
Nash Stability in Social Distance Games

Alkida Balliu
Gran Sasso Science

Institute, Italy.
alkida.balliu@gssi.infn.it

Michele Flammini
DISIM - University of
L’Aquila & Gran Sasso
Science Institute, Italy.

michele.flammini@univaq.it

Giovanna Melideo
DISIM - University
of L’Aquila, Italy.

giovanna.melideo@univaq.it

Dennis Olivetti
Gran Sasso Science

Institute, Italy.
dennis.olivetti@gssi.infn.it

Abstract

We consider Social Distance Games (SDGs), that is cluster
formation games in which agent utilities are proportional to
their harmonic centralities in the respective coalitions, i.e., to
the average inverse distance from the other agents. We adopt
Nash stable outcomes, that is states in which no agent can im-
prove her utility by unilaterally changing her coalition, as the
target solution concept. Although SDGs always admit a Nash
equilibrium, we prove that it is NP-hard to find a social wel-
fare maximizing one and obtain a negative result concerning
the game convergence. We then focus on the performance of
Nash equilibria and provide matching upper bound and lower
bounds on the price of anarchy of Θ(n), where n is the num-
ber of nodes of the underlying graph, and a lower bound on
the price of stability of 6/5 − ε. Finally, we characterize the
price of stability of SDGs for graphs with girth 4 and girth at
least 5.

1 Introduction

Coalition formation is a pervasive aspect of social life and
it has been studied extensively in algorithmic game theory
using the natural model of Hedonic Games (HGs), intro-
duced in (Dreze and Greenberg 1980) and further explored
in (Aziz, Brandt, and Harrenstein 2011; Aziz, Brandt, and
Seedig 2013; Banerjee, Konishi, and Sönmez 2001; Bogo-
molnaia and Jackson 2002; Elkind and Wooldridge 2009;
Elkind, Fanelli, and Flammini 2016; Gairing and Savani
2010). A HG consists of a set of selfish agents (humans,
robots, software agents, etc.) having preferences over coali-
tions that might include them, regardless of which other
coalitions may or may not be present. The outcome is a par-
tition of the agent set into disjoint coalitions (or clusters),
referred to as a clustering or coalition structure.

Stability is the main criterion that has been used to ana-
lyze which coalition structures will arise: an outcome should
be resistant to individual/group deviations, with different
types of deviations giving rise to different notions of stabil-
ity (such as core stability, individual stability, Nash stabil-
ity). See (Aziz and Savani 2016) for a survey from a more
computational point of view.
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A clustering is Nash stable, or it is a Nash equilibrium,
if no agent can improve her utility by unilaterally chang-
ing her own cluster. In this setting, one of the main tools
for evaluating the degradation of the system performance
induced by the selfish behavior of its agents is the price
of anarchy (PoA) (Koutsoupias and Papadimitriou 1999;
Papadimitriou 2001), defined as the worse-case ratio be-
tween the social welfare (i.e., the sum of the agents utili-
ties) of a best clustering and the social welfare of a Nash
stable clustering. A related optimistic measure for evaluat-
ing the welfare of the best possible equilibrium is the price
of stability (PoS) (Anshelevich et al. 2004), that is the best-
case ratio between the social welfare of a best clustering and
the social welfare of a Nash stable clustering. A growing
interest in HGs has concerned subclasses in which agents
entertain preferences over the other agents, which are then
naturally lifted to preferences over coalitions, additively-
separable HGs being a noticeable example (Olsen 2009).

In this paper we focus on Social Distance Games (SDGs),
an important subclass of HGs introduced in (Brânzei and
Larson 2011) where agent utilities are based on the concept
of social distance (i.e., the number of hops required to reach
one node from another), which has become famous since
Milgram’s study on six degrees of separation. In SDGs the
utility of an agent is given by the average inverse distance
from all the other nodes in her coalition, that is by her har-
monic centrality (Boldi and Vigna 2014) divided by the size
of the coalition. The basic idea is that the agents prefer to
maintain ties with other agents who are close to them. The
utility formulation is a variant of the closeness centrality and
reflects the principle of homophily, that similarity breeds
connection and people tend to form communities with sim-
ilar others (McPherson, Lovin, and Cook 2001). Moreover,
it is related to several other classical measures from network
analysis, such as degree, closeness, betweenness, and eigen-
vector centrality (Gomez et al. 2003), all of which are used
to determine how a node is embedded in the network.

