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Abstract

Nowadays, asynchronous parallel algorithms have received
much attention in the optimization field due to the cru-
cial demands for modern large-scale optimization prob-
lems. However, most asynchronous algorithms focus on con-
vex problems. Analysis on nonconvex problems is lack-
ing. For the Asynchronous Stochastic Descent (ASGD) al-
gorithm, the best result from (Lian et al. 2015) can only
achieve an asymptotic O( 1

ε2
) rate (convergence to the sta-

tionary points, namely, ‖∇f(x)‖2 ≤ ε) on nonconvex
problems. In this paper, we study Stochastic Variance Re-
duced Gradient (SVRG) in the asynchronous setting. We pro-
pose the Asynchronous Stochastic Variance Reduced Gra-
dient (ASVRG) algorithm for nonconvex finite-sum prob-
lems. We develop two schemes for ASVRG, depending on
whether the parameters are updated as an atom or not. We
prove that both of the two schemes can achieve linear speed

up1(a non-asymptotic O(n
2
3

ε
) rate to the stationary points)

for nonconvex problems when the delay parameter τ ≤ n
1
3 ,

where n is the number of training samples. We also estab-

lish a non-asymptotic O(n
2
3 τ

1
3

ε
) rate (convergence to the sta-

tionary points) for our algorithm without assumptions on τ .
This further demonstrates that even with asynchronous updat-
ing, SVRG has less number of Incremental First-order Ora-
cles (IFOs) compared with Stochastic Gradient Descent and
Gradient Descent. We also conduct experiments on a shared
memory multi-core system to demonstrate the efficiency of
our algorithm.

Introduction

We study nonconvex finite-sum problems of the form:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

∗Corresponding author.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The linear speed up means that if we use τ cores to solve a
problem, it will be at least ατ times faster than using only one core
to solve this problem (α > 0). It indicates that the asynchronous
algorithm can still maintain the same convergence rate with the
serial algorithm when we ignore the constant in the convergence
rate.

where fi (i ∈ {1, 2, · · · , n}) have L-Lipschitz continuous
gradient (L > 0) but can be nonconvex and n is the number
of functions. A large number of models can be formulated as
Eq. (1), such as neural networks, dictionary learning, and in-
ference in graphical models (Allen-Zhu and Hazan 2016). In
this paper, we focus on algorithms that can efficiently reach
a stationary point satisfying ‖∇f(x)‖2 ≤ ε , which is a com-
mon benchmark for nonconvex algorithms.

The standard method to solve Eq. (1) is through Gradient
Descent (GD) and Stochastic Gradient Descent (SGD). In
large-scale problems, SGD is faster in practice, since it ran-
domly chooses only one sample to estimate the gradient dur-
ing each update. However, its provable convergence rate is
slower than GD. The Incremental First-order Oracles (IFOs)
complexity for GD and SGD to reach a stationary point are
O(nε ) and O( σ

ε2 ), respectively, where σ is the variance of
stochastic gradient (Ghadimi and Lan 2013).

Variance Reduction (VR) methods are one of the great
varieties of SGD methods which ensure the descent direc-
tion to have a bounded variance and so can achieve a much
faster convergence rate compared with SGD. (Johnson and
Zhang 2013) first propose the Stochastic Variance Reduced
Gradient (SVRG) algorithm and prove that the algorithm
has a linear convergence rate instead of a sublinear rate for
SGD, for strongly convex problems. They have also done a
compelling experiment on neural networks to demonstrate
the advantage on nonconvex problems. Recently, there are
much research (Reddi et al. 2016), (Allen-Zhu and Hazan
2016) that carefully analyse SVRG on nonconvex optimiza-
tion problems. They both prove that SVRG convergences in

