
Market Pricing for Data Streams

Melika Abolhassani,†∗ Hossein Esfandiari,† MohammadTaghi Hajiaghayi,†∗

Brendan Lucier,‡ Hadi Yami†∗
†Univeristy of Maryland, ‡Microsoft Research

brlucier@microsoft.com, {melika, hossein, hajiagha, hadiyami}@cs.umd.edu

Abstract

Internet-enabled marketplaces such as Amazon deal with huge
datasets registering transaction of merchandises between lots
of buyers and sellers. It is important that algorithms become
more time and space efficient as the size of datasets increase.
An algorithm that runs in polynomial time may not have a
reasonable running time for such large datasets. Here, we study
the development of pricing algorithms that are appropriate
for use with massive datasets. We especially focus on the
streaming setting, the common model for big data analysis.
We present an envy-free mechanism for social welfare maxi-
mization problem in the streaming setting using O(k2l) space,
where k is the number of different goods and l is the num-
ber of available items of each good. We also provide an α-
approximation mechanism for revenue maximization in this
setting given an α-approximation mechanism for the corre-
sponding offline problem exists. Moreover, we provide mecha-
nisms to approximate the optimum social welfare (or revenue)
within 1− ε factor, in space independent of l which would be
favorable in case l is large compared to k. Finally, we present
hardness results showing approximation of optimal prices that
maximize social welfare (or revenue) in the streaming setting
needs Ω(l) space.
We achieve our results by developing a powerful sampling
technique for bipartite networks. The simplicity of our sam-
pling technique empowers us to maintain the sample over the
input sequence. Indeed, one can construct this sample in the
distributed setting (a.k.a, MapReduce) and get the same results
in two rounds of computations, or one may simply apply this
sampling technique to provide faster offline algorithms.

1 Introduction

Modern, Internet-enabled marketplaces have the potential
to serve an extremely large volume of transactions. Giant
online markets such as eBay and Amazon work with massive
datasets that record the exchange of goods between many
different buyers and sellers. Such datasets present an oppor-
tunity: it is natural to analyze the history of transactions to
estimate demand and solve central pricing problems. Indeed,

∗Supported in part by NSF CAREER award CCF-1053605,
NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant CCF-
1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and
another DARPA SIMPLEX grant.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a recent and exciting line of literature in the algorithmic game
theory community has set out to understand how the avail-
ability of data, in the form of samples from a transaction
history, can be employed to tune prices and design mech-
anisms (Balcan et al. 2008; Cole and Roughgarden 2014;
Dhangwatnotai, Roughgarden, and Yan 2010; Hsu et al. 2015;
Morgenstern and Roughgarden 2015). Big-data environments
are a boon for such tasks. However, as datasets grow ever
larger, data-analysis algorithms must become ever more effi-
cient. An algorithm that runs in polynomial (or even linear)
time may not have a reasonable running time in practice.

In this paper we study the development of pricing algo-
rithms that are appropriate for use with massive datasets. We
will adopt the model of streaming algorithms, a standard
model for massive dataset analysis. In the streaming algo-
rithm model, a stream of data arrives sequentially and must
be analyzed by an algorithm with limited memory. These
streams can only be read once (or a limited number of times),
and hence streaming algorithms must be frugal in the amount
and nature of data that they choose to store.

Streaming algorithms were first theoretically introduced in
fields such as data mining and machine learning over 20 years
ago in order to model problems in which the data cannot be
accessed all at once. Over the past decade, there has been
a significant demand for algorithms to process and handle
dynamic data coming from huge and growing graphs such
as social networks, webpages and their links and citations of
academic work.

These algorithmic techniques are also relevant to market
design problems. For instance, one might imagine that there
is a set of items (e.g., goods for sale) and a set of potential
buyers (e.g., individual consumers) to which they should
be matched. Such markets are essentially bipartite matching
problems, which have themselves been the subject of study in
the context of streaming algorithms. This begs the question:
to what extent can market design and pricing problems be
resolved adequately in the streaming model?

