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Abstract

Security problems can be modeled as two-player partially ob-
servable stochastic games with one-sided partial observabil-
ity and infinite horizon (one-sided POSGs). We seek for op-
timal strategies of player 1 that correspond to robust strate-
gies against the worst-case opponent (player 2) that is as-
sumed to have a perfect information about the game. We
present a novel algorithm for approximately solving one-
sided POSGs based on the heuristic search value iteration
(HSVI) for POMDPs. Our results include (1) theoretical
properties of one-sided POSGs and their value functions, (2)
guarantees showing the convergence of our algorithm to op-
timal strategies, and (3) practical demonstration of applica-
bility and scalability of our algorithm on three different do-
mains: pursuit-evasion, patrolling, and search games.

Introduction

Game theory is widely used in security problems and strate-
gies from game-theoretic models are applied to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), computer networks (Vanek et al. 2012) or
wildlife (Fang, Stone, and Tambe 2015; Fang et al. 2016).
Many real-world situations, however, contain a dynamic
strategic interaction between the players that has to be ad-
dressed in the models. Players can observe (possibly im-
perfectly) information about actions of their opponent and
react to these observations. Examples include patrolling
games (Basilico, Gatti, and Amigoni 2009; Vorobeychik
et al. 2014; Basilico, Nittis, and Gatti 2016), where a de-
fender protects a set of targets against an attacker, pursuit-
evasion (Chung, Hollinger, and Isler 2011), or search games,
where a defender is trying to find and capture an attacker.

Finding optimal strategies in such dynamic games with
imperfect information is often computationally challenging.
If the horizon of the interaction is restricted, we can use
the extensive-form games formulation. Typically, the size of
this representation grows exponentially with the horizon and
prohibits us from solving large games. If the horizon is infi-
nite (or indefinite), we can use partially observable stochas-
tic games (POSGs). In POSGs, however, many problems are
undecidable (Madani, Hanks, and Condon 1999) even when
we use a discount factor to restrict future gains.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, real-world security scenarios naturally require
partial observability and no strictly defined horizon. The
goal is to find best robust strategies that provide guaran-
tees on the expected outcome for one player (the defender)
against any opponent (the attacker). Therefore, we focus
on discounted two-player zero-sum POSGs with concurrent
moves and one-sided partial observability where it is as-
sumed that the attacker has full information about the game
– the attacker knows the state of the game as well as the
history of actions played. One-sided partial observability
has been used in specific domains such as patrolling games,
e.g. (Vorobeychik et al. 2014), or pursuit-evasion games,
e.g. (Horak and Bosansky 2016). We generalize this con-
cept to a broad class of POSGs.

Our main contribution is the first domain-independent al-
gorithm that has guarantees to approximate optimal strate-
gies in one-sided POSGs. Our algorithm is a general-
ization of the heuristic search value iteration algorithm
(HSVI) for Partially Observable Markov Decision Processes
(POMDPs). Similarly to POMDPs, one-sided POSGs al-
low us to compactly represent strategies and value func-
tions representing values of the game based on the belief
the first player has about the state of the game. Contrary to
POMDPs, the presence of the opponent player causes sig-
nificant technical challenges that we address in this paper.
First, we show that the assumption of the one-sided partial
observability guarantees that the value functions are convex.
Second, we define a value backup operator and show that
an iterative application of this operator converges to the op-
timal values. Third, we generalize the ideas behind HSVI
towards one-sided POSGs, and show that our algorithm ap-
proximates optimal strategies. Finally, we demonstrate the
applicability and scalability of our algorithm on three differ-
ent domains – patrolling games (including the variant with
alarms), pursuit-evasion games, and search games. The re-
sults show that our algorithm can closely approximate solu-
tions of large games with more than 4000 states.