O(n
2
3

ε ) for nonconvex problems, which is at least O(n
1
3 )

faster than GD.
On the other hand, to meet the requirement for modern

large-scale problems, asynchronous parallel algorithms have
received much attention, e.g., Asynchronous Stochastic Gra-
dient Descent (ASGD) (Niu et al. 2011),(Agarwal and Duchi
2011), (Lian et al. 2015), Asynchronous Coordinate De-
scent (Liu et al. 2015), Asynchronous Dual Coordinate De-
scent (Hsieh, Yu, and Dhillon 2015), and Asynchronous Al-
ternating Direction Method of Multipliers (Zhang and Kwok
2014). Most existing asynchronous methods focus on con-
vex optimization. So the analysis on large-scale nonconvex
problems, such as neural networks, is lacking. On noncon-
vex problems, the ASGD algorithm (Lian et al. 2015) can
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only achieve an asymptotic O( 1
ε2 ) rate. The convergence

rates for different algorithms are shown in Table 1.
In this paper, we study the asynchronous variant of SVRG

for nonconvex optimization problems. We choose SVRG
rather than other VR methods since it has a low storage re-
quirement, which is more suitable for optimization with a
large number of variables, such as neural networks. We de-
velop two schemes for Asynchronous Stochastic Variance
Reduced Gradient (ASVRG) depending on whether the pa-
rameters are updated as an atom. Distinguished from the
proof of ASGD (Lian et al. 2015), we propose a unified
proof for the two schemes. We show that both schemes

can achieve a linear speed up (a non-asymptotic O(n
2
3

ε )
rate to stationary points) for nonconvex problems when
the delay parameter τ ≤ n

1
3 . We also establish a non-

asymptotic O(n
2
3 τ

1
3

ε ) rate (convergence to the stationary
point) without any assumption on τ . This demonstrates that
with asynchronous updating, SVRG still has a less number
of IFOs compared with SGD and GD. We then experiment
on a shared memory system to validate the speedup prop-
erties and demonstrate the efficiency of our algorithm. In
summary, our work makes the following contributions:

• We devise the ASVRG algorithm for asynchronous large-
scale nonconvex optimization or distributed systems.

• We show that ASVRG can achieve linear speed up when

τ ≤ n
1
3 and also prove that it has an ergodic O(n

2
3 τ

1
3

ε )
convergence rate with no assumption on τ .

Related Work

Asynchronous Parallel Algorithms

Asynchronous algorithms have achieved great success in
recent years. Up to now, there are lots of practical algo-
rithms. Due to space limit, we only review the algorithms
that have close relation with ours. The first work is from
(Niu et al. 2011), which proposes a lock free asynchronous
implementation of SGD on a shared memory system, called
HOGWILD!. They also provide a proof of non-asymptotic
O(1/ε) convergence rate for strongly convex and smooth
objective functions. (Agarwal and Duchi 2011) propose an
implementation of SGD on computer clusters for convex

Table 1: Convergence rates of GD based algorithms to sta-
tionary points of non-convex problems (“Syn.” indicates the
algorithm is serial or synchronous in the minibatch mode,
while “asyn.” indicates that the algorithm is asynchronous.
Asym. is short for asymptotic. τ is the delay parameter.).

Algorithm Convergence Rate

Syn.
GD (Nesterov 2013) non-asym. O(n

ε
)

SGD (Ghadimi and Lan 2013) non-asym. O( 1
ε2
)

SVRG (Reddi et al. 2016) non-asym. O(n
2
3

ε
)

Asyn.
ASGD (Lian et al. 2015) asym. O( 1

ε2
)

ASVRG (ours)
non-asym. O(n

2
3

ε
), τ ≤ n

1
3

non-asym. O(n
2
3 τ

1
3

ε
)

Algorithm 1 Serial SVRG
Input x0

0, epoch length m, step size γ, and S = �K/m�.
1 for s = 0 to S − 1 do
2 gs = 1

n

∑n
i=1 ∇fi(x

s
0),

3 for k = 0 tom− 1 do
4 Randomly sample ik from 1, 2, · · · , n,
5 vs

k = ∇fik(x
s
k)−∇fik(x

s
0) + gs,

6 xs
k+1 = xs

k − γvs
k,

7 end for k.
8 xs+1

0 = xs
m,

9 end for s.

