposv(c)

. A collection W =
{wm}m=1,..., where wm is a weight vector in Qm, defines
a scoring rule RW : given an election (C, V,P) with |C| =
m, it computes the wm-scores of all candidates in C and
outputs the candidates with the maximum wm-score.

Some popular scoring rules are
• the Borda ruleRB , which is defined by ωm

j = m− j;

• the Plurality rule RP , which is defined by ωm
j = 1 if

j = 1 and ωm
j = 0 otherwise;

• the k-Approval rule RA(k), which is defined by ωm
j = 1

if j ≤ k and ωm
j = 0 otherwise;

• the Veto rule RV , which is defined by ωm
j = 1 if j < m

and ωm
j = 0 if j = m;

• the harmonic ruleRH , which is defined by ωm
j = 1

j .

The Single Transferable Vote (STV) is an iterative rule
that works as follows. In each round one of the candidates
with the lowest Plurality score is removed from the set of
candidates and from the rankings of the voters; the Plural-
ity scores are then recalculated. After m − 1 rounds, only
one candidate survives; this candidate is declared to be a
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winner. Note that this procedure is non-deterministic: in
any given round, there may be multiple candidates with the
lowest Plurality score. There are several ways to make it
deterministic; in this work, we will consider the so-called
parallel-universe model (Conitzer, Rognlie, and Xia 2009):
in this model, a candidate is said to be an STV winner if it
survives after m− 1 rounds for some sequence of choices at
each elimination step.

This procedure is illustrated by the following example.

Example 1. Consider the following preference profile:

1: c1 �1 c2 �1 c3 �1 c4, 2: c1 �2 c4 �2 c3 �2 c2,
3: c2 �3 c4 �3 c1 �3 c3, 4: c2 �4 c4 �4 c3 �4 c1,
5: c3 �5 c2 �5 c4 �5 c1, 6: c3 �6 c2 �6 c1 �6 c4,
7: c1 �7 c2 �7 c4 �7 c3, 8: c4 �8 c1 �8 c2 �8 c3.

In the first round c4 is eliminated. In the second round, after
c4 is removed, the Plurality scores of the candidates c1, c2,
and c3, are equal to 4, 2, and 2, respectively. If we choose to
eliminate c3, then in the next round the scores of c1 and c2
are equal to 4, so either of them can be eliminated. Alterna-
tively, we can eliminate c2 in the second round; in the next
round, the score of c1 is 5, while the score of c3 is 3, so c3 is
eliminated. Thus, the set of STV winners is {c1, c2}.
Distortion A metric space is a pair M = (S, d), where S
is a set of points and d : S × S → R is a distance function.
A common example of a metric space is the space Rk for
some k ∈ N together with the Euclidean distance function
d((x1, . . . , xk), (y1, . . . , yk)) = (

∑
i∈[k] |xi − yi|k)1/k.

Consider an election E = (C, V,P) and a metric space
M = (S, d). We say that E is M-consistent if voters and
candidates can be associated with points in S and voters’
preferences over the candidates are governed by d, i.e., V ⊆
S, C ⊆ S and for each voter vi and every pair of candidates
a, b ∈ C we have a �i b whenever d(vi, a) < d(vi, b).
Given an M-consistent election E = (C, V,P), for each
candidate c ∈ C we can compute the sum of distances from
c to all voters, i.e., its utilitarian cost:

qM(c, E) =
∑
v∈V

d(v, c).

Elements of the set argminc∈C qM(c, E) can be seen as op-
timal candidates. The distortion of a voting rule R relates
the utilitarian cost of the output of this rule to that of an op-
timal candidate.

Definition 1. Given a metric spaceM = (S, d) and anM-
consistent election E = (C, V,P), the distortion ofR on E
is the ratio

distM(R, E) =
maxc∈R(E) qM(c, E)

minc∈C qM(c, E)
.

Let EMm be the set of allM-consistent elections with m can-
didates. We set

DistMm (R) = max
E∈EM

m

distM(R, E).