Related Work

There are only a few relevant algorithms for computing
strategies in POSGs. An algorithm for computing strategies
in POSGs where all players have imperfect information was
proposed in (Hansen, Bernstein, and Zilberstein 2004). The
algorithm approximates an infinite horizon game by increas-
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ing the horizon in a finite-horizon game and uses dynamic
programming to incrementally construct a set of relevant
pure strategies by eliminating dominated strategies. The set
of such strategies is then used to form a normal-form (or ma-
trix) representation of the POSG. However, the exponential
transformation to the normal form prevents this algorithm
from scaling up. One-sided partial observability allows us
to avoid such enumeration of pure strategies.

The closest works related to the algorithm presented in
this paper are two works on a specific subclass of one-
sided POSGs – pursuit-evasion games (PEGs). First, a class
of one-sided partially observable PEGs was presented and
theoretical results on the shape of the value functions and
the definition of the value backup operator were provided
in (Horak and Bosansky 2017). Second, an HSVI-based al-
gorithm was introduced in (Horak and Bosansky 2016).

Our algorithm can be seen as a significant generalization
of this approach to a broader class of one-sided POSGs.
First, the set of observations is very limited in PEGs –
player 1 is able to observe his own actions only and the
only direct information about the position of the opponent
is given when player 2 is captured. Considering general ob-
servations presents additional challenges for the model and
the algorithm which we address in this paper. Secondly, the
previous work relied on a uniform sampling of belief points
to guarantee the convergence, our algorithm approximates
the solution in a deterministic manner.

Two-Player One-Sided POSGs

A one-sided partially observable stochastic game G is a tu-
ple G = 〈S,A1,A2,O, T ,R〉. The game is played for an
infinite number of stages. At each stage, the game is in one
of the states s ∈ S and players choose their actions a ∈ A1

and a′ ∈ A2 simultaneously. An initial state of the game is
drawn from a probability distribution b0 ∈ Δ(S), which we
treat as a parameter of the game and term the initial belief.

The choice of actions determines the outcome of the cur-
rent stage: Player 1 gets an observation o ∈ O and the
game moves to a state s′ ∈ S with probability Ts,a,a′(o, s′),
where s is the current state. Furthermore he gets a reward
R(s, a, a′) for this transition. We assume the zero-sum case,
hence player 2 receives −R(s, a, a′), and we assume that the
rewards are discounted over time with discount factor γ < 1.
Players do not observe their rewards during the game.

We assume perfect recall, hence both players remember
their respective histories. A history of the first player is
formed by actions he played and observations he received,
i.e. (A1×O)t. The second player has complete observation,
hence S × (A1×A2×O×S)t is a set of her histories. The
strategies σ1, σ2 of the players map each of their histories to
a distribution over their actions.

Value of a Strategy and Value of the Game

In this section, we show that the value of a strategy (the ex-
pected reward of the first player playing σ1 when the oppo-
nent plays her best response) has a linear dependence on the
belief.

The value of the game G is the value of the best strategy
available for each of the initial beliefs b0 ∈ Δ(S). We rep-
resent the value of a game (based on the initial belief) as a
value function. This function is a pointwise maximum taken
over values of all strategies of the first player, which, since
the value of every strategy is linear, forms a convex function.

In the convergence proof of our algorithm, we exploit that
the rate of change in the value function is bounded in terms
of minimum and maximum rewards of G, i.e. the value func-
tion is Lipschitz continuous.

Definition 1 (Value functions). The value of a strategy σ1

of the first player is a function vσ1
: Δ(S) → R which

assigns the expected utility vσ1
(b0) of the player 1 in the

game with initial belief b0 when the first player follows σ1

and the second player best-responds. The value function of
the game G is a function v∗ : Δ(S) → R that assigns the
value v∗(b0) of the best strategy of the first player for each
of the beliefs, i.e. v∗(b0) = supσ1

vσ1(b
0).

Lemma 1. The value vσ1 of a fixed strategy σ1 of the first
player is linear in the initial belief.

The proof relies on the fact that the player 2 knows the ini-
tial state of the game; hence, the initial belief forms a convex
combination of values of best responses for individual states.
Due to the space constraints, full proofs of all lemmas can
be found in the full version of the paper.

