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Abstract

Integer Linear Programming (ILP) and its mixed variant
(MILP) are archetypical examples of NP-complete optimiza-
tion problems which have a wide range of applications in var-
ious areas of artificial intelligence. However, we still lack a
thorough understanding of which structural restrictions make
these problems tractable. Here we focus on structure captured
via so-called decompositional parameters, which have been
highly successful in fields such as boolean satisfiability and
constraint satisfaction but have not yet reached their full po-
tential in the ILP setting. In particular, primal treewidth (an
established decompositional parameter) can only be algorith-
mically exploited to solve ILP under restricted circumstances.

Our main contribution is the introduction and algorithmic ex-
ploitation of two new decompositional parameters for ILP
and MILP. The first, torso-width, is specifically tailored to
the linear programming setting and is the first decomposi-
tional parameter which can also be used for MILP. The lat-
ter, incidence treewidth, is a concept which originates from
boolean satisfiability but has not yet been used in the ILP
setting; here we obtain a full complexity landscape mapping
the precise conditions under which incidence treewidth can
be used to obtain efficient algorithms. Both of these parame-
ters overcome previous shortcomings of primal treewidth for
ILP in unique ways, and consequently push the frontiers of
tractability for these important problems.

Introduction

Integer Linear Programming (ILP) is a widely used and
highly successful framework for solving difficult computa-
tional problems. In particular, a wide variety of problems in
artificial intelligence are efficiently solved in practice via a
translation into an Integer Linear Program, including prob-
lems from areas such as planning (van den Briel, Vossen,
and Kambhampati 2005; Vossen et al. 1999), vehicle rout-
ing (Toth and Vigo 2001), process scheduling (Floudas and
Lin 2005), packing (Lodi, Martello, and Monaci 2002), and
network hub location (Alumur and Kara 2008). In its most
general form, the ILP optimization problem (ILP) can be
formalized as follows:
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INTEGER LINEAR PROGRAMMING

Input: A matrix A ∈ Z
m×n and two vectors

b ∈ Z
m and c ∈ R

n.
Question: Maximize cx for every x ∈ Z

n with
Ax ≤ b.

Closely related to ILP is the mixed ILP (MILP) prob-
lem, which additionally partitions the variable set into in-
teger and real variables. Given the significance of both
problems, it is surprising that fairly little is known about
which structural restrictions make them tractable. After all,
problem inputs naturally tend to contain some form of
structure, and such structure can often be exploited to ef-
ficiently compute exact solutions. Over the past decade,
this line of research has been thoroughly investigated in
related areas such as boolean satisfiability (Szeider 2003;
Ganian and Szeider 2015; Ganian, Hliněný, and Obdržálek
2013) and constraint satisfaction (Samer and Szeider 2010;
Ganian, Ramanujan, and Szeider 2016; Marx 2010), but has
yet to reach its full potential in the ILP setting.

The parameterized complexity paradigm (Downey and
Fellows 2013; Cygan et al. 2015) offers the perfect tools to
measure, quantify and exploit various forms of structure in
order to design efficient algorithms. There, one associates
each instance I with a structural parameter k, and the goal
is to obtain algorithms which run in time f(k) · |I|O(1) for
some computable function f . Such algorithms are called
fixed-parameter algorithms, and the underlying idea is that
well-structured instances (i.e., those where k is small) will
run in uniformly polynomial time. Whether such algorithms
can be obtained or not naturally depends on our choice of
parameter—corresponding to the choice of structure that we
wish to algorithmically exploit.

So-called decompositional parameters are by far the most
studied type of structural parameters: these seek to con-
struct and exploit natural decompositions of graph repre-
sentations of instances, and have been highly successful
in boolean satisfiability (Szeider 2003), constraint satisfac-
tion and optimization (Marx 2010; Gottlob et al. 2005;
Marinescu and Dechter 2010) and other areas. However, the
situation in the area of ILP is not as positive: already ILP-
FEASIBILITY remains NP-hard (Ganian and Ordyniak 2016)
even when the most popular decompositional parameters (in
particular, treewidth (Kloks 1994) and clique-width (Cour-
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celle, Makowsky, and Rotics 2000)) are bounded, and fur-
thermore none of the known fixed-parameter algorithms us-
ing decompositional parameters generalize to MILP.