Related Work In the literature, an extensive research con-
sidered HGs from a strategic cooperative point of view
(Bogomolnaia and Jackson 2002; Banerjee, Konishi, and
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Sönmez 2001; Elkind and Wooldridge 2009; Gairing and
Savani 2010) with the aim of characterizing the existence
and the properties of coalition structures such as, for in-
stance, the core. A clustering is core stable if there is no
group of agents who can all be better off by forming a
new deviating coalition. Furthermore, examples of non-
cooperative studies on HGs in which self-organized clus-
terings are obtained from the decisions taken by indepen-
dent and selfish agents can be found in (Bloch and Dia-
mantoudi 2011; Feldman, Lewin-Eytan, and Naor 2015;
Gairing and Savani 2010). Namely, (Banerjee, Konishi,
and Sönmez 2001) study properties guaranteeing the exis-
tence of core allocations for HGs games with additively sep-
arable utility, while (Bogomolnaia and Jackson 2002) con-
sider several forms of clustering stability like the core and
the Nash. (Ballester 2004; Aziz, Brandt, and Seedig 2011;
Olsen 2009) deal with computational complexity issues re-
lated to HGs, also considering additively separable utilities.
In particular, (Olsen 2009) shows that the problem of de-
ciding whether a Nash stable clustering exists in an addi-
tively separable HG is NP-complete, as well as the one of
deciding whether a Nash stable clustering different from the
grand coalition exists in an additively separable HG with
non-negative and symmetric preferences. (Bloch and Dia-
mantoudi 2011) study non-cooperative games of coalition
formation and identify conditions for stable outcomes. In a
similar way, (Apt and Witzel 2009) study how certain pro-
posed rules can transform clusterings into other ones with
specific properties. (Feldman, Lewin-Eytan, and Naor 2015)
investigate some interesting subclasses of HGs from a non-
cooperative point of view, by characterizing Nash equilibria
and providing upper and lower bounds on both the price of
stability and the price of anarchy.

Fractional Hedonic Games (FHGs) have been tradition-
ally investigated under the additively-separable property.
Namely, the utility of an agent is given by the sum of her
preferences for each single member of her coalition, i.e. by
her degree centrality, divided by the size of the coalition.
In a sense, SDGs are FHGs in which in the definition of
agents utilities the degree centrality measure is substituted
by the harmonic centrality. FHGs have been investigated
in (Aziz, Brandt, and Harrenstein 2014; Aziz et al. 2015;
Brandl, Brandt, and Strobel 2015) from a cooperative per-
spective and in (Bilò et al. 2014; 2015; Olsen 2012) from a
non-cooperative viewpoint.

To the best of our knowledge Social Distance Games have
been considered only in the cooperative context of core sta-
bility in (Brânzei and Larson 2011). In particular, the au-
thors show that finding the best clustering is NP-hard and
provide an algorithm to approximate the optimal welfare
within a factor of two. They adopt core stable solutions as
the target solution concept to analyze its welfare and stabil-
ity properties. Finally they show that core stable structures
have small world characteristics.

Studying strategic solutions under a non-cooperative sce-
nario such as Nash equilibria becomes of fundamental im-
portance when considering huge environments characterized
by decentralization, autonomy, and general lack of coordina-
tion among the entities or where the cost of coordination is

tremendously high.