We say that a function f is K-Lipschitz if it satisfies
|f(x) − f(y)| ≤ K · ‖x − y‖2. The key observation to
derive the Lipschitz continuity is that the value of the game
lies in a bounded interval [L,U ] where

L = min
(s,a,a′)

∞∑
t=0

γtR(s, a, a′) , U = max
(s,a,a′)

∞∑
t=0

γtR(s, a, a′) .

The proof of the following lemma then relies on defining
the value of the strategy by assigning these extreme values
to the vertices of the belief simplex and identifying the con-
figuration with the largest rate of change.

Lemma 2. Value function vσ1
of a fixed strategy σ1 of

player 1 is (U−L)-Lipschitz.

Theorem 1. Value function v∗ of the game G is convex in
the initial belief and (U−L)-Lipschitz.

Proof. The value function v∗ is the supremum taken over
a set of (U −L)-Lipschitz functions corresponding to val-
ues of strategies available to player 1 (Def. 1, Lemma 2).
Supremum taken over a family of bounded (U−L)-Lipschitz
continuous functions is (U−L)-Lipschitz continuous. More-
over since these functions are linear (Lemma 1), the result-
ing value function is convex.

Value Backup

Now we present a value iteration algorithm for solving one-
sided POSGs. The algorithm approximates the value func-
tion v∗ of the infinite horizon game G by considering value
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functions of the game with a restricted horizon. Each itera-
tion of the algorithm improves the approximation by increas-
ing the horizon by one step using the value backup opera-
tor (denoted H). Applying this operator means that players
choose their Nash equilibrium strategies in the current step
while assuming that the value of the subsequent stage is rep-
resented by the value function from the previous iteration.

The algorithm constructs a sequence {vt}∞t=0, starting
with a value function v0 of a game where only immediate
rewards are considered. First, we discuss application of the
operator in a single stage. Afterward we show the conver-
gence when the operator is applied repeatedly.

Value Backup Operator

The value backup operator H evaluated at belief b —
[Hv](b)— corresponds to solving a stage game where play-
ers choose their Nash equilibrium strategies for one stage of
the game (in latter text we use [Hv](b) to refer to this game
as well). We denote strategies for one stage π1 ∈ Δ(A1)
for the first player and π2 : S → Δ(A2) for the player 2.
The utilities in [Hv](b) depend both on the immediate re-
wards R and the discounted value of the subsequent game
represented by value function v. The immediate rewards part
depends solely on the actions played by the players:

Rimm
π1,π2

=
∑
s∈S

∑
a∈A1

∑
a′∈A2

b(s) ·π1(a) ·π2(s, a
′) ·R(s, a, a′) (1)

The first player both knows the action a he played and ob-
serves observation o. He can use this information to derive
his belief for the subsequent game:

ba,oπ2
(s′) =

1

Pr[o|a, π2]

∑
s∈S

∑
a′∈A2

Ts,a,a′(o, s′)·b(s)·π2(s, a
′) (2)

The value of the subsequent game is then the expectation
taken over individual action-observation pairs (a, o) of the
first player from the values of a game starting in belief ba,oπ2

:

Rsubs
π1,π2

(v) =
∑
a∈A1

∑
o∈O

π1(a) · Pr[o|a, π2] · v(ba,oπ2
) . (3)

Since the value function is convex, utility of playing strat-
egy profile (π1, π2) is convex when π1 is fixed and linear
when we fix π2. The minimax theorem (von Neumann 1928;
Nikaido 1954) applies and the Nash equilibrium strategy is
solved by maximin/minimax:

[Hv](b) = min
π2

max
π1

(
Rimm

π1,π2
+ γ ·Rsubs

π1,π2
(v)

)
. (4)

Computation of Value Backup Operator

Finally, we present the way of computing [Hv](b). When
the value function v is piecewise linear and convex (PWLC),
it can be represented by a set Γ of α-vectors and the value
backup [Hv](b) can be evaluated by means of linear pro-
gramming. Each α-vector α ∈ Γ is an |S|-tuple representing

the affine value function vσ1
of a fixed strategy σ1 by spec-

ifying its values in each of the pure beliefs (α(s) for each
s ∈ S). We focus on the problem of solving the problem
from the perspective of the second player first, who has to
choose her strategy π2 such that the utility V of the best
responding player 1 (who chooses his pure best response
a ∈ A1) is minimized.