In this paper we overcome the shortcomings of classical
decompositional parameters on ILP by taking a careful look
at the graph representation used for ILP instances. All the
results on the use of decompositional parameters for integer
linear programming have so far used the simplest graph rep-
resentation, notably so-called primal graphs. There, decom-
positional parameters in combination with additional restric-
tions have led to some positive results for ILP (Jansen and
Kratsch 2015; Cunningham and Geelen 2007; Ganian and
Ordyniak 2016). We explore two ways to go beyond simple
primal graphs, and develop new algorithms which allow us
to push the frontiers of tractability for ILP and MILP.

Our first contribution is the introduction of a new struc-
tural parameter called torso-width; unlike generic parame-
ters such as treewidth, torso-width is specifically tailored to
(mixed) integer linear programming. The core idea behind
the parameter relies on a combination of pruning the origi-
nal primal graph representation via Lenstra’s celebrated al-
gorithm (Lenstra and Jr. 1983) and dynamic programming.
Torso-width is the first structural parameter that can be used
not only for ILP but also for MILP. On ILP, torso-width is
a strict generalization of primal treewidth: it allows the effi-
cient solution of all instances where treewidth was known to
help (Marx 2010), but can also solve instances which were
beyond the reach of state-of-the-art algorithms.

Our second contribution is a complete complexity land-
scape for the parameterized complexity of ILP with re-
spect to the treewidth of the incidence graph representation.
Similarly to primal graphs, incidence graphs are a natural
graph representation that has been extensively studied in the
boolean satisfiability (Szeider 2003) and constraint satisfac-
tion (Samer and Szeider 2010) settings. An incidence graph
captures more information about the original instance than a
primal graph, and as such it offers a more truthful represen-
tation. One particular advantage of using treewidth on inci-
dence instead of primal graphs is that the treewidth of the
former can be small even when constraints spanning many
variables are present (on the other hand, even a single large
constraint prevents the efficient use of treewidth on primal
graphs). We obtain exact algorithms for ILP parameterized
by the treewidth of the incidence graph under certain addi-
tional conditions on the instance, and show that these condi-
tions are unavoidable by obtaining matching lower bounds.

The paper is structured as follows. After the necessary
preliminaries, we introduce and develop our results for
torso-width. The last technical section is then dedicated to
the full complexity map for incidence treewidth, containing
both the necessary algorithmic and lower-bound results. We
conclude with a summary and discussion of our results.

Preliminaries
We will use standard graph terminology, see for instance
the handbook by Diestel (2012). An undirected graph G
is a tuple (V,E), where V or V (G) is the vertex set and
E or E(G) is the edge set. For a subset V ′ ⊆ V (G), we
denote by G[V ′], the induced subgraph of G induced by

the vertices in V ′, i.e., G[V ′] has vertices V ′ and edges
{ {u, v} ∈ E(G) : u, v ∈ V ′ }. A vertex v is a neighbor
of a vertex set X if v �∈ X and there exists an edge between
a vertex in X and v. The operation of collapsing a vertex set
X , denoted G ◦ X , deletes X from the graph and adds an
edge between each pair of neighbors of X . All our graphs
are simple and loopless.

(Mixed) Integer Linear Programming

For our purposes, it will be useful to view an ILP instance as
a set of linear inequalities (constraints) rather than using the
constraint matrix. Formally, let an ILP instance I be a tuple
(F , η) where F is a set of linear inequalities over variables
X = x1, . . . , xn and η is a linear function over X of the
form η(X) = sx1

x1+ · · ·+sxnnxn. Each inequality A ∈ F
is assumed to be of the form cA,1x + cA,2xA,2 + · · · ≤ bA
where the coefficients cA,i are non-zero; the set of variables
which occur in A is denoted var(A), and we let var(I) = X .
The arity of A is |var(A)|. For a set of variables Y , let F(Y )
denote the subset of F containing all inequalities A ∈ F
such that Y ∩ var(A) �= ∅. An integer variable xi has
bounded domain if there exist constants c, d such that F
contains the inequalities xi ≤ c and xi ≥ d; furthermore,
we say that it has q-bounded domain if c− d ≤ q.