We note that we measure distortion as a function of the
number of candidates and let the number of voters vary. We
believe that this is a reasonable approach, as the number of
candidates is usually much smaller than the number of vot-
ers. In all our lower bound proofs, the number of voters is
polynomially related to the number of candidates

WhenM = R with the usual Euclidean distance, we omit
it from the notation, i.e., we write Distm(R) in place of
DistRm(R).

3 Distortion of Scoring Rules

Anshelevich, Bhardwaj, and Postl (2015) show that for Plu-
rality and Borda it holds that Distm ≥ 2m − 1, and for k-
approval with k > 1 and the Veto rule the distortion cannot
be bounded as a function of m. We will now prove that no
scoring rule has bounded distortion with respect toM = R.
Theorem 1. For every scoring rule RW we have
Distm(RW) ≥ 1 + 2

√
lnm− 1.

Proof. Suppose that W = (wm)m=1,.... Fix the number of
candidates m and let ωi = ωm

i for i ∈ [m]. We can assume
without loss of generality that ω1 = 1, ωm = 0. For every
z = 1, . . . ,m, let

Fz = ω1 + · · ·+ ωz, Lz = ωm−z+1 + · · ·+ ωm,

and set
fz =

Fz

z
, �z =

Lz

z
.

We will construct an m-candidate instance where all can-
didates and all voters are located in R; the description of
the instance depends on the parameters z, n1, and n2 whose
values will be chosen later.

There are z candidates, 0 < z < m, at x = 1; we denote
these candidates by a1, . . . , az and write A = {a1, . . . , az}.
The remaining m − z candidates are at x = −1; we de-
note them by b1, . . . , bm−z , and write B = {b1, . . . , bm−z}.
There are z · n1 voters at x = 0 and z · n2 voters at x = 1.

We assume that all voters at x = 0 prefer candidates in B
to candidates in A, all voters rank the candidates in B in the
same way, and in aggregate the voters are indifferent among
candidates in A. Specifically, for each i = 1, . . . , z there are
n1 voters at x = 0 who rank the candidates as

b1 � · · · � bm−z � ai � · · · � az � a1 � · · · � ai−1.

and n2 voters at x = 1 who rank the candidates as

ai � · · · � az � a1 � · · · � ai−1 � b1 � · · · � bm−z.

For this instance, the sum of distances from voters to any
candidate in A is zn1, while the sum of distances from voters
to any candidate in B is zn1 + 2zn2, so as long as z, n1

and n2 are all positive, it is optimal to select an arbitrary
candidate in A. However, the score of b1 is

zn1 + zn2ωz+1,

whereas the score of any candidate in A is

n1(ωm−z+1 + · · ·+ ωm) + n2(ω1 + · · ·+ ωz)

= n1Lz + n2Fz.
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Thus, if
zn1 + zn2ωz+1 > n1Lz + n2Fz, (1)

our rule outputs b1 and its distortion is at least
zn1 + 2zn2

zn1
= 1 + 2

n2

n1
.

We will now show that we can choose z ∈ {1, . . . ,m − 1}
and positive integers n2, n1 so that n2

n1
≥ √

lnm− 1 and
condition (1) is satisfied.

It is immediate that if ω2 = 1, we can choose z = 1,
n1 = 1, and n2 = n − 1: equation (1) then becomes n >
n− 1, and the distortion of our rule is at least 1 + 2(n− 1),
so it is not bounded as a function of m; in particular, we
can choose n so that n − 1 >

√
lnm− 1 (this generalizes

the argument for k-Approval and Veto from the work of An-
shelevich, Bhardwaj, and Postl (2015)). Thus, from now on
we assume ω2 < 1.

In this case, it will be convenient to rewrite condition (1)
as follows:

z + z · ωz+1 · n2

n1
> Fz · n2

n1
+ Lz

or, equivalently,
n2

n1
<

z − Lz

Fz − z · ωz+1
;

note that the denominator of the fraction in the right-hand
side is not zero since we assume ω1 = 1, ω2 < 1. Let

R(z) =
z − Lz

Fz − z · ωz+1
.