Our Contribution In this paper we approach SDGs from
the viewpoint of non-cooperative game theory with the aim
of understanding the existence, computability and perfor-
mances of Nash stable clusterings. We first focus on the ex-
istence of Nash stable clusterings: even if SDGs always ad-
mit a Nash equilibrium, we first show that they may not con-
verge to Nash equilibria and then give a polynomial reduc-
tion from the NP-Complete RESTRICTED EXACT COVER
by 3-SETS (RXC3) problem (Gonzalez 1985) to prove that
it is NP-hard to find a best Nash equilibrium. We then study
the performances of the Nash equilibria and provide match-
ing upper and lower bounds on the price of anarchy of Θ(n),
where n is the number of nodes of the underlying graph, and
a lower bound on the price of stability of 6/5−ε. Finally, we
characterize the price of stability of SDGs for graphs with
girth 4 and girth at least 5, the girth being the length of the
shortest cycle in the graph.

Due to space limitations, sometimes only proof sketches
are provided and some details are omitted.

2 Model and Preliminaries

Consider an undirected graph G = (V,E). A coalition or
cluster is a non-empty subset of V . The set of all nodes V
is called the grand coalition, whereas a coalition of size 1
is said a singleton coalition and its node singleton or iso-
lated. For any integer n > 0 denote with [n] the set of
integers {1, . . . , n} and with [k, n], for k ≤ n the subset
{k, . . . , n} ⊆ [n]. A clustering or coalition structure is a
partition of V into k > 0 coalitions C = {C1, . . . , Ck}
such that Ci ⊆ V for each i ∈ [k] ,

⋃
i∈[k] Ci = V and

Ci ∩ Cj = ∅ for any i, j ∈ [k] with i �= j. Given a coali-
tion C, we denote by G(C) the subgraph induced by C. For
brevity, we will often identify G(C) directly with the corre-
sponding coalition C.

Given a set of n selfish agents and an undirected graph
G = (V,E) with n nodes, we consider coalition forming
games in which each node x ∈ V is associated with an
agent. In the following, for the sake of simplicity, we will
often identify an agent with its node x ∈ V .

Let the harmonic centrality of a node x ∈ V be defined
as μx(G) =

∑
y∈V \{x}

1
dG(x,y) , where for any pair of nodes

x, y ∈ V , dG(x, y) denotes the length of a shortest path
connecting x and y in G. The sum of the inverse of the
social distances can be viewed as the similarity of an agent
with the other agents of the coalition, and it indicates the
centrality of the agent in that coalition.

Definition 2.1 (Brânzei and Larson 2011) A Social Dis-
tance Game SDG(G), or SDG in short, is represented as
an undirected graph G = (V,E) where (i) V is the set of
n agents and (ii) the utility of an agent x ∈ V in a given
coalition C is a suitable function of her harmonic-centrality
in the subgraph induced by C, that is:

ux(C) =
μx(G(C))

|C| =
1

|C|
∑

y∈C\{x}

1

dC(x, y)
.

343



If x and y are disconnected in C, then dC(x, y) =∞.

We denote by C(x) the coalition of C including node x. Let
us use ux(C) as a shorthand for the utility ux(C(x)) of x
in a given solution C. Each agent chooses the coalition to
belong to with the aim of maximizing her utility. A solution
or outcome of a SDG is a clustering C. The social welfare
SW (C) of a clustering C is the sum of the agents’ utilities,
i.e., SW (C) =∑x∈V ux(C).

For any pair of agents x and y, we denote with (C, x, y)
the clustering obtained from C by moving x from C(x) to
C(y). A clustering C′ = (C, x, y) is an improving deviation
for agent x in C if ux(C) < ux(C′). In this case we say that
agent x makes an improving move. An improving dynamics
is a sequence of improving deviations. We assume that the
input graph is connected, since disconnected graphs can be
analyzed componentwise.

We say that an agent x is Nash stable in a clustering C if
she cannot perform any improving deviation, that is if ∀y ∈
V , ux(C) ≥ ux(C′), where C′ = (C, x, y). A clustering C
is Nash stable, or is a Nash equilibrium, if every agent i is
Nash stable in C.