We have in mind two main applications of solving this
pricing problem on a massive collection of static data, es-
pecially on the data of previous sales. First, by computing
optimal prices on past transactions, one can subsequently
employ those prices as a guideline for setting future prices;
this is a key step in many recent pricing methodologies based
on statistical learning theory. Also, the optimal welfare or

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

291

revenue in hindsight is a useful benchmark for the online
pricing mechanism being employed by the platform, and can
therefore be used to evaluate and tune.

1.1 Our Results

In this paper, we instantiate our high-level question by fo-
cusing on the envy-free pricing problem with big data. Our
model is as follows. Suppose there is a bipartite graph G with
a set of n unit-demand buyers b1, . . . , bn on one side, and a
set of k distinct types of items v1, . . . , vk, with l copies of
each on the other side. The utility of buyer bj for item vi is
denoted by uvi,bj , and is shown by a weighted edge between
the corresponding two vertices. The price assigned to item
i is denoted by pi. The goal is to assign prices to items, and
then items to buyers, such that the assignment is envy-free1,
i.e., each buyer prefers the item assigned to her rather than an
item assigned to another buyer. Subject to the envy-freeness
condition, the designer wishes to maximize either the social
welfare or revenue of the corresponding allocation. This is
precisely the envy-free pricing problem introduced by Gu-
ruswami et al. (Guruswami et al. 2005). We ask: how well
can envy-free prices be computed in the streaming setting?

We note that there are many possible representations of the
input as a data stream. We will perform our analysis under a
model in which the utility values uvi,bj arrive in a data stream
in an arbitrary order. We note that there are other potential
options, such as assuming that all values associated with a
certain agent arrive simultaneously, or that the values uvi,bj
are not provided directly but rather the input contains only
the revealed preference of a buyer in response to prices. We
leave the exploration of these alternative models as an avenue
for future work.

We consider both social-welfare maximization and rev-
enue maximization versions of the envy-free pricing problem.
First, we provide streaming mechanisms that compute both al-
location and prices of the items using O(k2l) space. Later, we
present streaming mechanisms that only compute the prices
using space Õ(k3), approximating social welfare (or revenue)
within a factor of 1− ε, where poly-logarithmic factors are
hidden in the notation of Õ. At the end, we present lower
bounds on the required space of any mechanism that com-
putes optimum prices for either social-welfare maximization
or revenue maximization.

In Theorem 1.1 we provide an envy-free streaming mech-
anism for the social-welfare maximization problem using
O(k2l) space.

Theorem 1.1 There exists an envy-free mechanism for the
social-welfare maximization problem in the streaming set-
ting using O(k2l) space. This mechanism remembers the
allocation as well as the prices.

Indeed, finding the maximum matching in a bipartite graph
with O(k) vertices in the streaming setting requires Ω(k2)
space (Chitnis et al. 2015). Thus, for l = 1, the space required
by our mechanisms in Theorem 1.2 and Theorem 1.1 are
tight.

1If we assign item vi1 to buyer bj1 and item vi2 to buyer bj2 ,
then we have uvi1 ,bj1

− p(i1) ≥ uvi2 ,bj1
− p(i2).

The following theorem extends our result to the rev-
enue maximization problem. Even in the static (i.e., non-
streaming) environment, this problem has resisted constant-
factor approximation factors for simple versions, including
the case of unit-demand bidders studied here. We frame our
result as a reduction: given an algorithm for computing envy-
free prices in the static setting, we show how to construct a
streaming algorithm with the same approximation guaran-
tee. As with the welfare maximization problem, the required
space is O(k2l).
Theorem 1.2 Given an envy-free α-approximation mecha-
nism for the revenue maximization problem, there exists an
envy-free α-approximation mechanism for the revenue maxi-
mization problem in the streaming setting using O(k2l) space.
This mechanism remembers the allocation as well as the
prices.