To complete the proof, it remains to argue that we can
choose z ∈ {1, . . . ,m − 1} so that R(z) ≥ √

lnm− 1.
Indeed, for this value of z the quantity R(z) is a rational
fraction p

q , and we can set n2 = p, n1 = q to obtain a profile
on which the distortion of our rule is at least 1+2

√
lnm− 1.

For readability, we prove this fact in a separate lemma.

Lemma 1. There exists a z ∈ {1, . . . ,m − 1} such that
R(z) ≥ √lnm− 1.

Proof. Let λ = 1/
√
lnm− 1. We will consider two cases.

Case 1: ω2 > 1− λ.
In this case we can set z = 1. Indeed, for z = 1 we have
z−Lz = 1, Fz − z ·ωz+1 = ω1−ω2 < λ, so R(1) ≥ 1/λ,
which is what we need to prove.
Case 2: ω2 ≤ 1− λ.
Note that in this case we have z − Lz ≥ zλ for z =
1, . . . ,m− 1.

We will argue that there exists a z ∈ {1, . . . ,m− 1} such
that fz − ωz+1 ≤ λ2; we then obtain

R(z) ≥ zλ

zλ2
=

1

λ
.

Indeed, suppose that for each z ∈ {1, . . . ,m − 1} we have
fz − ωz+1 > λ2. We have

(z + 1) · fz+1 = Fz+1 = Fz + ωz+1 = z · fz + ωz+1

< (z + 1)fz − λ2;

dividing both sides by z+1 gives fz+1 < fz − λ2

z+1 . Induc-
tively, this implies

fm < 1− λ2

(
1

2
+ · · ·+ 1

m

)
.

But 1
2 + · · ·+ 1

m > lnm− 1, and hence

λ2

(
1

2
+ · · ·+ 1

m

)
> 1,

whereas fm = 1
m (ω1 + · · · + ωm) is necessarily posi-

tive, a contradiction. Thus, fz − ωz+1 ≤ λ2 for some
z ∈ {1, . . . ,m− 1}, and the proof is complete.

As argued above, Lemma 1 implies that we can pick z,
n1, and n2 so that the distortion of our rule on the resulting
instance is at least 1 + 2

√
lnm− 1.

We remark that for many scoring rules we can use the con-
struction in the proof of Theorem 1 to obtain lower bounds
that are much stronger than 1 + 2

√
lnm− 1. For instance,

for the Borda rule we can take z = 1 and obtain

Distm(RB) ≥ 1 + 2(m− 1)

and for Plurality we can take z = m− 1 and obtain

Distm(RP ) ≥ 1 + 2(m− 1),

thereby recovering the results of Anshelevich, Bhardwaj,
and Postl (2015). Also, for the harmonic rule we can take
z = m− 1 and obtain

Distm(RH) = Ω
( m

lnm

)
.

In particular, our lower bound is linear for Plurality and
Borda and sublinear for the harmonic rule. We will now
show that, indeed, the harmonic rule always provides sub-
linear distortion; our result holds for arbitrary metric spaces.
Theorem 2. For every metric spaceM we have

DistMm (RH) = O
(
m(lnm)−1/2

)
.

Proof. For the proof, it will be convenient to extend the def-
inition of the weight vector to non-integer “indices” and set
ωt = 1/t for all t > 0. As in the proof of Theorem 1, given
a positive integer z, we write Fz = 1 + 1

2 + . . .+ 1
z .

Consider a metric space M = (S, d) and an M-
consistent election E = (C, V,P). Let w denote a candi-
date selected by the harmonic rule, and let o be an optimal
candidate, i.e., o ∈ argmin qM(c, E). Set d = d(o, w). Let

U = {v ∈ V : d(v, o) < d/6}, u = |U |.
We have ∑

v∈V d(v, w)∑
v∈V d(v, o)

≤
∑

v∈V (d(v, o) + d(o, w))∑
v∈V d(v, o)

= 1 +
nd∑

v∈V d(v, o)
≤ 1 +

nd∑
v∈V \U d(v, o)

≤ 1 +
nd

(n− u)d/6
= 1 +

6n

n− u
.
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It remains to argue that n− u = n · Ω
(√

lnm
m

)
. Let

G = {c ∈ C : d(c, o) < d/3}, z = |G|.
For each v ∈ U , let s(v) be the score that o receives from v;
we have

s(v) = ωposv(o)
=

1

posv(o)
.