A (partial) assignment α is a (partial) mapping from X
to Z. For a (partial) assignment α and an inequality A, we
denote by A(α) the left-side value of A obtained by applying
α (specifically, the part of α which intersects with A), i.e.,
A(α) = cA,1α(xA,1) + cA,2α(xA,2) + . . . . Note that if α
is a partial assignment, it may happen that var(A) has an
empty intersection with the domain of α, in which case we
set A(α) = 0.

An assignment α is called feasible if it satisfies every A ∈
F , i.e., if A(α) ≤ bA for each A ∈ F . Furthermore, α is
called a solution if the value of η(α) is maximized over all
feasible assignments; observe that the existence of a feasible
assignment does not guarantee the existence of a solution
(there may exist an infinite sequence of feasible assignments
α with increasing values of η(α)). Given an instance I , the
task in the ILP problem is to compute a solution for I if
one exists, and otherwise to decide whether there exists a
feasible assignment. As in the case of constraints, for partial
assignments α we set η(α) to be the value of η restricted to
the domain of α, and in particular we set η(α) = 0 if η has
an empty intersection with the domain of α.

Analogously to the above, we will view a Mixed Inte-
ger Linear Programming (MILP) instance also as a tuple
(F , η), where F is a set of linear inequalities over two dis-
joint variable-sets X ∪ Y and η is a linear function over
X ∪ Y . We call X the integer variables and Y the real vari-
ables, and set X = varZ(I) and Y = varR(I). Note that
in the MILP setting, only integer variables are considered to
have bounded domain.

There are several ways of naturally representing (M)ILP
instances as graphs. Given an ILP instance I = (F , η), the
simplified primal graph of I is the graph whose vertex set is
the set var(I), and two vertices a, b are adjacent iff there ex-
ists some A ∈ F containing both a and b. On the other hand,
the extended primal graph of I is the graph whose vertex set
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is the set var(I), and two vertices a, b are adjacent iff either
there exists some A ∈ F containing both a and b or a, b both
occur in η with non-zero coefficients (Ganian and Ordyniak
2016). We will not deal with extended primal graphs (which
have greater or equal treewidth than the simplified variant)
in this paper, and so we will consistently use primal graph as
shorthand for the simplified primal graph. Finally, the inci-
dence graph of I is the graph whose vertex set is var(I)∪F
and two vertices a, b are adjacent iff a ∈ var(I), b ∈ F
and a ∈ var(b). We denote by GI and HI the primal and
incidence graphs of I , respectively.

Parameterized Complexity

In parameterized algorithmics (Flum and Grohe 2006; Nie-
dermeier 2006; Downey and Fellows 2013) the runtime of
an algorithm is studied with respect to a parameter k ∈ N

and input size n. The basic idea is to find a parameter that
describes the structure of the instance such that the combi-
natorial explosion can be confined to this parameter. In this
respect, the most favorable complexity class is FPT (fixed-
parameter tractable) which contains all problems that can
be decided by an algorithm running in time f(k) · nO(1),
where f is a computable function. Algorithms with this run-
ning time are called fixed-parameter algorithms. Aside from
the complexity class FPT, we will also make use of the com-
plexity classes XP (containing problems that can be solved
in polynomial time whenever the parameter is bounded)
and paraNP (problems complete for paraNP remain NP-
complete even when the parameter is bounded).

For our algorithms, we will use the following result as
a subroutine. Note that this is a streamlined version of the
original statement of the theorem, as used in the area of pa-
rameterized algorithms (Fellows et al. 2008).

Proposition 1 (Lenstra and Jr.; Kannan; Frank and Tar-
dos (1983; 1987; 1987)). A MILP instance I = (F , η) can
be solved in time O(p2.5p+o(p) · |I| ·q4), where p = |varZ(I)|
and q = |varR(I)|.

Treewidth

A tree-decomposition T of a graph G = (V,E) is a pair
(T, χ), where T is a tree and χ is a function that assigns each
tree node t a set χ(t) ⊆ V of vertices such that the following
conditions hold: (P1) for every vertex u ∈ V , there is a tree
node t such that u ∈ χ(t), (P2) for every edge {u, v} ∈
E(G) there is a tree node t such that u, v ∈ χ(t), (P3) for
every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t)
forms a subtree of T .