Each of the above results are with respect to algorithms
that return not only a profile of envy-free prices, but also
the corresponding allocation. We note that the size of the
allocation is O(kl), and thus any mechanism that remembers
the allocation requires at least Ω(kl) space. This space may
be quite large when l is large, which is not desirable. What
if we are only interested in determining the envy-free prices,
and just being within an approximation of the maximum
social welfare(or revenue)? As it turns out, this variation of
the problem allows significant improvement when l is large.
We provide an almost optimal streaming mechanism using
Õ(k3) space that computes prices. That is, the required space
here is poly-logarithmic in the number of buyers and the
number of copies of each item type. The following theorem
states our result for the social-welfare maximization problem.

Theorem 1.3 Let ε be an arbitrary small constant. There
exists a streaming mechanism for the social-welfare maxi-
mization problem which with high probability gives an envy-
free (1 − ε)-approximate solution using Õ(k3) space. This
mechanism only remembers the prices.

The following theorem extends our results to the revenue
maximization problem as well. Note that, again here the
required space is poly-logarithmic in the number of buyers
and the number of copies of each item type.

Theorem 1.4 Given an envy-free α-approximation mecha-
nism for the revenue maximization problem, and any small
constant ε, there exists a streaming mechanism for the rev-
enue maximization problem which with high probability gives
an envy-free (1 − ε)α-approximate solution using Õ(k3)
space. This mechanism only remembers the prices.

To show that the approximation in Theorem 1.3 is neces-
sary, we prove there is no streaming mechanism to find the
prices that maintain the optimal social-welfare using space
sublinear in l.
Theorem 1.5 There is no envy-free streaming mechanism
that finds the welfare-optimal envy-free prices using space
o(l). This bound holds even for k = 2.

As with welfare maximization, any algorithm that com-
putes revenue-optimal envy-free prices would require space
that is at least linear in l.

292

Theorem 1.6 There is no envy-free streaming mechanism
which finds the set of prices that maximize the revenue using
a space sublinear in l. This bound holds even for k = 2.

Note that due to space constrains, some of the proofs and
figures are omitted in this version and included in the full
version. The full version of the paper is provided on arXiv.

1.2 Related Work

In this paper we focus our attention on the problem of find-
ing envy-free prices for unit-demand bidders in the stream-
ing setting, a problem that has received much attention in
the static setting. The revenue-maximizing envy-free pricing
problem was introduced by Guruswami et al. (Guruswami
et al. 2005). There has since been a significant line of work
attacking variants of this problem (Cheung and Swamy 2008;
Chen, Ghosh, and Vassilvitskii 2011; Chen and Deng 2014),
and mounting evidence suggests that it is computationally
hard to obtain better than a polylogarithmic approximation
for general unit-demand bidders (Briest and Krysta 2011;
Chalermsook et al. 2012). For welfare maximization, it is
well-known that a Walrasian equilibrium corresponds to a
set of envy-free prices that optimizes welfare, and such an
equilibrium always exists for unit-demand bidders. Moreover,
in the static setting such prices can be found in polynomial
time (Shapley and Shubik 1971; Bikhchandani and Mamer
1997). Our focus is on developing streaming algorithms for
these problems.

Our motivation of determining prices from sampled data re-
lates to a recent line of literature on the sample complexity of
pricing problems and applications of statistical learning the-
ory. Much of this work has focused on the problem of learning
an approximately revenue-optimal reserve price in a single-
item auction (Dhangwatnotai, Roughgarden, and Yan 2010;
Fu et al. 2015; Huang, Mansour, and Roughgarden 2015;
Cole and Roughgarden 2014). More generally, statistical
learning methods have been used to quantify the sampling
complexity of learning approximately optimal auctions, in the
prior-free context by Balcan et al. (Balcan et al. 2008) and in
a prior-independent setting by Morgenstern and Roughgarden
(Morgenstern and Roughgarden 2015).

Hsu et al. (Hsu et al. 2015) study the genericity of market-
clearing prices learned from sampled data, and demonstrate
that under some conditions on buyer preferences (including
the unit-demand case studied here) prices computed from
a large dataset will approximately clear a “similar” market;
that is, one where buyer preferences are drawn from a the
same underlying distribution.