The value of playing strategy π2 against action a ∈ A1

equals Rimm
a,π2

+ γRsucc
a,π2

(v), which allows us to construct a
set of best-response constraints (one for each action a)

V ≥
∑
s∈S

∑
a′∈A2

b(s) · π2(s, a
′) · R(s, a, a′) +

+ γ
∑
o∈O

Pr[o|a, π2] · v(ba,oπ2
) . (5)

Assuming that the value function v is represented by a
set Γ of α-vectors, such that v(b) = maxα∈Γ〈α, b〉 (〈·, ·〉
denotes an inner product), its value can be rewritten by a set
of inequalities

v(ba,oπ2
) ≥

∑
s′∈S

α(s′) · ba,oπ2
(s′) ∀α ∈ Γ (6)

where ba,oπ2
(s′) is represented by linear constraints cor-

responding to Eq. (2). The term Pr[o|a, π2] occuring in
Eqs. (2) and (5) cancels out to form the resulting linear pro-
gram.

Strategy of the First Player One way to approximate the
value function by a PWLC function is to use a finite subset of
strategies of the first player. Value functions of these strate-
gies are linear (Lemma 1), and the pointwise maximum from
these linear functions gives us the desired PWLC approxi-
mation. In such a case, each of the vectors in Γ corresponds
to the value function of one of the strategies. The dual linear
program is used to find the optimal control strategy of the
first player, when duals of Eq. (5) correspond to the strategy
to play in the first stage (when the history of the first player
is empty) and duals of Eq. (6) prescribes what strategy to
follow when (a, o) was observed in the first stage.

Convergence of the Value Backup Operator

In this section we show that a repetitive application of the
value backup operator H converges to the same value func-
tion v∗ of the infinite horizon game regardless of what value
function it is applied on. We show this by demonstrating that
the operator H is a contraction mapping with a factor γ < 1.
Lemma 3. Let v, v′ be value functions, b ∈ Δ(S) be a belief
and π1, π2 (resp. π′

1, π′
2) be equilibrial strategies in [Hv](b)

(resp. [Hv′](b)). Assume that for every action-observation
pair (a, o) of the first player, |v(ba,oπ2

)− v′(ba,oπ2
)| ≤ μ. Then

|[Hv](b)− [Hv′](b)| ≤ γμ.
The lemma is proven by modyfing Nash equilibrium strat-

egy profiles in games [Hv](b) and [Hv′](b) and bounding
the difference by the difference of their expected utilities.
Theorem 2. The operator H is a contraction mapping un-
der the norm ‖v − v′‖ = maxb∈Δ(S) |v(b) − v′(b)|. It thus
has a unique fixpoint – the value function of the infinite hori-
zon game.
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Data: Game 〈S,A1,A2,O, T ,R〉, initial belief b0,
discount factor γ, desired precision ε > 0,
neighborhood parameter R

Result: Approximate value function v̂
1 Initialize v̂
2 while gap(v̂(b0)) > ε do

3 Explore(b0, ε, R, 0)
4 return v̂

5 procedure Explore(b, ε, R, t)
6 π2 ← optimal strategy of player 2 in [Hv](b)
7 (a, o) ← select according to forward exploration

heuristic
8 if excess(v̂(ba,oπ2

), t+ 1) > 0 then
9 Explore(ba,oπ2

, ε, R, t+ 1)
10 Γ ← Γ ∪ {LΓ(b)}
11 Υ ← Υ ∪ {UΥ(b)} and make v (U−L)-Lipschitz

Algorithm 1: HSVI algorithm for one-sided POSGs

Proof. Let ‖v−v′‖ ≤ μ. Then for every ba,oπ2
from Lemma 3

|v(ba,oπ2
) − v′(ba,oπ2

)| ≤ μ and for every belief b, |[Hv](b) −
[Hv′](b)| ≤ γμ. The uniqueness of the fixpoint and the
convergence properties follow from the Banach’s fixed point
theorem (Ciesielski 2007).