smooth problems and prove that the convergence rate is
O(1/ε2 + τ2/ε). (Liu et al. 2015) propose an asynchronous
stochastic coordinate descent algorithm and prove that the
near-linear speed up is achievable if τ ≤ O(n1/2) for
smooth convex functions under certain conditions. Another
two works we should mention are (Reddi et al. 2015) and
(Lian et al. 2015). In the first work, (Reddi et al. 2015) study
asynchronous SVRG on strongly convex functions. They
achieve a linear convergence rate under certain conditions.
For nonconvex problem, (Lian et al. 2015) analyse ASGD
and show that ASGD can achieve an asymptotic O(1/ε2)
convergence rate.

VR Methods

VR methods have received a broad attention in recent years,
e.g., SAG (Schmidt, Roux, and Bach 2013), SVRG (Johnson
and Zhang 2013), and SAGA (Defazio, Bach, and Lacoste-
Julien 2014).

Since we focus on the asynchronous variant of SVRG, we
review SVRG in detail. The algorithm has double loops. In
the outer loop, SVRG defines a snapshot vector xs

0, and com-
putes the full gradient. At the inner loop, SVRG computes
the following gradient estimator:

vs
k = ∇fik(x

s
k)−∇fik(x

s
0) +∇f(xs

0). (2)

The algorithm is shown in Algorithm 1, where γ is step size
and m is the epoch length. To explain that vs

k has been re-
duced variance, one can consider the case when xs

k is very
close to a stationary point x∗. Then we have

vs
k ≈ ∇fik(x

∗)−∇fik(x
∗) +∇f(x∗) = 0, (3)

while for SGD, the gradient estimator is ∇fit(x
∗), which

is not equal to 0. Another observation from Eq. (3) is that
the step size need not decrease to 0 to ensure the conver-
gence, which is different from SGD. In (Johnson and Zhang
2013), the authors prove that it can achieve a linear conver-
gence rate for strongly convex problems. Then (Xiao and
Zhang 2014) study the algorithm in the general convex case.
Recently, in (Reddi et al. 2016) and (Allen-Zhu and Hazan
2016), the authors analyse the algorithm in general non-
convex problems. They show that SVRG convergences in

O(n
2
3

ε ). They bound the variance of gradient through the
following equation

E
(‖vs

k‖2
) ≤ E

(‖∇f(xs
k)‖2

)
+ L2

E
(‖xs

k − xs
0‖2

)
. (4)
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Our Algorithms

Due to the rapid development of hardware resources, asyn-
chronous parallelisms have recently been very successful on
many problems, including nonconvex ones, such as neural
networks (Dean et al. 2012),(Paine et al. 2013) and ma-
trix decomposition (Petroni and Querzoni 2014),(Yun et al.
2014). The advantage of asynchronous parallelisms is that
it allows workers to work independently. So it reduces the
system overhead. Though SVRG has a provably faster con-
vergence rate on non-convex problems using one core, the
asynchronous variant of SVRG, which meets the crucial de-
mands for large-scale optimization, has not been studied.
We study two schemes of ASVRG. The first scheme ensures
the parameter to be updated as an atom, which is common
in star-shaped computer networks, while the other scheme
has no locks during the updates. This scheme is common in
shared memory multi-core systems.

ASVRG-atom

We first describe ASVRG-atom, which is common in star-
shaped computer networks. Since SVRG has two loops, we
implement SVRG in asynchronization in the inner loop. In
each epoch, we compute ∇f(xs

0) and update xs
k in asyn-

chronization. There will be a synchronization operation af-
ter computing the full gradient and after each epoch, respec-
tively. Since both m and n are always large, the synchro-
nization operation will not cost much time.