We are interested in bounding the performances of Nash
equilibria with respect to the social optimum OPT, i.e.
the social welfare of a best clustering C∗ that maximizes
SW (C), that is such that OPT = SW (C∗) = maxC SW (C).
Notice that C∗ is not necessarily an equilibrium. If N de-
notes the set of the Nash equilibria, a best (worst) Nash
equilibrium is a Nash equilibrium C ∈ N that maximizes
(minimizes) SW (C). The best (worst) social cost is the so-
cial welfare of a best (worst) Nash equilibrium. The price of
anarchy (PoA) is the ratio between the social optimum and
the worst social cost in a game i.e., PoA = maxC∈N OPT

SW (C) ;
the price of stability (PoS) is the ratio between the social op-
timum and the best social cost, i.e., PoS = minC∈N OPT

SW (C) .

3 Nash equilibria: existence, convergence

and complexity of their finding

It is easy to see that a SDG always admits a Nash equilib-
rium. In fact, the grand coalition is Nash stable as no agent
can have any improving deviation. Nevertheless, the follow-
ing negative result on the convergence holds.

Theorem 1 SDGs may not converge to Nash equilibria.

Proof. We exhibit an instance where there is an infinite
sequence of improving deviations. Consider the instance
SDG(G) where G is the bipartite graph depicted in Figure
1. Let X = {xi|i ∈ [24]} and Y = {yi|i ∈ [18]}. In the
following, for i ≤ j, we write Xi,j and Yi,j as a shorthand
for {xi, . . . , xj} ⊆ X and {yi, . . . , yj} ⊆ Y , respectively.

Let C = {X1,12 ∪ {z1}, Y,X13,24 ∪ {z2}}. Starting from
the clustering C, we prove the existence of a cycle, that
is a sequence of improving deviations such that C is again
reached.

We consider the following improving dynamics. Let
C(1) = (C, z1, y1) = {X1,12, Y ∪ {z1}, X13,24 ∪ {z2}} and
C(2) = (C(1), z2, y1) = {X1,12, Y ∪ {z1, z2}, X13,24}. It

...

x1 x2 x3 x4 x5 x6

z1

y1

y2

y3

y4

y18
x7 x8 x9 x10 x11 x12

x13 x14 x15 x16 x17 x18

x19 x20 x21 x22 x23 x24

z2

Figure 1: A SDG not converging to a Nash equilibrium.

is easy to see that C(1) and C(2) are two improving devia-
tions for z1 and z2, respectively. In fact, since uz1(X1,12 ∪
{z1}) = uz2(X13,24 ∪ {z2}) = 12

13 , agent z1 can indeed
improve her utility by moving to Y and then z2 can move to
Y ∪{z1}, achieving a utility of uz1(C(1)) = uz1(Y ∪{z1}) =
18
19 > 12

13 and uz2(C(2)) = uz2(Y ∪ {z1, z2}) =
18+ 1

2

20 =
37
40 >

12
13 .

Since ∀x ∈ X1,12, ∀x′ ∈ X13,24, ux(X1,12) =
ux′(X13,24) = 0, agents x1, . . . , x6 and x13, . . . , x18 can
increase their utility by moving one after another to Y ∪
{z1, z2}. Thus starting from C(2), there are 12 improv-
ing moves inducing the clustering C(14) = {X7,12, Y ∪
{z1, z2} ∪X1,6 ∪X13,18, X19,24}.

Notice that uz1(C(14)) =
24+ 1

2+
6
3

32 = 53
64 , and thus agent

z1 can increase her utility by moving back to X7,12, achiev-
ing a utility of 6

7 > 53
64 . Thus C(15) = (C(14), z1, x7) =

{X7,12 ∪ {z1}, Y ∪ {z2} ∪X1,6 ∪X13,18, X19,24}.
Since uz2(C(15)) = 24

31 , agent z2 induces an improv-
ing deviation by moving back to X19,24, that is C(16) =

(C(15), z2, x19) = {X7,12∪{z1}, Y ∪X1,6∪X13,18, X19,24∪
{z2}}.