HSVI Algorithm for POSGs

Similarly to POMDPs, the value iteration algorithm can-
not scale for practical problems. We thus present a point-
based algorithm (Algorithm 1) that by sampling the be-
lief space bounds and approximates the true value func-
tion v∗ of the game by a pair of PWLC functions v (lower
bound), represented by a set of α-vectors Γ, and v (upper
bound) represented as a lower envelope of a set of points
Υ. We refer to these functions jointly as v̂. The goal of
the algorithm is to ensure that the gap in the initial belief
b0 of the game induced by the approximation defined as
gap(v̂(b)) = v(b)− v(b) is no higher than the required pre-
cision. Functions v̂ are refined by adding new elements to
their sets. These new elements result from point-based up-
dates of operator H at a single belief point b.

The algorithm is initialized with v (and Γ) corresponding
to the value of a uniform strategy of the first player and the
upper bound v (and Υ) results from solving a perfect infor-
mation refinement of the game. In every iteration, a finite
set of beliefs is updated by forward exploration (lines 6-9).
Beliefs selected by this process contribute to the fact that the
gap at b0 is not sufficiently small, and hence the approxima-
tion in these beliefs needs to be improved by applying point-
based updates (lines 10 and 11). We now describe how the
updates are performed, followed by the description of the
forward exploration search.

Point-Based Updates

A point-based update at belief point b updates the lower and
upper bound functions v and v using the optimal strategies
in games [Hv](b) and [Hv](b). In order to prove the con-
vergence, we require that the functions v and v are (U−L)-
Lipschitz; hence, the update has to preserve this property.

The update of v adds an α-vector corresponding to the
value of a Nash equilibrium strategy of the first player in
[Hv](b) (denoted LΓ(b)) computed from duals of the linear
program (Eqs. (5)-(6)). The value of such strategy is linear
and (U−L)-Lipschitz (Lemma 2), hence the expansion of Γ
by LΓ(b) preserves (U−L)-Lipschitz continuity of v.

The upper bound function v is represented by a set of
points Υ. Update of upper bound adds one point, UΥ(b) =
b → [Hv](b), that corresponds to the evaluation of the value
backup at belief b. We cannot use the linear program out-
lined in Eqs. (5)-(6) to compute [Hv](b) directly since the
function v is not represented using α-vectors. We, there-
fore, use a transformation presented in (Horak and Bosan-
sky 2016) which performs projections of beliefs to the lower
envelope of v while preserving linearity of the constraints.

Adding a point to Υ can break the (U−L)-Lipschitz conti-
nuity of v. We can fix this by constructing a piecewise linear
approximation of a lower (U−L)-Lipschitz envelope:

v(b) := inf
b′∈Υ

{
v(b′) + (U−L) · ‖b− b′‖2

}
. (7)

The resulting function is c(U−L)-Lipschitz when c depends
on the accuracy of the approximation and can be arbitrarily
close to 1.

Forward Exploration

The value backup operator H expresses the value in belief b
in terms of values of subsequent beliefs ba,oπ2

. When applied
to value functions v̂, it also propagates the approximation
error. In order to minimize the gap in the initial belief b0, we
need to achieve sufficient accuracy also in beliefs encoun-
tered at a later time.

The forward exploration simulates a play between the
players while assuming that the second player follows a
strategy obtained from the application of H on the lower
bound v (i.e. she is overly optimistic with her strategy).
When a belief b is encountered at time t (we term such a
pair (b, t) a timed belief ) and its approximation v̂(b) is not
sufficiently accurate, we say that it has positive excess gap.