More specifically, we first assign 2 global counters k and
j. Then all threads repeat the following two parts indepen-
dently and simultaneously:
Part I: Computing the Full Gradient

1) (Read) Read the parameter x̃s
0 from the global memory to

the local memory without locks, and set j = 0.
2) (Loop) While j < n

3) j = j + 1, globally,
4) Compute the gradient g = g +∇fj(x̃

s
0) locally,

5) (End).
6) Compute the full gradient ∇f(x̃s

0) = ∇f(x̃s
0)+

1
ng glob-

ally and with locks .
7) (Synchronization) Wait for other threads to finish this

step.
Part II: Variance Reduced Gradient Descent

1) (Read) Read the full gradient ∇f(x̃s
0) from the global

memory to the local memory without locks, and set k = 0.
2) (Loop) while k < m

3) k = k + 1, globally,
4) (Read) x̃s

k from the global memory with locks ,
5) (Sample) Randomly select a training samples ik,
6) Compute vs

k through Eq. (2) locally.
7) Update x̃s

k+1= x̃s
k −γvs

k globally and with locks .
8) (End).
9) (Synchronization) Wait for other threads to this step and

then set x̃s+1
0 = x̃s

m globally.

Algorithm 2 ASVRG
Input x0

0, epoch length m, step size γ, and S = �K/m�.
1 for s = 0 to S − 1 do
2 gs = 1

n

∑n
i=1 ∇fi(x

s
0),

3 for k = 0 tom− 1 do
4 Randomly sample ik from 1, 2, · · · , n,
5 vs

j(k) = ∇fik(x
s
j(k))−∇fik(x

s
0) + gs,

6 xs
k+1 = xs

k − γvs
j(k),

7 end for k.
8 xs+1

0 = xs
m,

9 end for s.

The above algorithm is called ASVRG-atom, since the
value of x is updated as an atom. Whenever x is being up-
dated, it will be locked. So other workers cannot read or
write it during the update. There are differences between
ASVRG-atom and the serial SVRG during the “read” step,
since when a thread has read x and is computing the gra-
dient, other threads might update it during this time. So the
gradient fik(x) might be computed from some early x in-
stead of the current one during the asynchronous updates.
We use xs

j(k) to denote the early state of x which is used for
calculating the gradient. Then the algorithm can be written
as Algorithm 2. The advantage of ASVRG-atom is that the
algorithm ensures the gradient to be calculated on a real state
of x. Namely, We have

xs
j(k) ∈ {xs

1,x
s
2, · · · ,xs

k}. (5)

ASVRG-wild

Now we describe ASVRG-wild, which is common in shared
memory multi-core systems. We consider the case where the
x is updated without locks, since the dimension of parame-
ters is often large in real problems. In practice, we only need
to change the steps (4) and (7) in Part II of ASVRG-atom
to

4) read x̃ from the global memory without locks.

7) update x̃s
k+1= x̃s

k − γvs
k without locks.

When x is updated without locks, it will cause inconsis-
tent read at the “read” step. Unlike SVRG-atom, the value of
x might not be a real state of x during the “read” step. Since
if one thread reads the x when other thread is updating it, the
thread will receive a “middle” state of x. Some coordinates
of x have been updated, while others have not. We still use
xs
j(k) to denote the state of x which is at the “read” time dur-

ing the k-th iteration and is used for calculating the gradient.
In this time, xs

j(k) might not belong to {xs
1,x

s
2, · · · ,xs

k}.
However, though x does not work as an atom, the update

on a single coordinate can be considered to be atomic on
GPU and Data Processing System (Niu et al. 2011), (Lian
et al. 2015). To characterize this asynchronous implementa-
tion, (Lian et al. 2015) then define the update on each single
coordinate of x and assume that the update order is random.
They finally model the wild update as a Stochastic Coordi-
nate Descent process. We do not follow their assumption.
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We still define the update on the whole vector x and directly
represent xs

j(k). Since the update on a single coordinate is
atomic, we have

xs
j(k) = xs

k −
k−1∑
l=1

γIk(l)

(
vs
j(l)

)
, (6)

where Ik(l) is an Rd → Rd function, indicating whether the
elements of vs

j(l) have been returned from the local memory
and written into x at the “read” step in the k-th iteration and
d is the dimension of the variable x. Suppose vs

j(l)(p) is the
p-th element of vs

j(l) with p ranging from 1 to d. We have

Ik(l)
(
vs
j(l)

)
(p)=

{
0, if vs

j(l)(p) has been returned,
vs
j(l)(p), otherwise. (7)

Then in this way, ASVRG-wild can also be formulated as
in Algorithm 2. One can find that Eq. (5) is actually a sim-
ply case of Eq. (6). So the difference between ASVRG-atom
and ASVRG-wild is that xs

j(k) satisfies both Eq. (5) and
Eq. (6) in ASVRG-atom, while xs

j(k) only satisfies Eq. (6)
in ASVRG-wild. By using Eq. (6), we provide a unified con-
vergence analysis for the two algorithm.

Convergence Analysis

In this section, we give a unified convergence analysis for
ASVRG-atom and ASVRG-wild. It mainly consists of three
parts. We first bound the variance of gradient in Lemma 1.
Then we analyse the convergence rate in two cases. The first
case ensures ASVRG to achieve linear speed up. In the sec-
ond case, we analyse the convergence rate with no assump-
tions. The proofs can be found in Supplementary Material2.

The most important value in the analysis of asynchronous
algorithms is the delay parameter τ . We define that all the
updates before the (k− τ −1)-th iteration have been written
into x at the “read” step of the k-th iteration. Thus Eq. (6)
can be rewritten as:

xs
j(k) = xs

k −
k−1∑

l=k−τ

γIk(l)

(
vs
j(l)

)
. (8)

τ actually indicates the number of processors that are in-
volved in computation. From Algorithm 2, we have 1 ≤ τ ≤
m.

To prove convergence, we need to bound the variance of
the gradient. In ASVRG, Eq. (4) changes to

E
(‖vs

j(k)‖2
)≤E

(‖∇f(xs
j(k)‖2

)
+L2

E
(‖xs

j(k) − xs
0‖2

)
. (9)

Then Lemma 1 builds the relation between xs
j(k) and xs

k.

Lemma 1. Suppose fi (i ∈ {1, 2, · · · , n}) have L-Lipschitz
continuous gradients, and x is updated as in Algorithm 2.
Then if the step size γ satisfies

γ ≤ min
1

L

⎧⎪⎨
⎪⎩

ρ1 − 1

2
√
2ρ1

√
ρ2

,
ρ2 − 1

2
√
2ρ

1
2
1 ρ

3
2
2

ρ
τ
2
1 −1√
ρ1−1

⎫⎪⎬
⎪⎭ , (10)

2Supplementary Material can be downloaded from:
http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm

for some ρ1 > 1 and ρ2 > 1, then for any s ≥ 0 and k ≥ 0,
we have

E
(‖∇f(xs

k)‖2
)
+ L2

E
(‖xs

k − xs
0‖2

)
≤ ρ1

[
E
(‖∇f(xs

k+1)‖2
)
+ L2

E
(‖xs

k+1 − xs
0‖2

)]
,(11)

and

E

(
‖∇f(xs

j(k))‖2
)
+ L2

E

(
‖xs

j(k) − xs
0‖2

)
≤ ρ2

[
E
(‖∇f(xs

k)‖2
)
+ L2

E
(‖xs

k − xs
0‖2

)]
. (12)

For ASVRG-atom, ρ2 can be set as ρτ1 if Eq. (11) is sat-
isfied, since xs

j(k) is some old value of xs
k. However, for

ASVRG-wild, it is not true. The proof of Lemma 1 has
two major distinctions. First, we analyse E

(‖∇f(xs
k)‖2

)
+

L2
E
(‖xs

k − xs
0‖2

)
, while the others (Liu et al. 2015),

(Hsieh, Yu, and Dhillon 2015), (Peng et al. 2015) only con-
sider E

(‖∇f(x)‖2) directly. Second, unlike (Lian et al.
2015), (Liu et al. 2015), (Hsieh, Yu, and Dhillon 2015), the
update in our algorithm is defined on the whole vector x and
our result does not depend on the dimension of the variable.
This is because that we use Eq. (8) to represent xs

j(k) and

carefully bound E

(
‖xs

k − xs
j(k)‖2

)
in the proof. Lemma 1

is the key result for analysing the convergence properties.
Now we demonstrate the convergence results. It uses the

technique of the proof in serial SVRG (Reddi et al. 2016).
The general results are shown in Theorems 1 and 2. We first
consider the case when ASVRG can achieve linear speed up.

Theorem 1. Suppose fi (i ∈ {1, 2, · · · , n}) have L-
Lipschitz continuous gradients, and x is updated as in Al-
gorithm 2. Assume that τ ≤ n

α
2 (0 < α ≤ 1). Set γ = μ

Lnα

with 0 < μ ≤ 1
8(e−1)e and m = �n3α/2�. Then we have

1

K

S−1∑
s=0

m−1∑
k=0

E
(‖∇f(xs

k)‖2
) ≤ nα(f(x0

0)− f(x∗))
Kν

, (13)

where K = mS, ν = 1
3μ, and f(x∗) is the minimal value

of f(x).

We rewrite the above results in terms of IFO calls in the
following corollary. The IFO calls have included the n IFO
calls to compute the full gradient for every m iterations.

Corollary 1. Suppose fi (i ∈ {1, 2, · · · , n}) have L-
Lipschitz continuous gradients and τ ≤ n

α
2 (0 < α ≤ 1).

With the parameters in Theorem 1, the IFO complexity of
Algorithm 2 for achieving an ε-accurate solution is:

IFO calls = O
(
nmax(α,1−α

2 )/ε
)
. (14)

Corollary 1 demonstrates the interplay between the step
size and the IFO complexity. The result is similar to the se-
rial SVRG (Reddi et al. 2016). When τ ≤ n1/3, the number
of IFO calls is minimized when α = 2/3 and it is O

(
n2/3

ε

)
.

This shows that ASVRG can achieve linear speed up (to the
stationary point) when τ ≤ n1/3.

Now we demonstrate the result with no assumption on τ .
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Theorem 2. Suppose fi (i ∈ {1, 2, · · · , n}) have L-
Lipschitz continuous gradients, and x is updated as in Algo-
rithm 2. Set γ = μ/(Lnατβ) (0 < μ ≤ 1

8(e−1)e , 0 < α ≤ 1,

and 0 < β ≤ 1) and m = �n 3α
2 τ

3β−1
2 �. Then we have

1

K

S−1∑
s=0

m−1∑
k=0

E
(‖∇f(xs

k)‖2
) ≤ nατβ(f(x0

0)− f(x∗))
Kν

, (15)

where K = mS and ν = 1
3μ.

Corollary 2. Suppose fi (i ∈ {1, 2, · · · , n}) have L-
Lipschitz continuous gradients. With the parameters in The-
orem 2, the IFO complexity of Algorithm 2 for achieving an
ε-accurate solution is:

IFO calls = O
(
nmax(α,1−α

2 )τmax(β, 1−β
2 )/ε

)
. (16)

From Corollary 2, the number of IFO calls is minimized
when α = 2

3 and β = 1
3 , which is O

(
n2/3τ1/3

ε

)
. Since

τ ≤ m = n, n2/3τ1/3 ≤ n. This shows that with asyn-
chronous updating, SVRG still has a less number of IFOs
when compared with GD.

The following theorem gives a probability estimate on the
convergence of Algorithm 2.

Theorem 3. Suppose fi (i ∈ {1, 2, · · · , n}) have L-
Lipschitz continuous gradients, and x is updated as in Al-
gorithm 2. Then for ε > 0 and η ∈ (0, 1) and K = Sm, we
have the probability

P
(

1

K

S−1∑
s=0

m−1∑
k=0

‖∇F (xs
k)‖2 ≤ ε

)
≥ 1− η, (17)

provided that one of the following conditions holds: when
τ ≤ nα/2, we require

K ≥ nα
(
F (x0)− F (x∗)

)
νεη

, (18)

and the parameters are chosen as in Theorem 1, while there
is no assumption on τ , we need

K ≥ nατβ
(
F (x0)− F (x∗)

)
νεη

, (19)

and the parameters are chosen as in Theorem 2.

Distinguished from the analysis of ASGD (Lian et al.
2015), we do not assume that the update order on coordi-
nates is random in the “wild” scheme and give unified proofs
for the two schemes. For ASGD, the convergence rate is
only an asymptotic O

(
1
ε2

)
. We show that with the VR trick,

ASGD can be accelerated to a non-asymptotic O(n
2
3

ε ) con-

vergence rate when τ ≤ n
1
3 and a non-asymptotic O(n

2
3 τ

1
3

ε )
convergence rate where there is no assumption on τ . When
compared with the serial SVRG, ASVRG can achieve linear
speed up when τ ≤ n

1
3 and also has less number of IFOs

than GD when there is no assumption on τ .

Experiments

In this section, we conduct experiments on a shared mem-
ory multi-core system to validate the efficiency of our al-
gorithm empirically. We directly show the experimental re-
sults of ASVRG-wild as it is faster and more suitable for the
shared memory multi-core system. We also test the speedup
property of ASVRG-atom, which is shown in Supplemen-
tary Material. Due to the locks, it is slower than ASVRG-
wild. Our experiments consist of two parts. The first part
aims to validate the speedup property. In the second part,
we do a similar experiment to that in (Lian et al. 2015) to
compare our algorithm with ASGD to show the superiority
of our algorithm in speed. Since the advantages in speed for
asynchronous algorithms over synchronous algorithms have
been widely witnessed in many literatures (Hsieh, Yu, and
Dhillon 2015), (Agarwal and Duchi 2011), (Niu et al. 2011),
we ignore the experiment of comparing our algorithm with
synchronous SVRG. Due to much more locks, synchronous
SVRG is slower than ASVRG-atom. For a fair comparison,
we implement all methods in C++ using POSIX threads as
the parallel programming framework. All the experiments
are performed on an Intel multi-core 4-socket machine with
128 GB memory. Each socket is associated with 8 computa-
tion cores. A variant that we adopt in experiments is that we
implement all the algorithms in a mini-batch mode, which is
a common implementation in neural networks. The conver-
gence analysis for ASVRG can be extended to this mode.

Following (Lian et al. 2015), we focus on two types of
speedup: iteration speedup and running time speedup. The
iteration speedup is exactly the speedup we discussed in the
whole paper. Given T workers, it is computed as

iteration speedup =
# of itertions using one worker
# of iterations using T workers

× T,

where # is the iteration count when the same level of preci-
sion is achieved. This speedup is less affected by the hard-
ware. The running time speedup is the actual speedup. It is
defined as:

running time speedup =
total running time using one worker
total running time using T workers

.

The running time speedup is seriously affected by the hard-
ware. It is less objective than the iteration speedup.

Speedup Experiment

We experiment on the problem of multiclass classification
using neural networks. It is a typical nonconvex problem in
machine learning.

Experimental Setup. Following (Reddi et al. 2016), we
train a neural network with one fully connected layer of 100
nodes. We experiment on two dataset: MNIST dataset3 and
CIFAR10 dataset (Krizhevsky and Hinton 2009). Both the
two datasets have ten classes. They are widely used for test-
ing neural networks. More details about the datasets can be
found in Table 2. The data are normalized to the interval
[0, 1] before the experiment. An additional experiment in

3http://yann.lecun.com/exdb/mnist/
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(c) Loss vs. iteration on CIFAR10
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(d) Loss vs. time on CIFAR10

Figure 1: Results of the speedup experiment. For curves of loss against iterations, the horization axis is the number of effective
pass through the data, which has included the cost of calculating full gradients for SVRG.

Table 2: More details about MNIST and CIFAR10.
Datasets Type # Images # Params
MNIST 28× 28 grayscale 60K 79.5K

CIFAR10 32× 32 RGB 50K 308.3K

Table 3: Iteration and running time speedup over SVRG on
MNIST and CIFAR10. (Thr- and Iter, are short for thread
and iteration, respectively.).

thr-1 thr-4 thr-8 thr-12 thr-16 thr-20

Mnist
iter. 1 3.94 7.55 11.85 15.53 19.28
time 1 3.59 6.47 9.97 11.44 12.58

Cifar
iter. 1 4.01 7.92 12.15 15.59 19.31
time 1 3.96 6.87 10.31 13.02 14.53

which we train a neural network with 7 layers on MNIST
is shown in Supplementary Material.

Parameters and Initialization. For SVRG, we choose a
fixed step size, and choose γ that gives the best performance
on one core. When there are more than one core, the step size
does not change. For SGD, the step size is chosen based on
(Reddi et al. 2016), which is γt = γ0(1+γ′�t/n�)−1, where
γ0 and γ′ are chosen to give the best performance. We use
the normalized initialization in (Glorot and Bengio 2010),
(Reddi et al. 2016). The parameters are chosen uniformly
from [−√

6/(ni + no),
√

6/(ni + no)], where ni and no

are the numbers of input and output layers of the neural net-
works, respectively. We choose a mini-batch size to be 100,
which is a common setting in training neural networks.

Results. We draw the curves of objective loss against iter-
ations and running time in Figure 1, and report their speedup
in Table 3. From the results, we obtain the following conclu-
sions. First, the linear speedup is achievable through iter-
ation speedup. Second, due to the hardware, time speedup
is lower than iteration speedup. Third, ASVRG still has an
obvious actual (time) speedup when compared with serial
SVRG, e.g., there are 12 times speedup on 20 cores.

Efficiency Validation

To demonstrate the efficiency of our ASVRG, we do a sim-
ilar experiment to that in (Lian et al. 2015) to compare with
ASGD. Following (Lian et al. 2015), we generate the syn-

thetic data from a fully connected neural network with 5
layers (400 × 100 × 50 × 20 × 10) and 46, 380 parame-
ters totally. The input vector and all parameters are gener-
ated from N (0, 1) Gaussian distribution. The output vector
is constructed by applying the network parameter to the in-
put vector plus some Gaussian random noise. We generate
40, 000 samples.

Like (Lian et al. 2015), we focus on �2 norm of the gra-
dients. The parameters in the two algorithms are tuned on
12 cores to give the best results. For ASGD, we choose the
mini-batch size to be 50, and the step size to be 10−4, which
we find is better than the setting used in (Lian et al. 2015).

Figure 2 draws the curves of ‖∇f(x)‖2 against running
time using 8, 12, 20 cores, respectively. Like serial SVRG,
ASVRG is not faster at the early stage when compared with
ASGD. But after dozens of epochs, the norm of gradient by
ASVRG decreases faster. This demonstrates that ASVRG
has a faster convergence rate than ASGD does.

Conclusion

This paper proposes an asynchronous variant of SVRG on
nonconvex problems. We give the condition on the delay pa-
rameter τ to make the asynchronous algorithm achieve lin-
ear speed up. We also analyse the convergence rate with no
assumption on τ . We experiment on a shared memory multi-
core system to demonstrate the efficiency of the proposed
ASVRG algorithm.
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