Our technical results build upon recent work in the stream-
ing algorithms literature on maximum matching. Chitnis et
al. (Chitnis et al. 2015) consider the matching problem in the
streaming setting and provide optimum solutions to both ver-
tex cover and matching in Õ(k2) space, where k is the size
of the solution. In addition, they show that any streaming al-
gorithm for the maximum matching problem requires Ω(k2)
space. Later, they extend this result to dynamic streams in
which we have both addition and deletion of edges (Chitnis
et al. 2016).

McGregor (McGregor 2005) considered the matching prob-

lem in the streaming setting with several passes. He provides
a (1 − ε)-approximation algorithm for unweighted graphs
and a (0.5−ε)-approximation algorithm for weighted graphs,
both with constant number of passes and using Õ(n) space.

Esfandiari et al. (Esfandiari et al. 2015) consider the max-
imum matching problem in planer graphs and bounded ar-
boricity graphs. They provide a constant approximation of the
size of a maximum matching in these graphs using Õ(n2/3)
space in the streaming setting.

Later, simultaneously Bury et al. (Bury and
Schwiegelshohn 2015) and Chitnis et al. (Chitnis et
al. 2016) extend this algorithm to work for both addition and
deletion of edges using a larger space of Õ(n4/5).

2 Pricing problem: Maximizing Social

Welfare

In this section, we consider the problem of assigning prices
to items, and items to buyers in a streaming setting such that
the assignment would be envy-free, and the social welfare is
maximized. The social welfare would be sum of the weights
(or utilities) of the assigned edges. In Subsection 2.1, we
propose the optimum mechanism with O(k2l) space, and
in Subsection 2.2 we approximate the optimum mechanism
with improved memory.

2.1 Envy-Free Mechanism with O(k2l) Space

In this subsection, we propose a pricing mechanism to max-
imizing the social welfare in our setting. As we explained
earlier, we only use O(k2l) memory for storage of the stream
of edges. Our approach is to store the kl + 1 edges with
maximum weight for each item, and to run the optimum
algorithm to find the social welfare maximizing envy-free
assignment in offline setting when the stream ends. We call
the optimum streaming algorithm of this subsection SWM to
use it in Subsection 2.2.

The following theorem is the main result of this subsection.

Theorem 2.1 Our streaming assignment algorithm which
assigns prices to items and items to buyers in the aforemen-
tioned market is an envy-free social welfare maximizing as-
signment, and it uses O(kl2) memory.

2.2 Improving Space Efficiency While
Approximating Social Welfare

In this subsection, we try to improve space efficiency in the
problem solved in Subsection 2.1, when we relax the goal of
achieving maximum social welfare to obtaining an approxi-
mation of it. More specifically, suppose we have k item types,
l available items of each type, and n buyers, and the utilities
of buyers for item types are revealed in a streaming fashion.
Recall that we can find the social welfare maximizing prices
for the items and an assignment of items to buyers in O(k2l)
available memory. In this subsection, our goal is to find prices
for item types when the amount of available memory is in-
dependent of l (the number of available items of each item
type). We prove when each buyer picks the most profitable
item based on the prices that our algorithm suggests and his
own utilities, there would be no more than l requests for any

293

Algorithm 1:

Input: Weighted bipartite graph G with set of vertices
B ∪ V , l number of available items from each
item type, and constants ε, δ > 0.

Output: Price vector �p which yields a
(1− 2ε)-approximation of opt SW and an
envy-free assignment with probability 1− δ.

1

1: t ← 3 −log(δ)+log(2k)+klog(n)
ε2

2: B′ ← ∅
3: for b ∈ B do
4: Add b to B′ with probability t

l
5: Let G′ be the subgraph of G induced by B′ ∪ V ;
6: l′ ← t(1 − ε) be the number of available items of each item type in G′

7: Upon stream of edges in G, ignore any edge e /∈ G′

8: Find optimal �p using SWM Algorithm (Subsection 2) on edges of G′

9: Return �p;

of the item types with high probability, and the social wel-
fare would be a good approximation of the optimum social
welfare. Thus, we can conclude this self selection of items by
customers is envy-free and valid with high probability, and
we do not have to deal with item to buyer allocations after
setting the prices. Our approach here is to collect a sample
of buyers while the data is being streamed, decide the prices
based on this sample, and prove that these prices would yield
a good approximation of the social welfare and an envy-free
assignment of items to buyers in the original graph while the
assignment of items is done by the buyers themselves and not
by us. This algorithm is especially favorable over previous
ones when the number of different item types is relatively
small compared to the total number of items. In other words,
when k is small compared to l.