The sets χ(t) are called bags of the decomposition T and
χ(t) is the bag associated with the tree node t. The width
of a tree-decomposition (T, χ) is the size of a largest bag
minus 1. A tree-decomposition of minimum width is called
optimal. The treewidth of a graph G, denoted by tw(G), is
the width of an optimal tree decomposition of G.

For presenting our dynamic programming algorithms, it
is convinient to consider tree decompositions in the follow-
ing normal form (Kloks 1994): A tuple (T, χ) is a nice tree
decomposition of a graph G if (T, χ) is a tree decomposi-
tion of G, the tree T is rooted at node r, and each node

of T is of one of the following four types: 1) a leaf node
is a node t having no children and |χ(t)| = 1, 2) a join
node is a node t having exactly two children t1, t2, and
χ(t) = χ(t1) = χ(t2), 3) an introduce node is a node t
having exactly one child t′ and χ(t) = χ(t′) ∪ {v} for a
node v of G, and 4) a forget node is a node t having exactly
one child t′, and χ(t) = χ(t′) \ {v} for a node v of G.

For convenience we will also assume that χ(r) = ∅ for the
root r of T . For t ∈ V (T ) we denote by Tt the subtree of
T rooted at t and we write χ(Tt) for the set

⋃
t′∈V (Tt)

χ(t′).
We conclude the preliminaries with an important proposition
for treewidth.

Proposition 2 (Kloks; Bodlaender; Bodlaender et al. (1994;
1996; 2016)). It is possible to compute an optimal (nice)
tree-decomposition of an n-vertex graph G with treewidth
k in time kO(k3)n, and to compute a 5-approximate one in
time 2O(k)n. Moreover, the number of nodes in the obtained
tree decompositions is at most O(kn).

Torso-width

In this section we present the first of our considered pa-
rameters, torso-width. The idea underlying torso-width is to
prune the used graph representation by only focusing on the
parts which we can and intend to handle with a dynamic
programming algorithm. We proceed with an initial batch of
definitions before giving more details.

Let us fix an arbitrary constant q. For a MILP instance I ,
let Bq(I) be the set of all q-bounded domain variables in
I and let Uq(I) = var(I) \ Bq(I); observe that Bq(I) ⊆
varZ(I). A q-torso is a graph obtained by collapsing at least
all the vertices in Uq(I); formally, a graph G is a q-torso of
I iff there exists PG ⊇ Uq(I) such that G = GI ◦ PG. We
also introduce one bit of additional notation: given a variable
subset X of I , we let I[X] = (F ′, η′) be the subinstance
of I restricted to X; formally, I[X] contains all constraints
that do not contain any variable outside of X , and η′ is the
restriction of η to X .

Informally, a torso allows us to distinguish two “parts”
of the MILP instance: the part that is removed from the
torso by collapsing, and the part that remains in the torso.
Outside the torso, we make no assumptions about the struc-
ture of the instance, and so the best known option for deal-
ing with this part is the use of Lenstra’s algorithm (Propo-
sition 1). However, the torso itself only contains bounded-
domain variables and so a treewidth-based algorithm can be
used instead (Jansen and Kratsch 2015). The torso itself is
then designed in a way which ensures that we can seam-
lessly combine these two approaches on different parts of
the MILP instance, and the rest of this section is devoted
to formalizing these claims through the definition of torso-
width.

Before we define the torso-width formally, we first need
to introduce the notion of “fitness”. Let G = GI ◦ PG be a
q-torso of I and let H be the vertex set of a connected com-
ponent in GI [PG] (i.e., in the collapsed part of the primal
graph). Then the fitness of H , denoted τ(H), is the num-
ber of integer variables in H . We then let the fitness of G,
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Figure 1: Left: The primal graph of an ILP instance, with
black vertices representing q-bounded variables.
Right: One possible q-torso.

denoted τ(G), be the maximim fitness over all connected
components in GI [PG].