Also, let

σ(v) = Fposv(o)
= ω1 + · · ·+ ωposv(o)

.

Fix a voter v ∈ U . For each c ∈ G we have

d(v, c) ≤ d(v, o) + d(o, c) < d/6 + d/3 = d/2,

d(v, w) ≥ d(o, w)− d(v, o) > d− d/6 = 5d/6,

so v prefers each candidate from G over w. On the other
hand, for each a ∈ C \G we have

d(v, a) ≥ d(a, o)− d(v, o) > d/3− d/6 = d/6 > d(v, o),

so v prefers o to each candidate from C \G. Consequently,
v’s preference order is of the following form:

v : ci1 � . . . � ci�︸ ︷︷ ︸
subset of G \ {o}

� o � . . . � w � . . .

Thus, the total score of w is at most

uωz+1 + (n− u),

whereas the total score of o is at least∑
v∈U

s(v).

Moreover, the total score that the candidates in G get from a
voter v ∈ U is at least σ(v), so by the pigeonhole principle
the total score of some candidate in G is at least

1

z

∑
v∈U

σ(v).

Since w is the winner under the harmonic rule, we have

u · ωz+1 + (n− u) ≥
∑
v∈U

s(v), and (2)

u · ωz+1 + (n− u) ≥ 1

z

∑
v∈U

σ(v). (3)

Let p = 1
u

∑
v∈U posv(o). By the inequality between the

harmonic mean and the arithmetic mean, we have

u∑
v∈U s(v)

=
u∑

v∈U
1

posv(o)

≤
∑

v∈U posv(o)

u
= p,

so
∑

v∈U s(v) ≥ u/p = u · ωp, and inequality (2) implies

u · ωz+1 + (n− u) ≥ u · ωp. (4)

As we have posv(o) ≤ z for each v ∈ U and Fx

x is a de-
creasing function of x, we obtain Fposv(o)

≥ posv(o)
Fz

z for
each v ∈ U and hence∑

v∈U σ(v)

u · p =

∑
v∈U σ(v)∑

v∈U posv(o)
=

∑
v∈U Fposv(o)∑
v∈U posv(o)

≥ Fz

z
.

Therefore, inequality (3) implies

u · ωz+1 + (n− u) ≥ up · Fz

z2
. (5)

Now, if p ≤ z(ln z)−1/2 it holds that ωp ≥ (ln z)1/2/z,
whereas if p > z(ln z)−1/2, we have Fz > ln z, and
hence p · Fz/z

2 > (ln z)1/2/z. Together with inequali-
ties (4) and (5), this implies

u

z + 1
+ (n− u) ≥ u

√
ln z

z
,

or, equivalently,

n ≥ u

(
1 +

√
ln z

z
− 1

z + 1

)
.

As z ≤ m, it follows that

u ≤ n

1 +
√
lnm
m − 1

m+1

,

and, consequently,

n− u ≥ n ·
√
lnm
m − 1

m+1

1 +
√
lnm
m − 1

m+1

= n · Ω
(√

lnm

m

)
,

which is what we had to prove.

4 Distortion of Single Transferable Vote

In this section, we focus on STV and show that it has fairly
low distortion. Specifically, we demonstrate that its distor-
tion grows at most logarithmically with m; note that this is
a much better upper bound than the bound for the harmonic
rule provided by Theorem 2. However, we also show that
STV is not as good as the Copeland rule or Uncovered Set,
by proving a non-constant lower bound.
Theorem 3. For every metric space M we have
DistMm (STV) = O(lnm).

Proof. Let M = (S, d), and consider an M-consistent
election E = (C, V,P). Pick o ∈ argmin qM(c, E),
w ∈ STV(E), and set d = d(o, w). Fix γ > 2

3 . Let

x = 2

⌈
log γ

1−γ

(
m · 2γ − 1

3γ − 2

)⌉
+ 1;

note that x is an odd integer and x = O(lnm). Set r = d
2x .