Agents x1, . . . , x6 and x13, . . . , x18 have now utility zero
and thus they can increase the utility by moving back one
after another to the cluster containing z1 and z2, respectively.
Then C is again reached and therefore the claim follows. �

While determining the existence of a Nash equilibrium
can be trivially done in polynomial time, as the grand coali-
tion is stable, in the sequel of this section we show that un-
fortunately computing a best Nash equilibrium for SDGs is
NP-hard. To this aim, we provide a polynomial time reduc-
tion from the NP-Complete RESTRICTED EXACT COVER
by 3-SETS (RXC3) problem (Gonzalez 1985). An instance
of RXC3 consists of a universe set U of 3p elements and
a collection B = {B1, . . . , Bm} of 3-elements subsets of
U (triples) such that

⋃m
j=1Bj = U and each element of U

appears exactly in three triples. The problem is to decide
if there exists an exact cover of U , that is a subcollection
F ⊆ B such that every element in U appears in exactly one
triple of F .

We reduce RXC3 to SDG. In particular, given a generic
instance (U,B) of RXC3, we build an instance of SDG by
specifying the underlying undirected graph G = (V,E) as
follows:

• for each triple Bi ∈ B, for i ∈ [m], we associate a set of
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5 nodes Xi = {ai, bi, ci, di, ei} such that every two dis-
tinct nodes in Xj are adjacent, except aj and ej . Roughly
speaking, G contains m cliques K5(Xj) without edge
(aj , ej) for every node set Xj .

• for each element uj ∈ U , for j ∈ [3p], we consider a node
yj and a set of 3 edges Ej = {(yj , ei)|uj ∈ Bi}.
Therefore, |V | = 3p + 5m and E = 9(p +m). Clearly

such a reduction can be done in polynomial time.
In order to prove the hardness, we now show that the con-

structed SDG has a Nash stable clustering of social welfare
at least 21

4 p +
19
5 (m − p) if and only if the RXC3 instance

has an exact cover. Let us first give some useful lemmas.

Lemma 1 Let C be a Nash stable clustering for SDG. If
agents ei and ej belong to the same coalition C = C(ei) =
C(ej), then Xi ∪Xj ⊆ C, that is agents in Xi and agents in
Xj must belong to the same coalition as well.

Proof. (Sketch) A case analysis shows that, in order to guar-
antee stability, agents ai, bi, ci, di must be in the same coali-
tion. Moreover, it is possible to check that if ei and ej
are in the same coalition and ai, bi, ci, di belong to another
coalition, then ei can improve her utility by connecting to
ai, bi, ci, di. A symmetric argument applies to ej , thus prov-
ing the claim. �

Lemma 2 Let C be a Nash stable clustering for SDG. If
agents ei and ej belong to the same coalition, then the utility
of all the agents in the coalition is strictly less than 0.635.

Proof. Let C = C(ei) = C(ej). By Lemma 1 we know that
Xi ∪Xj ⊆ C. Notice that if there is not a path between ei
and ej , we can repartition the coalition increasing the social
welfare. Thus we can give an upper bound to the utility of
all agents as follows (see Figure 2).

ai

di

ci

ei

bi

y3y2y1

aj

dj

cj

ej

bj

y5y4

Figure 2: Nash stable solution where ei and ej belong to the
same coalition.

• Each ai has at least 3 agents at distance 1 (bi, ci, di), one
agent at distance 2 (ei), one agent at distance 4 (ej), 3
agents at distance 5 (bj , cj , dj) and one agent at distance
6 (aj). All the other x nodes (including y1, . . . , y5) have
distance at least 3, thus the utility of each ai is at most
3+ 1

2+
x
3+

1
4+

3
5+

1
6

10+x ≤ 0.44.

• Each bi (and symmetrically ci and di) has at least 4 agents
at distance 1 (ai, ci, di, ei), one agent at distance 3 (ej), 3
agents at distance 4 (bj , cj , dj) and one agent at distance

5 (aj). All the other x nodes (including y1, . . . , y5) have
distance at least 2, thus, the utility of each bi is at most
4+ x

2+
1
3+

3
4+

1
5

10+x ≤ 317
600 ≈ 0.53.