Now we can define the torso-width of the q-torso G as
torw(G) = max(tw(G), τ(G)). Since determining whether
a graph has treewidth k takes time at most kO(k3)|V (G)| due
to Proposition 2, and since checking τ(G) takes linear time,
we observe that it is possible to compute the torso-width k

of a q-torso of I in time at most kO(k3)|V (G)|. Finally, the
q-torso-width of a MILP instance I , denoted torwq(I), is
the minimum torw(G) over all q-torsos G of I .

Before proceeding to our algorithms for torso-width, we
make one useful observation. Let (T, χ) be a nice tree de-
composition of G and let C(G) be the set of connected com-
ponents of GI − V (G). Then for each C ∈ C(G), there is a
bag of (T, χ) which contains all the neighbors of C.

Algorithms for Torso-width

Our next order of business is to show how torso-width can
be used to solve a MILP instance, assuming that a suitable
torso is provided as part of the input. We introduce some
extra notation which will be useful in our proofs. Let ζT :
C(G) → V (T ) be a mapping which assigns a unique bag
of (T, χ) to each connected component in C(G). For each
C ∈ C(G), we set ζT (C) to be an arbitrary node t ∈ V (T )
such that (i) t is an introduce node, (ii) χ(t) contains the
neighborhood of C and (iii) there is no other node t′ which
is a descendant of t and satisfies the first two properties. For
t ∈ V (T ), we use ωT (t) to denote the set of all connected
components which ζ maps to t extended by χ(t); formally,
ωT (t) = {χ(t) ∪ C : ζT (C) → t }. The reference to T
is dropped in the above definition when it is clear from the
context.

Theorem 3. Let q be a fixed integer and I be an input MILP
instance with b real variables. Given a q-torso G of I with
width k, it is possible to solve I in time (qk+1 · kO(k) +

kO(k3)) · |I|b4.

Sketch of Proof. Let (T, χ) be a nice tree decomposition of
G of minimum width. Recall that by Proposition 2, (T, χ)
can be computed in time kO(k3)n. For each t ∈ V (T ), we
denote by It the subinstance of I induced on the set χ(Tt)∪⋃

t′∈Tt
(
⋃

C∈ω(t′) C).
We now proceed to describe our dynamic programming

algorithm. For each t ∈ V (T ), we denote by Pt the set of
all partial assignments of the variables in χ(t); observe that

|Pt| ≤ qk+1. The core idea behind the algorithm relies on
computing the function optt : Pt → R ∪ ⊥ for each t ∈
V (T ). Intuitively, optt maps a partial assignment α0 of χ(t)
to the optimal value of η(α) over all partial assignments α
of It that comply with α0. More formally, optt is defined
as optt(τ) = ⊥ if It has no feasible solution extending τ
and optt(τ) = δ otherwise, where δ is the maximum value
of η for It among all feasible assignments which extend τ .
Clearly, the solution for I is max{optt(τ)|τ ∈ Pt} where
t is the root node of T . The remainder of the proof then
shows how the function optt can be computed for each node
t ∈ V (T ).

Now, we turn our attention to finding a suitable torso in
order to apply Theorem 3.

Lemma 4. Let q be a fixed integer and I be an input MILP
instance. It is possible to find a q-torso G of I such that
torw(G) ≤ 2 · torwq(I) in time O(|I|).

Sketch of Proof. Let G′ be the trivial q-torso, which is ob-
tained by collapsing all variables that are not q-bounded.
It can be shown that G′ is in fact a 2-approximation of an
optimal q-torso. Obviously, G′ can be computed in linear
time.

With these results in hand, we can proceed to the main
result of this section, Theorem 5.

Theorem 5. Let q be a fixed integer and I be an input MILP
instance. Then I is fixed-parameter tractable parameterized
by q-torso-width.

Proof. By Lemma 4, we can compute a q-torso G of I such
that torw(G) ≤ 2 · torwq(I). The proof then follows from
Theorem 3.

Incidence Treewidth

In this section we provide our complexity landscape for ILP
w.r.t. incidence treewidth. We start by presenting our main
algorithm for ILP using incidence treewidth in a very gen-
eral setting, and the next section will then discuss specific
tractabability results that can be obtained from the algorithm
as well as matching hardness results.