For i = 1, . . . , x + 1, let Bi be a ball with center o and
radius (2i − 1)r (see Figure 1). Note that w ∈ Bx+1 \ Bx.
We will now argue that B1 contains at most γn voters.

For the sake of contradiction, assume that this is not the
case, i.e., that |B1 ∩ V | > γn. Fix an elimination sequence
that results in w being the last surviving candidate. We will
say that a candidate c is supported by a voter v at some stage
of the STV elimination procedure if c is the closest not-yet-
removed candidate to v. For each i ∈ [x], let �i−1 be the
last candidate from Bi−1 to be removed by STV, and let yi
denote the number of candidates in Bi\Bi−1 just before �i−1

is removed.
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Figure 1: The sequence of balls from the the proof of Theo-
rem 3.

Consider i ≤ x − 2. For every voter v ∈ B1 and every
candidate c /∈ Bi+1 it holds that
d(v, �i) ≤ d(v, o) + d(o, �i) ≤ r + (2i− 1)r

= (2i+ 1)r − r < d(c, o)− d(v, o) ≤ d(v, c).

Hence, just before �i is removed, each voter in B1 supports
a candidate in Bi+1. Thus, from the pigeonhole principle
we infer that at this moment there exists a candidate c ∈
Bi+1 that is supported by more than γn

yi+1+1 voters from B1.
Consequently, when STV decides to remove c, all surviving
candidates in Bi+3\Bi+2 are supported by more than γn

yi+1+1

voters. None of these voters is in B1, as all voters in B1

prefer c to every c′ ∈ Bi+3 \ Bi+2: indeed, for v ∈ B1 we
have

d(v, c) ≤ d(v, o) + d(o, c) ≤ 2(i+ 1)r

< d(c′, o)− d(v, o) ≤ d(v, c′).
Thus, we get

yi+3
γn

yi+1 + 1
< n(1− γ),

and hence yi+1 > γ
1−γ yi+3 − 1. Set ξ = γ

1−γ . Recall that
w ∈ Bx+1 \ Bx, so yx+1 ≥ 1. We have

y1 > ξy3 − 1 ≥ ξ2y5 − ξ − 1 ≥ . . .

≥ ξ
x−1
2 − ξ

x−1
2 −1 − . . .− 1 = ξ

x−1
2 − 1− ξ

x−1
2

1− ξ

= ξ
x−1
2

(
1 +

1

1− ξ

)
− 1

1− ξ
≥ ξ

x−1
2 · 2− ξ

1− ξ

=

(
γ

1− γ

) x−1
2

· 3γ − 2

2γ − 1
≥ m

2γ − 1

3γ − 2
· 3γ − 2

2γ − 1
= m.

Thus, we obtain y1 > m, a contradiction. We conclude
that B1 contains at most γn voters. Let us now assess the
distortion:∑

v∈V d(v, w)∑
v∈V d(v, o)

≤
∑

v∈V (d(v, o) + d(o, w))∑
v∈V d(v, o)

= 1 +
nd∑

v∈V d(v, o)
≤ 1 +

nd∑
v∈V \B1

d(v, o)

≤ 1 +
nd

n(1− γ)r
= 1 +

2x

1− γ
.

Since γ is a constant and x = O(lnm), the distortion is
upper-bounded by O(lnm).

1

1 1

4

. . .

. . .

36
Si−1

Si = 36

Si yi children

0

layer i

layer i− 1

1 1 11 1

. . .

1

1 1

4

1 1 11 1

. . .

Figure 2: The metric space in the proof of Theorem 4 for
h = 4. The number in a node denotes the number of voters
in that node.

Our next theorem establishes a lower bound of the distor-
tion of STV.

Theorem 4. There exists a metric space M such that
DistMm (STV) = Ω(

√
lnm).

