
A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis

Mingyu Xiao,† Weibo Lin,† Yuanshun Dai,† Yifeng Zeng‡
† School of Computer Science and Engineering,

University of Electronic Science and Technology of China, China
‡ School of Computing, Teesside University, UK

Abstract

A clique model is one of the most important techniques
on the cohesive subgraph detection; however, its appli-
cations are rather limited due to restrictive conditions
of the model. Hence much research resorts to k-plex - a
graph in which any vertex is adjacent to all but at most
k vertices - which is a relaxation model of the clique. In
this paper, we study the maximum k-plex problem and
propose a fast algorithm to compute maximum k-plexes
by exploiting structural properties of the problem. In an
n-vertex graph, the algorithm computes optimal solu-
tions in cnnO(1) time for a constant c < 2 depending
only on k. To the best of our knowledge, this is the
first algorithm that breaks the trivial theoretical bound
of 2n for each k ≥ 3. We also provide experimental re-
sults over multiple real-world social network instances
in support.

Introduction

In computational social networks, finding a large cohesive
subgraph is an extensively studied topic with a large num-
ber of applications. Clique is one of the earliest and most
commonly used models in the field of cohesive subgraphs
detection. A clique is a graph with an edge between any
pair of vertices, which can be regarded as the most cohesive
graph. The MAXIMUM CLIQUE problem, to find a clique
of maximum size in a graph, is a fundamental problem in
graph algorithms not only having great applications in social
networks but also finding applications in ad hoc wireless net-
works (Chen, Liestman, and Liu 2004), data mining (Washio
and Motoda 2003), biochemistry and genomics (Butenko
and Wilhelm 2006), and many others.

Due to its overly restrictive (Alba 1973) and modeling dis-
advantages (Freeman 1992), the clique has been challenged
by many practical problems. Alternative approaches were
suggested that essentially relaxed the definition of cliques.
Researchers have relaxed a variety of clique properties in-
cluding familiarity, reachability, and robustness (Balasun-
daram, Butenko, and Hicks 2011). In graph theoretic terms,
these properties correspond to vertex degree, path length,
and connectivity respectively. This paper focuses on a re-
laxation model of clique by relaxing its familiarty restriction

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

known as a k-plex (Seidman and Foster 1978). A simple
undirected graph with n vertices is a k-plex if the degree of
each vertex of the graph is at least n − k. When k = 1, a
1-plex is a clique. In the MAXIMUM k-PLEX problem, we
aim to find a maximum vertex subset S of a given graph such
that the subgraph G[S] induced by S is a k-plex.

The applications and research on k-plex receive grow-
ing attention such as using k-plex to analyze social net-
works of terrorists (Krebs 2002), clustering and partition-
ing of graph-based data using k-plex (Du et al. 2007;
Newman 2001), etc. Note that the complement graph of a
k-plex is a graph of maximum degree at most k− 1. To find
a maximum k-plex in a graph G is equivalent to find a max-
imum induced subgraph of degree bounded by k − 1 in the
complement graph of G. The later problem is also known
as the k′-BOUNDED-DEGREE VERTEX DELETION prob-
lem (to make the degree of a graph at most k′ by deleting
a minimum number of vertices). k′-BOUNDED-DEGREE
VERTEX DELETION itself also has many applications in ser-
val areas (Fellows et al. 2011; Xiao 2017).

The NP-completeness of MAXIMUM k-PLEX and k′-
BOUNDED-DEGREE VERTEX DELETION problems with
each fixed k ≥ 1 (or k′ ≥ 0) was established many years
ago (Lewis and Yannakakis 1980). For MAXIMUM 1-PLEX,
known as MAXIMUM CLIQUE or MAXIMUM INDEPEN-
DENT SET in the complement graph, it is a fundamental
problem in exact exponential algorithms and it can be solved
in O∗(1.1996n) time (Xiao and Nagamochi 2013) in an n-
vertex graph. For k = 2, MAXIMUM 2-PLEX can be solved
in O∗(1.3656n) time (Xiao and Kou 2016). A simple brute-
force algorithm for MAXIMUM k-PLEX by enumerating and
checking all vertex subsets of the graph runs in 2nnO(1)

time. We are not aware of any algorithm faster than the triv-
ial exponential bound 2n for any k ≥ 3.

In parallel, Balasundaram et al. (2011) gave an integer
programming formulation and designed a branch-and-cut al-
gorithm to solve MAXIMUM k-PLEX exactly. McClosky et
al. (2012) derived a new upper bound on the cardinality of
k-plexes and adapted some clique combinatorial algorithms
to find maximum k-plexes, both of heuristic and exact na-
ture. Moser et al. (2012) gave an exact algorithm with better
experimental results. All the above exact algorithms run in
2nnO(1) time theoretically.