The Algorithm

Here we will present a bottom-up dynamic programming al-
gorithm solving ILP along a tree decomposition of the in-
cidence graph HI of an instance I . In the following, we
assume that we want to solve an ILP instance I = (F , η)
and we denote by Γ the maximum absolute value of A(α)
over every constraint A ∈ F and every partial assignment
α of the variables of I that can be extended to a feasible as-
signment for I . Note that Γ could be undefined (specifically,
when variable domains are unbounded); we remark that the
algorithm presented below only applies for instances where
Γ is defined. We will show that this actually a necessary con-
dition to algorithmically exploit incidence treewidth.

Observe that under the natural assumption that every vari-
able of I occurs in at least one constraint of I , Γ is also
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an upper bound on the maximum domain value of any vari-
able in a feasible assignment of I . Moreover, we denote the
treewidth of HI by twI , the number of variables in I by n,
and the number of constraints in I by m. The remainder of
this subsection is devoted to a proof of our main tractability
result, formalized below.

Theorem 6. ILP can be solved in time O(Γ2twI+2twI(n +
m)) given that an optimal nice tree decomposition of HI is
provided in the input.

Informally, the algorithm behind the above theorem works
as follows. Let T = (T, χ) be an optimal nice tree decompo-
sition of HI . The algorithm uses a bottom-up dynamic pro-
gramming approach on the nodes of T to compute a com-
pact representation, in the following represented by a set
of valid records, of all feasible assignments of I restricted
to variables and constraints occuring in Tt for every node
t ∈ V (T ). In the following, we denote by χvar(t) and χA(t)
the function χ(t) restricted to var(I) and F , respectively,
i.e., χvar(t) = χ(t) ∩ var(I) and χA(t) = χ(t) ∩ F .

A record for a node t ∈ V (T ) is a triple (τ, γ, v), where:

• τ : χvar(t) → [−Γ,Γ],

• γ : χA(t) → [−Γ,Γ], and

• v is a non-negative integer.

The semantics of a record are as follows. We say that a
record (τ, γ, v) for a node t ∈ V (T ) is valid if v is the max-
imum value of η(α) for any assignment α : χvar(Tt) →
[−Γ,Γ] satisfying:

R1 α(x) = τ(x) for every variable x ∈ χvar(t),

R2 A(α) = γ(A) for every constraint A ∈ χA(t).

For a node t ∈ V (T ) we denote by R(t) the set of all valid
records for t. Observe that I has a feasible assignment if and
only if R(r) �= ∅, and in this case the solution of I achieves
the value of v in the unique record (∅, ∅, v) ∈ R(r) for the
root r of T . We will show next that R(t) can be computed
via a dynamic programming algorithm on T in a bottom-
up manner. The algorithm starts by computing the set of all
valid records for the leaves of T and then proceeds by com-
puting the set of all valid records for the other three types of
nodes of a nice tree decomposition (whereas it selects nodes
whose children have already been processed).

The following four lemmas show how this can be
achieved for all of the four types of nodes in a nice tree de-
composition. Here we only provide a proof for the introduce
nodes.

Lemma 7. Let t ∈ V (T ) be an introduce node with child t′.
Then R(t) can be computed from R(t′) in time O(|R(t′)|Γ).

Sketch of Proof. We distinguish two cases depending on
whether Δ := χ(t) \ χ(t′) consists of a variable or a con-
straint. If Δ = {x} for a variable x ∈ var(I), then we ob-
tain the set R(t) from the set R(t′) as follows. For every
record (τ ′, γ′, v′) in R(t′) and every assignment τx : {x} →
[−Γ,Γ] of x, let (τ, γ, v) be the triple defined as follows:

• τ : χvar(t) → [−Γ,Γ] to be the assignment with τ(x′) =
τ ′(x′) for every x′ ∈ χvar(t

′) and τ(x) = τx(x),

• γ : χA(t) → [−Γ,Γ] to be assignment with γ(A) =
γ′(A) +A(τx), and

• v = v′ + η(τx).

If |γ(A)| ≤ Γ for every A ∈ χA(t), we add the record
(τ, γ, v) to the set R(t), otherwise we skip the record. This
completes the computation of R(t).