Let B be the set of our n buyers, and V the set of k item
types. Assume we have l available items of each type. Let
G be the weighted bipartite graph of buyers and item types
showing utilities of buyers for items. For arbitrary constants
δ, ε > 0, our algorithm finds prices of items in V such that
the greedy item picking strategy by buyers would yield a
valid envy-free assignment and achieves a social welfare that
is (1− 2ε)-approximation of the maximum possible social
welfare with probability 1 − δ. We define a new parameter
t = 3 −log(δ)+log(2k)+klog(n)

ε2 , and sample every buyer in B

with probability t
l . Let B′ be the set of buyers chosen in our

sampling, and G′ be the induced subgraph of G when we
remove all the vertices that are not in B′. We assume there
are (1 − ε)t available copies from each item type in graph
G′ which can be sold to the buyers in B′. As we discussed in
previous sections, we can find the optimal prices for items in
B′ to achieve maximum Social welfare in graph G′ in O(k2t)
available memory. After this step, we use the same prices for
the general case, and prove that these prices along with the
greedy item selection by buyers satisfies the aforementioned
criteria.

We bound the approximation ratio of Algorithm 1 by fol-
lowing theorem.

Theorem 2.2 The pricing suggested by Algorithm 1 along
with the greedy selection of items by the buyers yields a valid
envy-free assignment and a (1 − 2ε)-approximation of the
maximum possible social welfare with probability 1− δ. The
space needed by Algorithm 1 is independent of l, the number
of available items of each item type.

3 Pricing problem: Maximizing Revenue

Just like the previous section, we try to find a pricing for
items, and an envy-free assignment of items to buyers in our
described market when the input is revealed in a streaming
fashion. However, in this section, we aim to maximize rev-
enue instead of social welfare. In Subsection 3.1, we propose
the optimum mechanism with O(k2l) space, and in Sub-
section 3.2 we approximate the optimum mechanism with
improved memory.

3.1 Envy-Free Mechanism with O(k2l) Space

In this subsection, we show that if we are given an envy-free
α-approximation mechanism for the revenue maximization
problem then we can have an envy-free α-approximation
mechanism for the revenue maximization problem in the
streaming setting with O(k2l) available memory. We call this
mechanism designed for the streaming setting RM for use in
the later subsection.

The following theorem is the main result of this subsection:

Theorem 3.1 Given an envy-free α-approximation mecha-
nism for the offline revenue maximization problem, there
exists an envy-free α-approximation mechanism for the rev-
enue maximization problem in the streaming setting using
O(k2l) space.

3.2 Improving Space Efficiency While
Approximating Optimum Revenue

In Subsection 3.1, we introduced a simple streaming mecha-
nism (RM) that finds the price vector and an envy-free assign-
ment of items to buyers to α-approximate maximum revenue
given a mechanism that α-approximate the maximum rev-
enue in the offline case. In this subsection, we are concerned
with reducing the amount of space used by our streaming
algorithm. As we mentioned earlier, O(k2l) available space
is needed for any streaming algorithm that finds a revenue
maximizing assignment in our setting. Just like the previous
section, we are interested in a streaming algorithm for which
the amount of space used is independent of l, the number of
copies of each available item type. Algorithm 2 is our algo-
rithm for this purpose. As a result of reduction in the required
memory, the revenue of the assignment given by our algo-
rithm loses another (1− 2ε) approximation factor compared
to the maximum possible revenue. When l is small compared
to k, this algorithm would be beneficial since it dramatically
improves the amount of space used. The algorithm and some
of the proofs are similar to the ones in the previous section.

We bound the approximation ratio of Algorithm 2 by fol-
lowing theorem.