Definition 2 (Excess gap). Let ε be the desired precision
and R > 0 be a neighborhood parameter. Let

ρ(t) = εγ−t −
t∑

i=1

2R(U−L)γ−i . (8)

We define the excess gap of a timed belief (b, t) as

excess(b, t) = gap(v̂(b))− ρ(t) . (9)

Later we show that if all subsequent timed beliefs
(ba,oπ2

, t+ 1) have negative excess gap, a point-based update
at (b, t) makes the excess gap excess(b, t) negative as well
(in fact, excess(b, t) ≤ −2R(U−L); we then term (b, t) as
closed). If this does not hold for the belief (b, t) currently
explored, the forward exploration process selects one of the
subsequent beliefs (ba,oπ2

, t + 1) with a positive excess gap
for further exploration and the process is repeated with the
timed belief (ba,oπ2

, t+1). If all subsequent beliefs have a neg-
ative excess gap, the forward exploration process terminates.
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The termination is guaranteed if the neighborhood parame-
ter R is chosen so that the sequence ρ(t) is monotonically
increasing in t and unbounded.

Forward Exploration Heuristic A positive excess gap of
a belief contributes to the approximation error in the ini-
tial belief. If there are multiple subsequent timed beliefs
(ba,oπ2

, t + 1) with a positive excess gap, we select the one
with the highest weighted excess gap which is similar to
the weighted excess heuristic used in (Smith and Simmons
2004). The excess gap is weighted by both the observation
probability and the probability that the first player plays a
given action when using the strategy obtained from the up-
per bound value function v (i.e. according to the strategy
π1 from the game [Hv](b)). The action observation pair
(a, o) selected in timed belief (b, t) for the further explo-
ration maximizes π1(a) · Pr[o|a, π2] · excess(ba,oπ2

, t+ 1).

Convergence of the Algorithm

The goal of the HSVI algorithm is to make the excess gap
negative in all reachable timed beliefs and thus sufficiently
decrease the gap in the initial belief. Contrary to POMDPs,
reachable beliefs in POSGs are influenced by the strategy of
the second player – she can change her strategy to reach a
belief (b′, t) with a positive excess gap instead of a closed
belief (b, t), while b′ stays arbitrarily close to b.

We avoid this by ensuring that if (b′, t) with a positive
excess gap is reached by the forward exploration, it lies suf-
ficiently far from all previously closed beliefs at time t – the
minimum distance between the beliefs being controlled by
the neighborhood parameter R > 0 from the definition of
the excess gap. Unlike in POMDPs, our modified defini-
tion of the excess gap ensures that not only a closed belief
itself gets a negative excess gap: all beliefs within its R-
neighborhood get a negative excess gap as well (Lemma 4).
The convergence of the algorithm follows since there is only
a finite number of such R-separated belief points.

Lemma 4. Let (b, t) be a timed belief and π2 be the optimal
strategy of the second player in [Hv](b). If excess(ba,oπ2

, t +
1) ≤ 0 for all action-observation pairs (a, o) of the first
player, then after performing a point-based update at b it
holds that (i) excess(b, t) ≤ −2R(U−L) and (ii) all belief
points b′ in the R-neighborhood of b (i.e. ‖b − b′‖2 ≤ R)
have a negative excess gap excess(b′, t).

The first part of the lemma follows from Lemma 3, the lat-
ter follows from 2(U−L)-Lipschitz continuity of difference
of (U−L)-Lipschitz functions v and v.

Definition 3. Let t be time. The set of all beliefs with nega-
tive excess gap at time t is denoted Ψt;

Ψt = {b ∈ Δ(S) | gap(v̂(b)) ≤ ρ(t)} . (10)

Theorem 3. HSVI algorithm converges to the precision ε.

Proof. In each iteration, the algorithm performs a forward
exploration until it encounters a timed belief (b, t) such that
all subsequent timed beliefs (ba,oπf

, t+1) have a negative ex-
cess gap. Since gap(ba,oπf

) is bounded by U−L, this happens
after at most tmax steps, where

tmax =

⌈
log1/γ

(
U−L

ε
·
[
1 + 2R

1− γt

γt(1− γ)

])⌉
. (11)

When the terminal timed belief (b, t) is reached, then
b 
∈ Ψt and all subsequent timed beliefs have negative ex-
cess gap. After performing the point-based update at (b, t),
the excess gap of (b, t), as well as of all timed beliefs in the
R-neighborhood of (b, t), is negative (Lemma 4) and Ψt is
expanded. We show that the expansion of the sets Ψt′ guar-
antees that eventually Ψt′ = Δ(S) for all times t′ ≤ tmax,
unless the desired precision ε is achieved beforehand.