If, on the other hand Δ = {A}, for A ∈ F , then we obtain
the set R(t) from the set R(t′) as follows. For every record
(τ ′, γ′, v′) in R(t′), we check whether |A(τ ′)| ≤ Γ. If so
we add the record (τ ′, γ, v′) to R(t), where γ is defined by
setting γ(A′) = γ′(A′) for every A′ ∈ χA(t

′) and γ(A) =
A(τ ′). Otherwise we skip the record.

Lemma 8. Let l ∈ V (T ) be a leaf node. Then R(l) can be
computed in time O(Γ).

Lemma 9. Let t ∈ V (T ) be a forget node with child
t′. Then R(t) can be computed from R(t′) in time
O(|R(t′)| log |R(t′)|).
Lemma 10. Let t ∈ V (T ) be a join node with children t1
and t2. Then R(t) can be computed from R(t1) and R(t1)
in time O(|R(t1)||R(t2)|).

We are now ready to prove our main theorem.

Proof of Theorem 6. The algorithm computes the set of all
valid records R(t) for every node t of T using a bottom-up
dynamic programming algorithm starting in the leaves of T .
It then solves I by checking whether R(r) �= ∅ and if so
outputs v as the solution of I , where (∅, ∅, v) is the unique
record in R(r). If, on the other hand, R(r) = ∅, then the
algorithm returns correctly that I has no feasible solution.
Note that the correctness of the algorithm follows from the
correctness of Lemmas 8, 7, 9, and 10. The running time of
the algorithm is at most the number of nodes of T , i.e., at
most twI(|var(I)|+ |F|), times the maximum time required
to compute R(t) for any of the four node types of a nice tree-
decomposition, which because of lemmas 8, 7, 9, and 10 is
at most O(|R(t)|2+|R(t)|Γ). Because |R(t)| ≤ ΓtwI+1, we
obtain O((ΓtwI+1)2twI(|var(I)|+ |F|)) as the total running
time of the algorithm.

Discussion and Hardness Results

The algorithm presented in the previous subsection can only
be applied to ILP instances for which Γ is defined. Here we
show that this is indeed the case for several natural classes
of ILP instances, and we also show that a bound on Γ is
necessary for using incidence treewidth.

Let Amax, Bmax, and Xmax denote the maximum absolute
value of the coefficients of the matrix, the coefficients of the
vector b, and the domain values of all variables, respectively.
The following theorem follows immediately from Theo-
rem 6 and the fact that Γ is at most Amax ·Xmax · n.

Theorem 11. ILP can be solved in time O((Amax · Xmax ·
n)twI+1)(n +m) given that an optimal nice tree decompo-
sition of HI is provided in the input.

Together with Proposition 2, the above theorem shows
that ILP is solvable in polynomial time for ILP instances of
bounded incidence treewidth as long as both Amax and Xmax
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can be bounded by a polynomial in the input size. It is nat-
ural to ask whether the same result still holds if either Amax

or Xmax is not polynomially bounded. We answer this in the
following theorem. In fact, the part of the theorem also holds
for so-called non-negative instances, where all coefficients
in the matrix A as well as the domain values of all variables
of I are non-negative. This fact will be useful later.

Theorem 12. ILP-FEASIBILITY is NP-hard even for in-
stances with incidence treewidth at most three that addition-
ally satisfy either:

(1) all variables have a binary domain, i.e., {0, 1} and the
ILP instance is non-negative, or

(2) all coefficents of the matrix and the vector b are between
−2 and 2.

Sketch of Proof. We show the result by a polynomial reduc-
tion from the SUBSET SUM problem, which is well-known
to be weakly NP-complete. Given a set S := {s1, . . . , sn}
of integers and an integer s, the SUBSET SUM problem asks
whether there is a subset S′ ⊆ S such that

∑
s′∈S′ s′ = s.