Theorem 3.2 The pricing suggested by Algorithm 2 along
with the greedy selection of items by the buyers yields a valid

294

Algorithm 2:

Input: Weighted bipartite graph G with set of vertices
B ∪ V , l number of available items from each
item type, and constants ε, δ > 0.

Output: Price vector �p which yields a
(1− 2ε)-approximation of opt revenue and an
envy-free assignment with probability 1− δ.

1

1: t ← 3 −log(δ)+log(2k)+klog(n)
ε2

2: B′ ← ∅
3: for b ∈ B do
4: Add b to B′ with probability t

l
5: Let G′ be the subgraph of G induced by B′ ∪ V ;
6: l′ ← t(1 − ε) be the number of available items of each item type in G′

7: Upon stream of edges in G, ignore any edge e /∈ G′
8: Find optimal �p using RM Algorithm (Subsection 3.1) on edges of G′

9: Return �p;

envy-free assignment and a (1− 2ε)α-approximation of the
maximum possible revenue with probability at least 1− 2δ
given an envy-free mechanism that α-approximates maximum
revenue in the offline case. The space needed by Algorithm
2 is independent of l, the number of available items of each
item type.

4 Hardness Results

In Sections 2 and 3, we provided optimum as well as ap-
proximation algorithms for envy-free pricing problems to
maximize social welfare or revenue in the streaming setting.
In this section, we provide lower bounds on the required
spaces to solve these problems optimally. To provide these
hardness results we use the communication hardness of set
disjointness problem.

4.1 Hardness of Social Welfare Maximization

In Section 2, we presented a streaming algorithm which finds
an envy-free social welfare maximizing assignment of prices
to items and items to buyers using O(k2l) memory, where k
is the number of item types and l is the number of available
items of each type. This result raises the following interesting
question. Is it necessary to have Ω(l) available memory for
solving this problem? In other words, if the number of item
types is small compared to the total number of items (or k
is small compared to l, can we solve the problem in space
independent of l? In this section we prove for any constant
ε > 0, no streaming algorithm can ε-approximate the envy-
free social welfare maximizing prices in o(l) space. The
proof is done via a reduction from Disjointness, a well-known
communication complexity problem .

Definition 4.1 Disjointness Problem is a communication
complexity problem in which Alice is given a string x ∈
{0, 1}n and Bob is given a string y ∈ {0, 1}n. Their goal is
to decide whether there is an index i, such that xi = yi = 1.
Index i in this case is called an intersection. It is known that
the minimum number of bits required to be exchanged be-

tween Alice and Bob to find an intersection is Ω(n) bits even
with multi-passes allowed.

Theorem 4.2 For any arbitrary small constant ε > 0, there
is no streaming algorithm which uses o(l) space and ε-
approximates all the item prices of the social welfare maxi-
mizing price vector.

Proof. For an arbitrary ε, assume for the sake of contra-
diction there exists an algorithm A which can find an ε-
approximation of an optimal pricing in o(l) space. We show
a reduction from any instance of Disjointness problem to
an instance of our market design problem such that if Algo-
rithm A exists, Disjointness problem can be solved using o(l)
space.
Let I1 be an instance of Disjointness problem with x ∈
{0, 1}l as Alice’s string and y ∈ {0, 1}l as Bob’s string.
A corresponding instance of our market design problem
I2 can be built as follows. Consider two item types in I2,
one corresponding to Alice and one corresponding to Bob.
Suppose each of these two item types have 2l copies avail-
able. Let G = (V1, V2, E) be the bipartite graph of item
types and buyers in instance I2, with V1 = {vAlice, vBob}
as the item type vertices. We start with 2l buyer vertices
Va = {a1, a2, . . . , al} and Vb = {b1, b2, . . . , bl} in V2. For
any index i, if xi = 1, we connect vAlice to both vertices
ai and bi. Similarly, for any index i such that yi = 1, we
connect vBob to both vertices ai and bi. Let Ix be the set of
all indices j such that xj = 1 in string x. We add a set UAlice

with 2l − |Ix| buyer vertices to V2, and connect vAlice to
all vertices in UAlice so that the degree of vAlice is exactly
2l. Similarly, we add a set of vertices UBob with 2l − |Iy|
buyer vertices to V2 and connect vBob to all vertices in UBob.
Finally, we add two buyer vertices u1, u2 to V2 and connect
vBob to both of them. Note that the set of buyer vertices V2

are {u1, u2}∪Va∪Vb∪UAlice∪UBob. The utility of buyers
u1 and u2 for Bob’s item are ε and ε3 respectively. The utility
of any other buyer for any other item connected to it (vAlice

or vBob) is 1. This means, the weight of the edge (vBob, u1)
is ε, the weight of the edge (vBob, u2) is ε3, and the weight
of all the other edges in E is 1.