• Each ei can have at most 6 agents at distance 1
(bi, ci, di, yi1 , yi2 , yi3 ), 2 agents at distance 2 (ai, ej), 3
agents at distance 3 (bj , cj , dj) and one agent at distance
4 (aj). All the other x nodes (including y4, y5) have dis-
tance at least 2, so that the utility of each ei is at most
6+ x+2

2 + 3
3+

1
4

13+x ≤ 33
52 ≈ 0.634.

• Each yt has at most 3 agents at distance 1 (ei,ej ,ek), 6
agents at distance 2 (bi, ci, di, bj , cj , dj), 2 agents at dis-
tance 3 (ai, aj). This gives an upper bound of the utility

of each yt agent of 3+ 6+x
2 + 2

3

12+x ≤ 5
9 ≈ 0.55

�

Lemma 3 Let C be a Nash stable clustering for SDG(G). If
agents ei and ej belong to the same coalition C, then C can
be split in subcoalitions obtaining a new stable claustering
C′ with a strictly higher social welfare.

Proof. We can divide C in many subcoalitions of the
forms depicted in Figure 3, where each subcoalition con-
tains a single node of the type ek and the associated nodes
ak, bk, ck, dk.

a

d

c

e

b

a

d

c

e

b

a

d

c

e

b

a

d

c

e

b

y1 y3y2y1y2y1

(t3) (t4)(t1) (t2)

Figure 3: Nash stable solutions.

The social welfare and the average utility of the coalition
members in every case are:

• SW (t1) = 3∗4+2(3+1/2)
5 = 19

5 . ū(t1) = 19/5
5 = 19

25 ≈
0.76

• SW (t2) = 37
9 . ū(t2) = 37/9

6 = 37
54 ≈ 0.68

• SW (t3) = 94
21 . ū(t3) = 94/21

7 = 94
147 ≈ 0.639

• SW (t4) = 21
4 . ū(t4) = 21/4

8 = 21
32 ≈ 0.656

Since the worst average utility 0.639 is greater than the best
utility in the case where ei and ej are in the same coalition
(0.635), we have that the social welfare strictly increases.
Moreover, a case analysis shows that the obtained clustering
is Nash stable and that no other Nash stable solution exists
achieving a strictly higher social welfare. �
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Lemma 4 If there is an exact cover for the input instance of
RXC3, then there exists a Nash equilibrium in the reduced
instance of the SDG game with social welfare at least 21

4 p+
19
5 (m− p).

Proof. If there is an exact cover then there is a clustering
composed by exactly p copies of t1 and (m − p) copies of
t4. Again, the stability can be shown by a case analysis, and
the claim follows simply by summing up the utilities of all
the agents. �

Lemma 5 If there is not an exact cover for the input in-
stance of RXC3, then every Nash equilibrium in the re-
duced instance of the SDG has social welfare strictly less
than 21

4 p+
19
5 (m− p).

Proof. Assume that there is not an exact cover. By the pre-
vious lemmas, the stable clusterings achieving the best so-
cial welfare are composed only by coalitions of the 4 types
depicted in Figure 3. Consider any such a clustering C.
For each i ∈ [m], we rearrange the social welfare of each
coalition of C in such a way that 19

5 is always accounted to
the nodes ai, bi, ci, di, ei and the surplus is equally shared
among the y agents. We have three cases for charging y
agents, depending on the number of the them contained in
each cluster: in the case t2 there is a single y agent and
we account all the remaining social welfare to it, that is
14
45 ≈ 0.31; in the case t3 there are two y agents, and we ac-
count 71

210 ≈ 0.338 to each of them; in the case t4 there are
three y agents, and we account to each 29

60 ≈ 0.483. Notice
that, since 29

60 > 71
210 > 14

45 , a clustering with social welfare
equal to 3p · 2960+ 19

5 m = 21
4 p+

19
5 (m−p) can be obtained if

and only if 29
60 is accounted to all the y nodes, which would

imply the existence of an exact cover: a contradiction. �

We are now ready to claim the following theorem, whose
proof comes directly from the previous 2 lemmas.
Theorem 2 Computing a best Nash equilibrium for SDGs
is NP-hard.