Let I := (S, s) with S := {s1, . . . , sn} be an instance of
SUBSET SUM. We show the two statements of the theorem
in two steps: First we construct an ILP instance I1 from I
that verifies (1) and then we show how to alter I1 into an
ILP instance I2 that proves (2). The ILP instance I1 is ob-
tained as follows. I1 constains one binary variable xi (with
domain {0, 1}) for every i with 1 ≤ i ≤ n, which indi-
cates whether or not the element si is chosen to be part of
the subset. Apart from the constraints 0 ≤ xi ≤ 1, which
ensure that xi is a binary variable, I1 merely contains one
additional constraint, i.e., the constraint

∑
1≤i≤n sixi = s.

Clearly, I1 is a YES-instance if and only if so is I , I1 is non-
negative, uses only binary variabels, and twI ≤ 1, which
concludes the proof of (1). It now suffices to show how to
alter I1 into the desired ILP instance I2 by replacing the
large coefficients in I1 with variables of large domain with-
out increasing the incidence treewidth.

For general ILP instances, the aforementioned Theo-
rem 12 settles the question of whether we can get rid of the
polynomial bounds on Amax and Xmax. We now focus on
the aforementioned non-negative ILP instances. It is worth
noting that such instances have been studied in the litera-
ture (Fomin et al. 2016). We show that Theorem 6 allows us
to solve such instances more efficiently; the proof follows
from Theorem 6 using the fact that Γ is at most Bmax for
non-negative ILP instances.

Theorem 13. On non-negative instances, ILP can be solved
in time O((Bmax)

twI+1(n + m) given that an optimal nice
tree decomposition of HI is provided in the input.

Together with Proposition 2, the above theorem shows
that ILP is fixed-parameter tractable parameterized by twI

and Bmax. Furthermore, for those instances where Bmax is
bounded polynomially in the number of variables n, the
above theorem gives an algorithm with running time nO(tw).
We note that (unless P=NP) it is not possible to obtain fixed-
parameter (or even XP) algorithms when parameterizing by

only one of these parameters. On one hand, ILP remains NP-
hard when parameterized only by Bmax, since it can still ex-
press problems such as VERTEX COVER. The other case is
ruled out by Theorem 12 (1).

Table 2 and Table 1 summarize our results for general
and non-negative ILP instances, respectively. Observe that
Γ is always defined in the case of non-negative ILP in-
stances, while general instances with undefined Γ fall into
the paraNP-complete case.

parameter complexity
twI paraNP-c (Thm 12 (1))
twI

(
if Bmax ≤ |I|O(1)

)
XP (Thm 13)

Bmax paraNP-c (Folklore)
twI +Bmax FPT (Thm 13)

Table 1: The table shows the parameterized complexity of
non-negative ILP parameterized by the single parameters
twI and Bmax as well as the combined parameter twI+Bmax.

polynomial bound on complexity par. by twI

Amax paraNP-c (Thm 12 (2))
Xmax paraNP-c (Thm 12 (1))
Amax and Xmax XP (Thm 11)

Table 2: The table shows the parameterized complexity of
ILP parameterized by twI dependening on whether Amax,
Xmax, or both are polynomially bounded in the input size.

Finally, we discuss the optimality of the algorithm of The-
orem 13 in the case when Bmax is polynomially bounded
in the input size. To this end, we will use the following re-
cent result of Fomin et al. to rule out FPT or even more ef-
ficient XP algorithms. Since incidence treewidth is upper-
bounded by m, we restate their theorem in terms of inci-
dence treewidth.

Theorem 14 (Fomin et al. (2016)). ILP-FEASIBILITY can-
not be solved in time Bo(twI)

max n
o(

twI
log twI

) even for non-negative
ILP instances with bounded Bmax (unless ETH fails).

Concluding Notes

Our results form a valuable contribution to the relatively
unexplored area of exploiting the structure of integer and
mixed linear programs. In particular, torso-width is the first
parameter which allows the solution of MILP instances
using decompositional techniques by a non-trivial combi-
nation of Lenstra’s algorithm and dynamic programming.
Moreover, incidence treewidth allows us to lift dynamic
promming techniques to ILP instances which contain large
constraints, in contrast to the previously considered primal
treewidth.

One promising area for future research is to measure and
compare the values of these parameters on ILP and MILP in-
stances which occur in practice. Since instances come from
many diverse settings and processes, it would not be sur-
prising to see that some practically relevant ILP instances
naturally exhibit the forms of structure studied herein.
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