Now suppose both Alice and Bob know about algorithm
A. Let EAlice be the set of edges connected to vAlice, and
EBob the set of edges connected to vBob in graph G. Note
that Alice only knows about EAlice and buyer vertices
V2\({u1, u2} ∪ UBob). Similarly, Bob only knows about
EBob and buyer vertices V2\UAlice. Alice starts streaming
her edges and running algorithm A on it. She sends the in-
formation that algorithm A stores in o(l) available space to
Bob. Bob at the other end receives all the information stored
by algorithm A and sent by Alice, and continues running
algorithm A by streaming his own edges. Algorithm A can
find social welfare maximizing prices for both Alice and Bob
items in o(l) space. The algorithm finishes at Bob’s end after
he streams all of his edges. At this point we claim that Bob
can decide whether the strings have intersection or not based
on the following two case. If the price suggested by algo-
rithm A for his item type is less than ε, Bob should declare
no intersections exist and if the price is above ε2 he should
declare existence of at least one intersection. Furthermore,

295

algorithm A never set a price between ε and ε2 for vBob. Next
we prove why this claim is valid.

Suppose Alice and Bob’s strings have no intersections.
Then in graph G, no buyer is connected to both Alice and
Bob. That is vBob is connected to 2l buyer vertices with
utility 1 for his item and none of his buyers want Alice’s item.
Alice’s item is also connected to 2l buyer vertices that do
not want Bob’s item. The optimal prices for both Alice and
Bob’s items to maximize social welfare is 1 in this case, and
no item is sold to buyers u1 and u2.

On the other hand, if the strings have at least one intersec-
tion, say at index i, both vAlice and vBob are connected to ai
and bi. To maximize social welfare in this case, Alice sell all
of her items to the 2l buyers who want her item at price 1,
and Bob can sell at most 2l − 2 items to those who want his
item at price 1 and has to sell two items to buyers u1 and u2

who want to pay ε and ε3 for his item respectively. Therefore,
the price for Bob’s item should be ε3. Since the goal is to
maximize social welfare, Bob cannot decide to leave out u1

and u2 and sell 2l − 2 items at price 1 to the buyers whose
utility for his item is 1.

By assumption, algorithm A can ε-approximate all optimal
prices for social welfare maximization while Alice and Bob
stream the edges using only o(l) available space. Specifically,
if the optimal price for vBob is 1, i.e, there is no intersection
in the two strings, algorithm A sets a price higher than ε
for vBob. Otherwise, in case the optimal price for vBob is ε3,
algorithm A sets a price lower than ε2 for Bob’s item. These
two prices are the only optimal prices for Bob’s item and
thus, only these two cases exist. Hence, Bob can distinguish
between these two cases by checking the price set for his item
once the algorithm ends. Any price less than ε2 corresponds
to an intersection, and any price higher than ε signals no
intersection between the strings. �

4.2 Hardness of Revenue Maximization

In Subsection 4.1, we presented a hardness proof to show no
streaming algorithm exists to approximate the optimal prices
using o(l) available space in our market design problem with
the goal of social welfare maximization. In this subsection,
we establish a hardness result for the case that our goal is to
maximize the revenue, however, the result of this subsection
does not involve any approximation. That is we only guaran-
tee there exists no algorithm which finds the exact optimal
prices for revenue maximization market design problem in
o(l) space. Just like previous subsection, our approach is
based on a reduction from Disjointness problem.

Theorem 4.3 There is no streaming algorithm which uses
o(l) memory, and finds the revenue maximizing price vector
for an envy free assignment.