Our Contributions. This paper contributes to the k-plex

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

919

literature both from theory and practice. We investigate
several structural properties of MAXIMUM k-PLEX, most
of which are related to the lower bound and will be used
to prune the search branches in our algorithm. Based on
these properties, we design a branch-and-search algorithm
for MAXIMUM k-PLEX and analyze its running time bound
in a theoretical way. We prove Theorem 1. Some values of
σk for small k are shown in Table 1.

Theorem 1. MAXIMUM k-PLEX can be solved in σn
kn

O(1)

time, where σk < 2 is a value related to k.

k = 1 2 3 4 5

σk = 1.6181 1.8637 1.9476 1.9786 1.9910

k = 6 7 8 9 10

σk = 1.9961 1.9983 1.9992 1.9996 1.9998

Table 1: The values of σk for some small k

This is the first algorithm that breaks the trivial exponen-
tial bound of 2n for each fixed k ≥ 3. In practice, our al-
gorithm is efficient and easy to implement. Experimental
results on large social networks from real-world and artifi-
cial graphs show that our algorithm is much faster than three
well-known algorithms, especially on benchmark instances
from the real-world graphs. Our codes and data in this paper
are publicly available (https://github.com/Lweb/KPLEX).

Structural Properties

Let G = (V,E) be a simple and undirected graph with
n = |V | vertices and m = |E| edges. For a subgraph
(resp., a vertex subset) X , the subgraph induced by V (X)
(resp., X) is denoted by G[X], and G[V − V (X)] (resp.,
G[V − X]) is also written as G − X . A vertex u is called
a neighbor of v if there is an edge between u and v. For a
subgraph or a vertex subset X , the set of neighbors of v in
X is denoted by NX(v), and V (X) \NX(v) is also written
as NX(v). The degree of v in X is degX(v)

.
= |NX(v)|.

The distance between vertices u and v in a graph G, denoted
by disG(u, v), is the number of edges in a shortest path be-
tween u and v in G. The diameter of a graph G is defined to
be diam(G) = max

u,v∈V (G)
disG(u, v).

For any integer k ≥ 1, a vertex v in a graph G is k-
satisfied if degG(v) ≥ |V (G)| − k or k-unsatisfied other-
wise. A graph G is a k-plex if all vertices in it are k-satisfied,
i.e., minv∈V (G) degG(v) ≥ |V (G)| − k. MAXIMUM k-
PLEX is to find a k-plex of maximum size in a given graph.
In this paper, we will consider a general problem.

The constrained k-plex problem
Input: a graph G = (V,E), an integer k ≥ 1 and a vertex
subset F ⊆ V ;
Object: to find a maximum vertex set S such that F ⊆ S
and the induced subgraph G[S] is a k-plex.

A k-plex containing the vertex subset F is also called an
F -constrained k-plex. The constrained k-plex problem is to
find a maximum F -constrained k-plex and an instance of it
is denoted by I = (G = (V,E), k, F).

We may always use U = V \F to denote the set of vertices
not in F . The normal k-plex problem is the special case of
the constrained k-plex problem with F = ∅.

Seidman and Foster (1978) gave several basic structural
properties of the k-plex. Facets for the k-plex polytope
and some other properties were developed by Balasundaram,
Butenko, and Hicks (2011). The following two properties
are frequently used in the literature.
Property 1. Any induced subgraph of a k-plex is a k-plex.
Property 2. For a k-plex G with n vertices, if k < n+2

2 ,
then diam(G) ≤ 2.

We extend Property 2 to the follows.
Property 3. For a k-plex G with n vertices and any integer
c ≥ 2, if |V | > 2k − c, then diam(G) ≤ c.

Proof. We prove the converse negative proposition. Assume
that G = (V,E) is a k-plex with diam(G) > c for some
integer c ≥ 2. Let diam(G) = c + m,m > 0. Let P be
a shortest path between two vertices v and u such that the
length of P is diam(G). We use Di(v) to denote the set
of vertices whose distance to v is exactly i, i.e., Di(v) =
{t | dG(v, t) = i, t ∈ V }. It is clear that |Di(v)| > 0 for
0 ≤ i ≤ c + m and

∑c+m
i=0 |Di(v)| = |V |. It holds that

|D0(v)| = 1 since D0(v) = v. According to the definition
of k-plex, we know that |D1(v)| ≥ |V | − k. Next we give
a lower bound on |Dc+m(v)|+ |Dc+m−1(v)|. The vertex u
is in Dc+m(v). Each neighbor of u is either in Dc+m(v) or
Dc+m−1(v). According to the definition of k-plex, we know
that u has at least |V | − k neighbors. Thus, |Dc+m(v)| +
|Dc+m−1(v)| ≥ |V | − k + 1. Since c + m ≥ 3, we know
that c+m− 1 > 1. We get that

|V | = |D0(v)|+ |D1(v)|+
∑c+m−2

i=2 |Di(v)|+
|Dc+m−1(v)|+ |Dc+m(v)|

≥ 1 + (|V | − k) + (c+m− 3) + (|V | − k + 1)
= 2|V | − 2k + c+m− 1,

which implies |V | ≤ 2k − c−m+ 1 ≤ 2k − c.