The distance of b from the nearest belief b′ in Ψt previ-
ously closed by the algorithm is at least R, since all points
in the R-neighborhood of b′ have a negative excess gap and
thus are in Ψt. In each iteration, Ψt is expanded by at least
one belief and (at least) its R-neighborhood.

The number of such expansions of timed beliefs is finite.
In fact, the problem of finding maximum set of R-separated
beliefs can be seen as a hypersphere packing (a higher di-
mensional version of the sphere packing (Hales 2011)) fill-
ing the belief simplex using non-overlapping hyperspheres
of radius R/2, since the hyperspheres do not overlap exactly
when the distance between their centers is at least R. When
no hypersphere can be further inserted, it means that we
cannot find any belief with a positive excess gap, hence we
reached the desired precision in the whole belief space.

Experiments

We demonstrate application possibilities and scalability of
our algorithm on three types of games: pursuit-evasion
games (e.g., evaluated in (Horak and Bosansky 2016)), in-
trusion search games (e.g., see (Bosansky et al. 2014)), and
patrolling games with a discount factor (e.g., see (Vorobey-
chik et al. 2014)). Each player is assigned a team of units
(either one or multiple units) located in vertices of a graph
and he or she controls their movement on the graph. A move
consists of moving the units simultaneously to vertices adja-
cent to their current positions, or they can wait.

The utilities are scaled so that the values of the games lies
in the interval [0, 100] (or [−100, 0], respectively). Unless
stated otherwise the discount factor is γ = 0.95 and we ran
the algorithm until gap(v̂(b0)) ≤ 1.

Algorithm Settings

We initialize the value functions by solving the perfect-
information refinement of the game (for v) and as a best re-
sponse to a uniform strategy of player 1 (for v). We use stan-
dard value iteration for stochastic games, or MDPs, respec-
tively, and terminate the initialization when either change
in valuations between iterations is lower than 0.025, or 20s
time limit has expired. The initialization time is included in
the computation times of the algorithms.

Similarly to (Smith and Simmons 2004), we adjust ε in
each iteration using formula ε = 0.25+η(gap(v̂(b0))−0.25)
with η = 0.9. We set the neighborhood parameter R to the
largest value satisfying ρ(t) ≥ 0.25γ−t for all t ≤ tmax

from the proof of Theorem 3.
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Figure 1: (a) Intrusion-search game: W = 3, configuration 1-1: A denotes initial position of the attacker, D initial posi-
tions of defender’s units, T is attacker’s target (b) Intrusion-search games with 2 zones, each with W vertices: Time to reach
gap(v̂(b0)) ≤ 1 (c) Patrolling games played on graphs generated from ER(0.25): Time to reach gap(v̂(b0)) ≤ 1 (only suc-
cessfully solved instances within 10 hours) (d) Patrolling games played on graphs generated from ER(0.25): Percentage of
successfully solved instances with t× = 4 and the gap on failed instances after 10 hours

Finally, we remove dominated points and vectors from
sets Γ and Υ whenever their size grows by 20% to reduce
the size of the linear programs. Again, this is similar to
POMDPs (Smith and Simmons 2004).

Pursuit-Evasion Games (PEGs)

A team of centrally controlled pursuers aims to locate and
capture the evader, and receive the utility of +100; the evader
aims for the opposite. We consider 3 × N grid graphs (we
vary the number of columns N ), two pursuing units start in
top left positions, the evader starts in bottom right corner.
Our algorithm achieves similar scalability as the existing al-
gorithm designed specifically for one-sided PEGs (Horak
and Bosansky 2016) and displays exponential dependence
of the runtime on the width of the grid N . The game with
N = 3 was solved in 9s on average, the game with N = 6
took 3.5 hours to be solved to the gap 1. A graph depict-
ing the dependence of the runtime on N can be found in the
full version of the paper. Sizes of the games range from 143
states and 2671 transitions to 1299 states and 34807 transi-
tions.