4 Price of Anarchy and Price of Stability

In this section we first provide matching upper and lower
bounds on the price of anarchy of SDGs. Then we focus on
the price of stability and prove that for general instances the
lower bound of the PoS is 6/5−ε. Finally we study the PoS
for graphs with girth 4 and girth at least 5, the girth being
the length of the shortest cycle in the graph. A star is a tree
consisting of one vertex (the center) adjacent to all the other
vertices (the leaves).
Theorem 3 The price of anarchy of Social Distance Games
is Θ(n).

Proof. The definition of the game directly implies that the
social welfare of any clustering is upper bounded by n − 1
(and therefore OPT ≤ n − 1). Such an upper bound can
be obtained only by the grand coalition on complete graphs.
On the other hand, since in any equilibrium every agent has
at least one neighbor in her coalition, the utility of each node
is at least 1

n , and thus SW (C) ≥ 1.

It remains to show that there exists an SDG having price
of anarchy Ω(n). To this end, consider the graph depicted in
Figure 4. In the Nash stable solution C illustrated in Figure
5, SW (C) = n

4 ·
2(1+ 1

2+
1
3 )+2(2+ 1

2 )

4 = 13n
24 . Another Nash

stable solution C′ is shown in Figure 6. In this case, the

social welfare is SW (C′) =
(2(1+ 1

2+
1
3 )+2(2+ 1

2 ))·
n
2
4

n/2 = 13
3

and therefore PoA =
13n
24
13
3

= n
8 = Ω(n). Thus, the claim

follows. �

...

Figure 4: A SDG with n agents having PoA = Ω(n).

...

Figure 5: A Nash stable solution with SW = 13n
24 for the

SDG depicted in Figure 4.

...

Figure 6: A Nash stable solution with SW = 13
3 for the

SDG depicted in Figure 4.

Theorem 4 The PoS of SDGs is at least 6/5 − ε, for every
ε ≥ 0.
Proof. For any positive integer t, consider a graph of 2t+2
nodes, composed by a clique of t+1 agents Kt+1 = {ci|i ∈
[t+ 1]}, each connected to the center x of a star of t leaves.
Let S = {x} ∪ {si|i ∈ [t]} the set of the agents in the star.
In Figure 7 is depicted the graph for the case t = 3.

Consider the clustering C = {Kt+1, S} (see Figure 7b),
that gives a social welfare SW (C) = t(3t+5)

2(t+1) . C is not Nash
stable, since agent x can increase her utility from t

t+1 to t+1
t+2

by moving in Kt+1.
Due to space limitation, we leave the reader to verify

that the grand coalition (Figure 7a) is the best Nash sta-
ble solution with SW (V ) = t(5t+11)+4

4t+4 . We briefly point
out that the subgraph induced by Kt+1 ∪ {x} is a clique
Kt+2 and provides utility at least t+1

t+2 to each agent. We
notice also that, in any stable solution, each node si among
s1, . . . , st must be connected to x, otherwise it would be
usi(C(si)) = 0. Thus, the ratio SW (C)

SW (V ) = 2t(3t+5)
t(5t+11)+4 tends

to 6/5 as t tends to infinity, proving the theorem. �
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Figure 7: A SDG (a) and a corresponding clustering which
is not Nash stable (b).

Theorem 5 The PoS of SDGs in which the underlying graph
has girth 4 is at least 169/160 = 1.05625.