Proof. Given a positive integer h, we construct a perfectly
balanced tree of height h and then connect all leaves to one
additional node (see Figure 2). We say that all leaves belong
to the first layer; for i > 1 layer i consists of parents of the
nodes at level i − 1. For i = 2, . . . , h, each node at level i
has yi children, where yi = 2i + 2i−2 − 2. We denote by zi
the number of nodes at level i.

We define the length of each edge of our graph to be one,
and define the distance between a pair of nodes to be the
length of a shortest path between these nodes.

We place one candidate in each node, including the node
that is connected to all leaves. As we have yi = 2i+2i−2−2
for 2 ≤ i ≤ h, and hence yi ≤ 2i+1 for i ∈ [h], the total
number of leaves can be upper-bounded as

z1 ≤ 2h+1 · 2h · . . . · 2 = 2
(h+1)(h+2)

2 ≤ 2(h+1)2 ;

as the degree of each internal node is at least 2, this implies
that the number of candidates m is at most 2 ·2(h+1)2 . From
this, we conclude that h ≥√

log2 m− 2.
The voters’ positions are defined as follows. We place one

voter in each leaf node. Let Si denote the total number of
voters in a subtree rooted in a level-i node; we have S1 = 1.
Now, for each i = 2, . . . , h, we compute Si−1 and place
Si−1 voters in each node of layer i. Thus, we have Si =
Si−1(yi + 1). Note that there are exactly z1 voters in the
bottom layer.

There are ziSi−1 voters at level i, and we have zi =
zi+1yi+1. Thus,

zi+1Si

ziSi−1
=

Si

yi+1Si−1
=

yi + 1

yi+1
=

2i + 2i−2 − 1

2i+1 + 2i−1 − 2
=

1

2
,

i.e., layer i contains twice as many voters as layer i+ 1. As
layer 1 has z1 voters, the number of voters in layer i is equal
to z12

−(i−1).
Let c0 be the candidate located in the node connected to

all the leaves. STV would first remove c0, as no voter ranks
it first, and every other candidate is ranked first by at least
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one voter. STV can then remove all candidates located in the
leaves, one by one: initially, each such candidate is ranked
first by exactly one voter, and no leaf candidate gains ad-
ditional votes as other leaf candidates are removed. Induc-
tively, suppose that STV has removed all candidates in lay-
ers 1, . . . , i − 1, and all other candidates are still present.
Then a candidate in layer i is ranked first among the re-
maining candidates by the Si voters in the respective sub-
tree, and each candidate in layer j, j > i, is ranked first
by the Sj−1 ≥ Si voters who are located in the same node
as that candidate. Thus, STV can remove the candidates in
layer i one by one. We conclude that the root of the tree can
be selected as the winner. As there is a voter in each leaf, the
total distance of the voters to the root, which we will denote
by dstv, is at least z1h.

In contrast, the total distance of the voters to the candidate
in the node connecting all the leaves can be upper-bounded
as

dbot = z1 +
z1
2
2 + . . .+

z1
2h−1

h = z1

h∑
i=1

i2−(i−1)

= 4z1(1− (h+ 1)2−h + h2−h−1) ≤ 4z1.

Thus, we can lower-bound the distortion in our example as

dstv
dbot

≥ h

4
≥

√
log2 m− 2

4
.

This completes the proof.

5 Conclusions

We have obtained upper and lower bounds on the distortion
of scoring rules and STV. For STV, our bounds provide us
with a fairly clear understanding of its distortion, telling us
that this is an acceptable rule for a moderate number of can-
didates. We note, however, that our lower bound in Theo-
rem 4 does not apply to R, and thus STV may perform bet-
ter when voters and candidates belong to a low-dimensional
Euclidean space; understanding whether this is a case is a
topic for future research. For scoring rules, our results are
much less conclusive. While we have shown that no scoring
rule provides constant distortion, our lower bound does not
rule out the possibility that some scoring rule performs as
least as well as STV. In particular, the lower bound of Theo-
rem 1 is tight for the scoring rule associated with the family

of weight vectors given by ωm
j = 1 −

√
j−1
m−1 ; it would be

interesting to obtain an upper bound on the distortion of this
rule.
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