We reveal more properties of the constrained problem.

Reducible Vertices. In an instance I = (G = (V,E), k, F),
a vertex v in U = V \ F is F-reducible if there is a maxi-
mum F -constrained k-plex containing v and D-reducible if
no maximum F -constrained k-plex contains v. We can re-
duce an instance by deleting any D-reducible vertex from
the graph and adding an F -reducible vertex to F preserv-
ing the optimality of the problem. It is hard to find out all
F -/D-reducible vertices in polynomial time; otherwise, we
can solve the NP-hard problem in a polynomial time. We
analyze the properties for reducible vertices.
Lemma 1. Given an instance I = (G = (V,E), k, F) and
a vertex v ∈ U = V \F . If the induced subgraph G[F∪{v}]
is not a k-plex, then v is D-reducible.

Proof. Since G[F ∪{v}] is not a k-plex, we know that no k-
plex contains all vertices in F ∪{v} by Property 1. Thus, no
F -constrained k-plex contains v and then v is D-reducible.

920

Lemma 2. Given an instance I = (G = (V,E), k, F) and
a vertex v ∈ U = V \ F . If |F \ N(v)| ≥ k, then v is
D-reducible.

Lemma 3. Given an instance I = (G = (V,E), k, F) and
a vertex v ∈ U = V \ F . If there is a vertex u ∈ F such
that |F \ N(u)| = k and v is not adjacent to u, then v is
D-reducible.

We can see that Lemmas 2 and 3 satisfy the condition in
Lemma 1. The induced subgraph G[F ∪{v}] is not a k-plex
since v or u is k-unsatisfied in G[F ∪ {v}].
Lemma 4. Let v ∈ U be a vertex in an instance I = (G =
(V,E), k, F). If v and all vertices not adjacent to v are k-
satisfied, then vertex v is F-reducible.

Proof. Let F ′ = F ∪ {v}. We show that any vertex set is
a maximum F -constrained k-plex if and only if it is also a
maximum F ′-constrained k-plex.

Let S be an arbitrary maximum F -constrained k-plex and
S′ be an arbitrary maximum F ′-constrained k-plex. Since
F ⊂ F ′, we know that S′ is also an F -constrained k-plex.
By the maximality of S, we know that |S| ≥ |S′|. Note
that for any k-plex not containing v, after adding v to it,
it becomes a bigger k-plex. Any maximum F -constrained
k-plex including S must contain v. Thus, S is also an F ′-
constrained k-plex. By the the maximality of S′, we know
that |S′| ≥ |S|. We get that |S| = |S′|.

Hence S′ is also a maximum F -constrained k-plex and S
is also a maximum F ′-constrained k-plex.

Exchangeable Vertices. If there is a maximum F -
constrained k-plex S containing vertex v but not vertex u
and (S \ {v}) ∪ {u} is still a maximum F -constrained k-
plex in the instance, we say that v is exchangeable with u.

Lemma 5. Assume that vertex v is exchangeable with vertex
u in an instance. There is a solution to the instance that
either contains both of v and u or not contains v.

Proof. Let S be a solution to the instance. Assume that v ∈
S and u /∈ S, otherwise we are done. By the definition
of exchangeable vertices, we know that S′ = S \ {v} ∪
{u} is still maximum F -constrained k-plex, which does not
contain v.

The lemma implies that exchangeable vertices can be used
to design an effective branching rule to search a solution.
When v is exchangeable with u, we can either delete v from
the instance or include both of v and u to F . We identify
several exchangeable vertices below.

A vertex v is dominated by another vertex u if any neigh-
bor of v is either u or a neighbor of u. Note that in the
definition, v and u are not required to be adjacent.

Lemma 6. If a vertex v is dominated by another vertex u,
then v is exchangeable with u.

Proof. Let S be an arbitrary k-plex that contains v but not
u. We only need to show that S′ = (S \ {v})∪{u} is also a
k-plex. Any vertex (except u) adjacent to v is also adjacent
to u. After replacing v with u in S, the degree of any vertex
in S \{v} will not decrease. Hence all vertices in S \{v} are

still k-satisfied in G[S′]. Since any vertex in S adjacent to
v is also adjacent to u, we know that degS′(u) ