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Abstract

Logic-based Benders decomposition (LBBD) is a powerful
hybrid optimisation technique that can combine the strong
dual bounds of mixed integer programming (MIP) with the
combinatorial search strengths of constraint programming
(CP). A major drawback of LBBD is that it is a far more in-
volved process to implement an LBBD solution to a problem
than the ”model-and-run” approach provided by both CP and
MIP. We propose an automated approach that accepts an arbi-
trary MiniZinc model and solves it using LBBD with no ad-
ditional intervention on the part of the modeller. The design
of this approach also reveals an interesting duality between
LBBD and large neighborhood search (LNS). We compare
our implementation of this approach to CP and MIP solvers
on 4 different problem classes where LBBD has been applied
before.

1 Introduction

Logic-based Benders decomposition is among the most ef-
fective approaches for finding optimal solutions to complex
configuration and scheduling tasks, frequently two or three
orders of magnitude faster than pure MIP or CP approaches
(Hooker and Ottosson 2003).

The essence of logic-based benders decomposition is to
take the problem P , and derive a relaxed master PM (typi-
cally a MIP) which relaxes or omits some constraints in P ,
and a set of independent subproblems P1, . . . , Pk such that
P ↔ PM ∧ P1 ∧ · · · ∧ Pk. The master solves PM and the
solution μ is checked by each subproblem solver for Pi. If μ
does not satisfy Pi a cut is added to the master to eliminate
μ and othe solutions which will not satisfy Pi for the same
reason.

However, designing a concrete instantiation of this frame-
work is typically nontrivial. The first difficulty is in choos-
ing the relaxation PM . If the master omits important con-
straints entirely, the candidate solutions are too optimistic,
and the method converges slowly. Conversely, if the con-
straint is not substantially relaxed, solving the master be-
comes unmanageable (effectively regressing to a pure MIP
approach).

A second issue is the extraction of feasibility cuts from
infeasible subproblems. Logic-based Benders cuts are typ-
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ically couched in terms of the inference dual (Hooker and
Ottosson 2003). However typical subproblem solvers (in
particular, classical CP solvers) do not provide sufficient in-
formation to reconstruct a compact justification of failure, so
in practice cuts are derived by exploiting the independence
of the subproblems and knowledge of their structure (Ciré,
Coban, and Hooker 2013).

In this paper, we present a fully automatic approach for
solving constrained optimization problems via logic-based
Benders decomposition. The automated decomposition di-
verges from typical instances of logic-based Benders de-
composition in a key respect: it constructs only a single
complete ‘subproblem’. Rather than explicitly decompos-
ing our problem into independent subproblems (either man-
ually or heuristically), we instead rely on the conflict analy-
sis capabilities of lazy clause generation solvers to identify
relevant subsystems.

Though this approach makes the subproblem consider-
ably more difficult, it offers several advantages. Unlike clas-
sical LBBD, it can cope with subsystems which are not fully
disjoint. There is no need to design problem- or objective-
specific cuts; cut derivation is entirely generic. And while
generating cuts, the subproblem solver also acts as a primal
heuristic.

This formulation reveals an interesting duality. From the
perspective of the MIP solver, this is an instance of logic
based Benders decomposition where the subproblem solver
doubles as a primal heuristic. But from the perspective of
the CP solver, our framework is an instance of large neigh-
borhood search (LNS) (Pisinger and Ropke 2010) – the MIP
proposes promising candidate regions, which the CP solver
progressively explores and expands – in which the neigh-
borhood selection heuristic also supplies valid lower bounds.
We will refer to the search space implied by a set of assump-
tions as a neighborhood throughout this paper.

The contributions of this paper are as follows:

• A variant of logic-based Benders decomposition which
reveals a duality between LBBD and large-neighborhood
search (LNS)

• An automated approach for applying LBBD techniques to
arbitrary constraint models

• A simple way of integrating traditional CP optimisation-
as-repeated-satisfaction into the LBBD framework.
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2 Preliminaries

2.1 Constraint Programming and Lazy Clause
Generation

Constraint programming (CP) systems solve a problem of
the form ∃V.D ∧C, D is a conjunction of unary constraints
(a domain) constraining each integer variable1 v ∈ V to take
a finite set of values, and C is an arbitrary collection of con-
straints on variables V . A domain D that entails a single
value for each variable in V is a valuation which we denote
by μ. We use notation μ(v) to return the value of variable
v given by valuation μ. Each constraint c ∈ C is imple-
mented using a propagator which given a domain D infers
new unary constraints d which must hold, i.e. D ∧ c → d.
The domain is then updated to D′ = D ∧ d. Failure is de-
tected if d = false. Success is detected if D′ is a valuation
(under reasonable assumptions about the strength of prop-
agator inferences). Otherwise when no further inference is
possible, the system guesses a new unary constraint l, and
recursively considers the two systems ∃V.(D ∧ l) ∧ C and
∃V.(D ∧ ¬l) ∧ C.

A lazy clause generation (LCG) solver in addition tracks
the reasons for its inferences. For each inference D∧ c → d
it stores a reason clause d1 ∧ · · · ∧ dn → d which is a con-
sequence of c, that explains the inference. When failure is
detected it uses the reasons to construct a nogood by resolu-
tion which explains the failure. The nogood is then added to
the solver to prevent the same failure re-occuring.

An LCG solver can be extended to support an assumption
interface. Given a set of unary constraint assumptions μ the
solver solves ∃V.(D ∧ μ) ∧ C. If the solver determines the
problem has no solution it can return a clause of the form
μ1 ∧ · · · ∧ μn → false where μi ∈ μ, that explains which
assumptions were responsible for the failure, i.e. such that
∃V.(D ∧ μ1 ∧ · · · ∧ μn) ∧ C is unsatisfiable.

2.2 The MINIZINC solver pipeline

MINIZINC (Nethercote et al. 2007) is a high-level declara-
tive modeling language for constrained optimization prob-
lems. Underlying solvers typically do not support MINIZ-
INC directly. Instead, an instance of the high-level MINIZ-
INC model is compiled down to a simpler FLATZINC. Dur-
ing this flattening step, existential quantification and com-
plex Boolean structure are eliminated. Each solver provides
a library of predicate definitions to control this flattening;
global constraints are handled in one of three ways:

• If the solver provides a declaration but no definition, the
constraint call is passed directly to the solver.

• If a definition for the predicate is provided, the definition
is expanded (and recursively flattened).

• Otherwise, the default flattening is expanded.

This flattened model is then fed to the solver, paired with
directives for formatting output. This architecture provides
a uniform framework for allowing high-level model speci-
fications while exploiting the heterogeneous capabilities of
different solvers.

1Here we treat Boolean variables as 01 integers.

In Section 3, we shall demonstrate how to (mis-)use this
framework to support a logic-based Benders approach.

2.3 Classical and Logic-based Benders
Decompositions

Logic-based Benders decomposition (Hooker and Ottosson
2003) replaces the linear programming dual used in classi-
cal benders decomposition with the more general inference
dual – the problem of inferring the tightest objective bound
from a set of constraints, its solution being a proof of the
optimal bound. This proof is then translated into a sound
bounding function suitable for addition to the master – in
the case of a MIP master problem, the optimality proof must
be translated into one or more linear inequalities over vari-
ables occurring in the master. Unfortunately, most subprob-
lem solvers cannot provide information to reconstruct the
inference dual, supplying only the primal solution. In this
case, it is common to instead design specialized cuts based
on problem structure, identifying some subset E of assign-
ments to shared variables such that f(E) ≤ z. In contrast,
we use a clausal cut of the form: E → false (or equiva-
lently E → [[z > k]] in place of optimality cuts), these cuts
are explained in more detail in section 3.1.

2.4 Cut strengthening and MUS construction

Without explicit dual information, the generated Benders
cuts are quite coarse. These may then be strengthened, using
the subproblem solver as a feasibility oracle – progressively
discarding assumptions, and checking that the (now relaxed)
subproblem remains infeasible.

When the master assignment is viewed as a conjunction of
propositions, this “cut strengthening” process corresponds
exactly to minimal unsatisfiable subset (MUS) construction:
given an unsatisfiable conjunction C of constraints, identify
one or more minimal subsets C ′ ⊆ C which preserve infea-
sibility.

MUS construction arises in various contexts, and has
received particular attention in SAT and CP (Dershowitz,
Hanna, and Nadel 2006a; Liffiton and Malik 2013; Junker
2004; Hemery et al. 2006). As in the LBBD case, SAT
MUS construction algorithms use a decision procedure (here
a SAT solver) as an oracle, repeatedly choosing P ⊂ C and
testing satisfiability of C \ P until an MUS has been iden-
tified. These algorithms differ in their strategy for choos-
ing subsets to test – sequential (Bakker et al. 1993), di-
chotomic (Felfernig, Schubert, and Zehentner 2012) and
geometric progression (Marques-Silva, Janota, and Belov
2013) strategies have been proposed. One general re-
finement to these approaches, clause-set refinement (Der-
showitz, Hanna, and Nadel 2006b), is directly applicable to
the CP case.

Clause-set refinement exploits the capability of SAT
solvers to return an unsatisfiable core. When a query C \ P
returns UNSAT(C ′) (showing there is some MUS exclud-
ing P ), MUS construction may simply replace C \ P with
C ′ before continuing.

Figure 1 illustrates a sequential approximate MUS algo-
rithm, with clause-set refinement and resource limits.
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MUS-seq(C, lim)
M := ∅; U := ∅
while(∃c ∈ C)

C := C \ c
case(is-sat(M ∪ U ∪ C, lim))

[SAT]:
M := M ∪ {c};

[UNSAT(C ′)]:
C := C ∩ C ′
U := U ∩ C ′

[UNKNOWN]:
U := U ∪ {c}

return M ∪ U

Figure 1: Pseudo-code for sequential MUS construction
with conflict-set refinement and resource limits. M contains
those propositions definitely in the MUS, and U those which
could not be eliminated. We may terminate this procedure
at any time, returning M ∪ U ∪ C as an unsatisfiable core.

MZN model FZN model

MIP solver

CP solver

Constraint definitions

Linear constraints

All constraints

μ C

Figure 2: Architecture of the automatic Logic-based Ben-
ders Decomposition.

3 Automating Logic-based Benders

Decomposition

The key idea behind this approach is quite simple, and is
shown in Figure 2. During flattening, any constraints not
supported by a solver are replaced by an equivalent (mod-
ulo introduced variables) solver-specific decomposition. If
we discard any subset of these constraints, what remains is
necessarily a valid relaxation.

The master problem M is constructed directly from the
existing flattened model, retaining those constraints for
which compact encodings exist – primarily ELEMENT and
(reified) LINEAR constraints – and discarding the rest of the
model.

Similarly, we do not attempt to identify independent sub-
problems, or partition variables between master and sub-
problem. The single “subproblem” S consists of the full
flattened model, and the master and subproblem are solved
over all variables appearing in any master constraint; and all
variables respectively.

The high-level LBBD procedure is shown in Figure 3: we
first solve the master M to optimality, then try to extend the
partial solution μ to a full solution μ∗ of the subproblem S.
We then extract and minimize one or more cuts C ′ from the

solve-lbbd(obj ,M, S):
μ∗ := ⊥
while(solve-master(M ) = SAT(μ))

S := S ∧ [[obj ≥ μ(obj)]]
case(solve-assume(S, μ, μ∗))

[UNSAT(∅, μ∗)]
return(μ∗)

[UNSAT(C, μ∗)]
X := ∅
while(solve-lim(S, μ \X,μ∗) = UNSAT(C, μ∗))

(C ′, μ∗) := minimize-cut(S,C, μ∗)
M := M ∧ (C ′ → false)
if(C ′ = ∅) return(μ∗)
M := M ∧ [[obj < μ∗(obj)]]
X := X ∪ C ′

Figure 3: Pseudo-code for Logic-based Benders decompo-
sition with a complete subproblem.

subproblem and re-solve the (now tighter) master. We use
X to track literals that have appeared in any clause so far,
and omit these from subsequent solves to guarantee cuts are
independent. Note: μ, μ∗, C and C ′ are all sets of bounds
literals, and μ and μ∗ are valuations.

The subproblem solve solve-assume(S, μ, μ∗) takes the
constraints S and assumptions μ and the current best solu-
tion μ∗ and optimizes the objective. This means the sub-
problem never returns SAT, but instead always returns a (po-
tentially new) μ∗, as whenever a new model μ∗ is found, it
is immediately invalidated by adding a new constraint to S:
[[obj < μ∗(obj)]]. Consequently the termination condition
is different to traditional LBBD: search terminates when the
master fails (typically after being returned an empty cut).

This exploits CP optimisation: If a new incumbent is
found, we may now tighten the objective bound in both the
master and subproblem in the hope that the subproblem can
utilize this bounds information to generate more succinct
cuts. In particular, the subproblem can generate an empty
cut as soon as it finds any model with an objective equal to
the lower bound.

In classical LBBD, the master can be seen as incremen-
tally building a MIP model representing a projection of
the problem onto the master variables. By adding these
objective-based cuts, and allowing the sub-problem to use
them to simplify its cuts, we can instead view the master as
building a projection of the subset of solutions strictly better
than the incumbent. The while loop represents an approx-
imation of looping over subproblems, described more fully
in Section 3.3.

3.1 Deriving and encoding cuts

In the above formulation, we have not explicitly decom-
posed the CP model into disjoint subproblems; indeed, the
subproblem is exactly the model that would be used to solve
the problem with a direct CP approach.

Using a classical CP solver, this is not an ideal approach;
the solver cannot readily pinpoint the unsatisfiable sub-
problem. However, conflict directed clause learning allows
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the solver to identify potentially infeasible subsystems, and
activity-driven search heuristics direct the solver to explore
those subsystems.

The LCG subproblem detects infeasibility when it is
forced to backtrack past the most recent assumption. From
the final conflict, we can traverse the implication graph (in
the same manner as conflict analysis) to derive a cut C of the
form [[x1 ≥ k1]] ∧ · · · ∧ [[xn < kn]] → false consisting only
of (possibly relaxed) assumptions. This can be added to the
master as: (1 − [[xi ≥ ki]]) + · · · + (1 − [[xn < kn]]) ≥ 1.
If these cuts happen to be over Boolean variables, then no
further action is needed, but for more general cuts such (e.g.
[[x > 30]]∧ [[y ≤ 10]] → false), we must first introduce fresh
Boolean variables encoding these atoms.

In the case that all bounds literals from the lower to up-
per bound have been instantiated, these new literals can be
encoded in the MIP by the following constraints:

[[x ≥ k + 1]] ≥ [[x ≥ k]] ∀k ≥ lb (1)

x = lb(x)+

ub(x)∑

i=lb(x)+1

[[x ≥ i]] (2)

However it is desirable to be able to lazily generate these
bounds literals only when they appear in some cut. Con-
sequently we define upper and lower bounds for equation 2
which are correct for any subset B of bounds literals belong-
ing to variable x. Assume B = {[[x ≥ k1]], · · · , [[x ≥ kn]]},
and ki < ki+1, and let k0 = lb(x) and kn+1 = ub(x).

x ≥ k0 +

n∑

i=1

(ki − ki−1)[[x ≥ ki]] (3)

x ≤ k1 − 1 +

n∑

i=1

(ki+1 − ki)[[x ≥ ki]] (4)

When B is the full set of bounds literals, we can see that
the RHS of both equation 3 and equation 4 converge to the
RHS of equation 2. The encoding is revised as fresh bounds
are introduced as adding additional bounds literals can only
tighten the inequalities. Observe that this encoding permits
x to take values between introduced bounds.

3.2 Cut minimization

The nogoods (C → false) derived by the LCG solver will
typically involve only a small subset of problem variables
– in the case of independent subproblems, the nogoods will
refer to only one subproblem. These form valid cuts, but
are not necessarily minimal. These cuts can be reduced
by applying any of the MUS construction approaches out-
lined in Section 2.4, we use MUS-seq (Figure 1). This
achieves much the same effect as the cut strengthening out-
lined by (Hooker 2007).

Here we see some side-effects of subproblem complete-
ness. During cut minimization, the subproblem solver may
find a model μ∗. As we have only a single complete sub-
problem containing all the constraints, this model is a feasi-
ble solution to the overall problem.

We can then add a constraint to the subproblem constrain-
ing the objective to be strictly better than this new solution,

potentially allowing the cut to be further simplified. An in-
teresting side effect is that during cut minimization the sub-
problem solver will find new incumbent solutions, tighten
the objective bound and continue searching until it either
proves no solutions better than the new incumbent exist in
this neighborhood or it exceeds its resource budget. Con-
sequently, if the subproblem solver were executed with an
unbounded resource limit, it would always return an empty
cut (essentially just running the LCG solver to completion).
In the algorithm of Figure 1, this means we never positively
identify a bound as being in the MUS; instead, constraints
may always be eliminated by a later conflict.

3.3 Deriving multiple independent cuts

Typically in LBBD, each subproblem can be used to learn a
cut per iteration. We approximate this using the observation
that a minimal cut often contains variables exclusively from
one subproblem. Thus, after obtaining a cut C → false, we
attempt to generate additional independent cuts by removing
all assumptions which occur in C, and asking the CP solver
for a new cut over the remaining assumptions. It is possible
that this process will learn multiple independent cuts from
the same subsystem before moving on to the next, however
it is not obvious that this is a bad thing.

Similar to cut minimization, it is necessary to limit the re-
source budget of the subproblem solver (solve-lim), as the
search space implied by the reduced set of assumptions can
become arbitrarily large, and the while loop only stops gen-
erating cuts when the subproblem solver returns UNKNOWN
or an empty cut.

3.4 Cut generation as large neighborhood search

As we noted in Section 1, removing assumptions corre-
sponds to growing the neighborhood explored by the sub-
problem. In both cut-minimisation, and multiple cut gen-
eration, we remove assumptions that caused failure from
the initial neighbourhood generated by the MIP. This leads
to an exploration strategy similar to explanation-based
LNS (Prudhomme, Lorca, and Jussien 2014).

The number of assumptions provided to the subproblem
solver will vary hugely during the solving process, so we
rely on the resource limits to prevent long-tailed solve times.
So long as one cut is generated then the MIP is guaranteed
to generate a different solution, and the search space will be
fully explored eventually. Since the initial solve given the
full MIP assignment is run without any limit, this is guaran-
teed to terminate eventually.

4 Experimental Evaluation

We have implemented the described approach, modifying
the assumption interface of CHUFFED, a lazy clause genera-
tion solver, to report feasibility cuts.

We evaluated the approach on several sets of schedul-
ing problems, described below. For each class, we
tested Chuffed (CP) (Chu 2011), Gurobi 6.5 (MIP) (Gurobi
2016) and our logic based Benders decomposition approach
(LBBD). For LBBD, cut minimization was run with a budget
of 512 conflicts, after which the current cut was returned.
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The problem classes we consider are described in the next
four paragraphs. In each case identical MiniZinc models
were provided to each solver.

Planning and Scheduling This problem requires schedul-
ing independent tasks on a set of machines with capac-
ity limits, and machine-dependent task durations. These
instances have been used to evaluate the effectiveness of
logic-based Benders decomposition in a number of prior
works (Hooker 2007; Heinz, Ku, and Beck 2013; Ciré,
Coban, and Hooker 2013), minimizing cost, makespan or
tardiness. We report on models minimizing cost (PS-cost)
and makespan (PS-makespan) in our results tables.

Alternative Resource Scheduling with Sequence Depen-
dent Setups This problem, like the planning and schedul-
ing problem, requires scheduling independent tasks on a set
of machines. However machines cannot run tasks in par-
allel, and tasks require setup time which varies with ma-
chine and preceding task. The LBBD approach of Tran and
Beck (2012) separates the machine allocation from schedul-
ing, resulting in a per-machine TSP which is solved with
a dedicated TSP solver. There are 3 subclasses of this
benchmark: production-dominated (ARS-p-dom), setup-
dominated (ARS-s-dom), and balanced (ARS-balanced).

Single-source capacitated plant location problem The
SSCPLP (Barcelo, Fernandez, and Jörnsten 1991) is a dis-
crete plant location problem, where each customer is as-
signed to a single facility, such that the combined cost of
open facilities and customer service is minimized. This is
not an ideal candidate for LBBD, having a natural MIP en-
coding, but an LBBD approach in which the master decides
which plants to open and the subproblem assigns customers
to plants is similar to the classical benders approach which
has been used for variants of this problem (Geoffrion and
Graves 1974). The SSCPLP is also interesting as it is the
basis for the following problem.

Capacity- and distance-constrained plant location prob-
lem The CDCPLP (Albareda-Sambola, Fernández, and
Laporte 2009) extends the SSCPLP, adding a fleet of
distance-limited vehicles required to service customers. An
LBBD approach was presented in (Fazel-Zarandi and Beck
2011) which allocates customers to facilities in the master,
leaving a bin-packing subproblem per facility to be solved
with a CP solver (after first trying a greedy heuristic).

Results Table 1 compares our LBBD approach (using
Gurobi 6.5 and Chuffed) to MIP (Gurobi 6.5) and CP
(Chuffed) on 3 metrics: average solution quality; average
time to prove optimality; and the number of instances proved
optimal, for each of the benchmark sets described above.

We can see in Figure 4 that Chuffed performs very well on
some small instances, but for a time-budget of over 13 sec-
onds, LBBD is the fastest to prove optimality of the 3 tech-
niques tested. This is supported by Table 1, where we see

Figure 4: Solutions proved optimal vs time

that LBBD is both fastest on average to prove optimality, and
proves the largest number of instances optimal.

In addition to LBBD’s expected strength at proving op-
timality, Table 1 shows that our implementation (including
the LNS primal heuristic which naturally occurs from our
single-subproblem formulation) makes for an excellent pri-
mal solver, finding higher quality solutions on average than
both other techniques.

Solution quality obtained by a solver s for each instance i
is defined to be ctbp(i)/cs(i) where cs(i) is the objective of
the best solution to instance i found by s in the time limit,
and tbp is the theoretical best portfolio of all 3 solvers. We
report this as a percentage, which can be seen as a ratio of the
performance of the theoretical best portfolio of the 3 solvers.
We see that our approach achieves 95% of the performance
of the theoretical best portfolio, giving us the best of both of
these contrasting optimisation technologies.

However our approach is more than just a portfolio, in
Figure 5 we can see that many optimality proofs are faster
using our LBBD approach than MIP or CP. In particular note
the 79 instances which were only proved optimal by LBBD.

Table 2 examines the hard “c” instances from the plan-
ning and scheduling benchmarks in detail. These instances
are some of the most studied in the LBBD literature (Hooker
2007; Heinz, Ku, and Beck 2013; Ciré, Coban, and Hooker
2013; 2015), and this table is designed to be reasonably com-
parable to tables in previous work (Ciré, Coban, and Hooker
2013; 2015). Our experiments use a much shorter time limit
than those papers, however we can still make broad com-
parisons: most notably Chuffed performs much better than
the traditional CP approaches considered in previous work.
To our knowledge, this is the first time a LBBD approach
has been directly compared with an LCG CP solver. This
strong performance may suggest that the clausal learning of
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Quality % Time Num. Optimal
Count LBBD MIP CP LBBD MIP CP LBBD MIP CP

PS-makespan 335 100.0 57.4 89.0 61.7 369.4 101.3 311 +25 150 286
PS-cost 335 100.0 80.7 88.8 95.7 400.1 122.3 301 +29 131 281
SSCPLP 57 89.9 100.0 72.6 271.9 95.8 589.6 34 +0 50 1
CDCPLP 300 73.2 99.8 57.0 424.4 426.7 597.3 99 +23 140 3
ARS-balanced 270 100.0 100.0 83.6 144.3 47.0 180.1 224 +0 269 211
ARS-p-dom 270 100.0 100.0 83.6 106.8 73.9 179.9 255 +2 261 206
ARS-s-dom 270 100.0 100.0 72.9 207.0 100.7 265.8 189 +0 253 171
Total 1837 95.3 88.7 79.3 173.8 245.6 248.6 1413 +79 1254 1159

Table 1: Quality score, mean runtime, and number of instances proved optimal in 600s.
+N indicates LBBD solved N instances unsolved by either MIP or CP.

Figure 5: Performance of the the theoretical best portfolio
with and without LBBD. 79 instances were solved by LBBD
but neither MIP nor CP.

LCG, and cut-generation in LBBD have similar strengths. It
is also interesting to note that the custom LBBD solver of
Ciré, Coban, and Hooker (2015) was only able to solve 6
more instances in 2 hours than our LBBD approach solved
in 10 minutes.

5 Conclusion and Further Work

We have introduced the first “model-and-run” LBBD solver,
which additionally uses a natural LNS-like primal heuristic.
This solver may not be able to outperform all custom LBBD
implementations, e.g. ARS with a dedicated TSP solver, but
can tackle any problem with no additional implementation
cost. The resulting hybrid combines the strengths of MIP
and CP and can be superior to both of them on appropriate
problems.

One important feature of many LBBD solvers that we
have not addressed is relaxations of the subproblem encoded
in the master, especially using continuous variables. We ex-

pect this can be achieved by defining relaxations for global
constraints using fresh variables (which cannot then cause
conflict in the subproblem). We expect these to be impor-
tant for evaluating this approach against a broader array of
benchmarks.
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3m-20j 5 0 5 2.686 — 4.392
3m-22j 5 0 4 4.476 — 125.788+
3m-24j 5 0 5 17.948 — 70.838
3m-26j 5 0 3 44.138 — 251.972+
3m-28j 5 0 2 67.198 — 404.374+
3m-30j 2 0 2 405.072+ — 476.176+
3m-32j 3 0 1 421.492+ — 597.066+
4m-10j 5 5 5 0.294 15.592 0.19
4m-12j 5 5 5 0.392 35.982 0.246
4m-14j 5 4 5 0.608 188.058+ 0.294
4m-16j 5 5 5 0.94 213.0 0.618
4m-18j 5 1 5 1.452 560.298 0.62
4m-20j 5 0 5 2.534 — 1.272
4m-22j 5 0 5 5.622 — 13.858
4m-24j 5 0 4 34.734 — 127.848+
4m-26j 5 0 4 119.762 — 158.276+
4m-28j 5 0 5 168.614 — 29.424
4m-30j 3 0 3 411.584+ — 380.55+
4m-32j 3 0 5 361.884+ — 326.076

Table 2: Planning and Scheduling “c” instances: “Xm-Yj”
schedules Y jobs over X machines.
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