Search Games

In search games that model intrusion, the defender patrols
checkpoint zones (see Figure 1a, the zones are marked with
box). The attacker aims to cross the graph, while not being
captured by the defender. If the attacker crosses the graph
unharmed, the defender receives a utility of -100. Whenever
the attacker enters a node, she leaves a trace and the defender
can later detect it. She can either wait for one move to con-
ceal her presence (and clean up the trace), or move further.

We consider games with 2 checkpoint zones with varying
sizes W (i.e. width of the graph) and 2 configurations of the
defending forces – with one defender in each of the check-
point zones (denoted 1-1), and 2 defenders in the first zone
while just 1 defender being in the second one (denoted 2-
1). The results are shown in Figure 1b (with 5 runs for each
parameterization, the confidence intervals mark the standard
error in our graphs). The largest game (W = 5 and 2 defend-
ers in the first zone) has 4656 states and 121239 transitions
and can be solved within 27 minutes. This case highlights
that our algorithm can solve even large games. However, a
much smaller game with the configuration 1-1 (964 states

and 9633 transitions) is more challenging, since the coor-
dination problem with just 1 defender in the first zone is
harder, and is solved within 3.5 hours.

Patrolling Games

In patrolling games (Basilico, Gatti, and Amigoni 2009;
Vorobeychik et al. 2014) the patroller patrols vertices of a
graph by moving over the graph. The attacker decides the
vertex she will attack and the time she will do so. The pa-
troller does not know if an attack has started, however, he
has a limited time (termed attack time, denoted t×) to reach
the vertex under the attack. Otherwise, the vertex is success-
fully attacked and the patroller receives a negative reward
associated to that vertex.

Following the setting in (Vorobeychik et al. 2014), we fo-
cus on graphs generated from Erdos-Renyi model (Newman
2010) with parameter p = 0.25 (denoted ER(0.25)) with
attack times 3 and 4 and number of vertices |V| ranging
from 7 to 15. Each instance with attack time t× = 3 was
solved by our algorithm in less than 12 minutes (see Fig-
ure 1c). This result generally outperforms the computation
times reported for tailored algorithm for solving discounted
patrolling games (Vorobeychik et al. 2014). For attack time
t× = 4, however, some number of instances failed to reach
the precision gap(v̂(b0)) ≤ 1 within the time limit of 10
hours. For the most difficult setting, |V| = 13, the algo-
rithm reached desired precision in 60% of instances (see
Figure 1d). For unsolved instances, mean gap(v̂(b0)) after
the cutoff after 10 hours is however reasonably small (also
depicted in Figure 1d, see the solid line and right y-axes).
The results include games with up to 856 states and 6409
transitions.

Since our algorithm is domain-independent, it can also
solve variants of patrolling games with alarms (Basilico,
Nittis, and Gatti 2016), including all types of imprecise sig-
nals (false positives, false negatives). The results for this
setting can be found in the full version of the paper.

Conclusions

We focus on two-player zero-sum partially observable
stochastic games (POSGs) with discounted rewards and one-
sided observability where the second player has perfect in-
formation about the game. We propose the first approximate
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algorithm that generalizes the ideas behind point-based al-
gorithms designed for Partially Observable Markov Deci-
sion Processes (POMDPs) and transfers these techniques to
POSGs. We provide theoretical guarantees as well as an ex-
perimental evaluation of our algorithm on three fundamen-
tally different games.

Our work opens a completely new direction in research
of POSGs and sequential decision making and allows to de-
sign new scalable algorithm for one-sided POSGs that can
be applied in many real-world scenarios. While the current
scalability of our algorithm is limited, it is the first step in a
new direction of research. Many heuristics proven useful for
POMDPs can be translated and evaluated in this new setting,
and can further improve the scalability and applicability of
our results.
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