Proof. (Sketch) Consider the graph in Figure 8. The
best solution is given by the following clustering:
{{a1, . . . , a5, b1, . . . , b5}, {t, c1, c2}} that achieves a SW of
26
3 . This is not a Nash stable solution, since t can deviate

and increase its utility from 2
3 to 15

22 . The best stable solution
is the grand coalition that achieves a SW of 320

39 . The result
derives by the ratio of such SWs. �

a1 a2 a3 a4 a5 t

b1 b2 b3 b4 b5 c1 c2

a1 a2 a3 a4 a5 t

b1 b2 b3 b4 b5 c1 c2

Figure 8: A SDG with PoS = 169
160 .

a

d

e

b c

Figure 9: A graph with girth 4.

The following two lemmas show that the girth of the un-
derlying graph is a crucial parameter for determining the
structure of equilibria.

Lemma 6 There exists an instance of SDGs in which the
underlying graph has girth 4 and the only stable solution is
the grand coalition.

Proof. Consider the graph in Figure 9 and let us analyze
all possible ways for partitioning the nodes. First of all, no-
tice that an agent cannot be isolated and that, if a cluster
is unconnected, an agent will deviate because in that case

her utility would be zero. So, besides the grand coalition,
we can partition V in two connected clusters of size 2 and
3. We only look at the case A = {{a, b}, {c, d, e}} since
all other cases are symmetric. A is not stable since a can
increase its utility from 1

2 to 5
8 . This implies the theorem. �

For a greater girth the following result holds.

Lemma 7 Given any graph with girth > 4, we can obtain
a stable solution with a SW ≥ n

2 by partitioning the graph
into stars.

Proof. A simple procedure allows partitioning the graph
into stars, each of at least 2 nodes. It is easy to check that in
a star all the leaves have utility 1

2 , while the center has utility
≥ 1

2 . For what concerns the stability, consider an agent in a
star. Since the girth is> 4, she can have only one connection
to an agent of a different star, hence she can not achieve an
utility > 1

2 by deviating. �

Theorem 6 The upper bound of the PoS of SDGs in which
the underlying graph has girth > 4 is 1

2 + 1√
2
≈ 1.2.

Proof. Let δi be the degree of node i. We can give an
upper bound to the utility of i by considering its neigh-
bors at distance 1 and all the other nodes as if they were
at distance 2. Hence, the social welfare would be: SW ≤
∑

i∈V
δi+

n−δi−1

2

n =
∑

i∈V

n−1
2 +

δi
2

n = n−1
2 +

∑
i∈V

δi
2n =

n−1
2 + 2|E|

2n = n−1
2 + |E|

n .
From (Dutton and Brigham 1991), we know that in a

graph with girth > 4, |E| ≤ n
√
n−1
2 . Thus,

SW ≤ n− 1

2
+

n
√
n−1
2

n
=
n− 1

2
+

√
n− 1

2
.

From Lemma 7, we can guarantee a SWof at least n
2 , hence

PoS ≤ n−1
2 +

√
n−1
2

n
2

= n−1+
√
n−1

n = 1 +
√
n−1
n − 1

n .

If we maximize the above formula, we obtain 1
2 + 1√

2
,

which proves the theorem. �

5 Conclusions

We investigated Nash stability in SDGs. Several issues re-
main open. First of all, for general graphs, while a 6/5 lower
bound on the price of stability holds, it would be nice to pro-
vide a corresponding upper bound. Another relevant ques-
tion that naturally emerges is whether there exists a polyno-
mial time algorithm for determining the existence of a Nash
stable clustering for SDGs different from the grand coali-
tion. As we have seen, this is not guaranteed for a girth less
or equal to 4. We notice that, besides this computational
issue, a deeper understanding of the conditions for the exis-
tence of such non trivial equilibria would be particularly im-
portant for providing better bounds on the price of stability.
A related open question is that of identifying special graphs
in which a best equilibrium or a best non stable clustering
can be computed in polynomial time. Finally, it would be
interesting to generalize our results to weighted graphs and
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to consider classes of hedonic and fractional hedonic games
induced by other classical centrality measures, like the ones
presented in (Gomez et al. 2003). On this respect, it would
be particularly worth to consider models in which being a
singleton is not the worst choice.
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