References

Balcan, M.-F.; Blum, A.; Hartline, J. D.; and Mansour, Y.
2008. Reducing mechanism design to algorithm design via
machine learning. Journal of Computer and System Sciences
74(8):1245 – 1270. Learning Theory 2005.

Bikhchandani, S., and Mamer, J. W. 1997. Competitive
Equilibrium in an Exchange Economy with Indivisibilities.
Journal of Economic Theory 74(2):385–413.
Briest, P., and Krysta, P. 2011. Buying cheap is expensive:
Approximability of combinatorial pricing problems. SIAM J.
Comput. 40(6):1554–1586.
Bury, M., and Schwiegelshohn, C. 2015. Sublinear estima-
tion of weighted matchings in dynamic data streams. arXiv
preprint arXiv:1505.02019.
Chalermsook, P.; Chuzhoy, J.; Kannan, S.; and Khanna, S.
2012. Improved hardness results for profit maximizations
pricing problems with unlimited supply. In Proceedings of
APPROX.
Chen, N., and Deng, X. 2014. Envy-free pricing in multi-item
markets. ACM Trans. Algorithms 10(2):7:1–7:15.
Chen, N.; Ghosh, A.; and Vassilvitskii, S. 2011. Optimal
envy-free pricing with metric substitutability. SIAM Journal
on Computing 40(3):623–645.
Cheung, M., and Swamy, C. 2008. Approximation algorithms
for single-minded envy-free profit-maximization problems
with limited supply. In Foundations of Computer Science,
2008. FOCS ’08. IEEE 49th Annual IEEE Symposium on,
35–44.
Chitnis, R.; Cormode, G.; Hajiaghayi, M.; and Monemizadeh,
M. 2015. Parameterized streaming: maximal matching and
vertex cover. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1234–1251. SIAM.
Chitnis, R.; Cormode, G.; Esfandiari, H.; Hajiaghayi, M.;
McGregor, A.; Monemizadeh, M.; and Vorotnikova, S. 2016.
Kernelization via sampling with applications to dynamic
graph streams. 1326–1344.
Cole, R., and Roughgarden, T. 2014. The sample complexity
of revenue maximization. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC ’14, 243–
252. New York, NY, USA: ACM.
Dhangwatnotai, P.; Roughgarden, T.; and Yan, Q. 2010.
Revenue maximization with a single sample. In Proceedings
of the 11th ACM Conference on Electronic Commerce, EC
’10, 129–138. New York, NY, USA: ACM.
Esfandiari, H.; Hajiaghayi, M. T.; Liaghat, V.; Monemizadeh,
M.; and Onak, K. 2015. Streaming algorithms for estimating
the matching size in planar graphs and beyond. In Proceed-
ings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1217–1233. SIAM.
Fu, H.; Immorlica, N.; Lucier, B.; and Strack, P. 2015. Ran-
domization beats second price as a prior-independent auction.
In Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, EC ’15, 323–323. New York, NY,
USA: ACM.
Guruswami, V.; Hartline, J. D.; Karlin, A. R.; Kempe, D.;
Kenyon, C.; and McSherry, F. 2005. On profit-maximizing
envy-free pricing. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1164–1173.
SIAM.
Hsu, J.; Morgenstern, J.; Rogers, R. M.; Roth, A.; and

296

Vohra, R. 2015. Do prices coordinate markets? CoRR
abs/1511.00925.
Huang, Z.; Mansour, Y.; and Roughgarden, T. 2015. Making
the most of your samples. In Proceedings of the Sixteenth
ACM Conference on Economics and Computation, EC ’15,
45–60. New York, NY, USA: ACM.
McGregor, A. 2005. Finding graph matchings in data streams.
In Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques. Springer. 170–181.
Morgenstern, J., and Roughgarden, T. 2015. The pseudo-
dimension of nearly-optimal auctions. In NIPS, Forthcoming.
Shapley, L. S., and Shubik, M. 1971. The assignment game i:
The core. International Journal of Game Theory 1:111–130.
10.1007/BF01753437.

297

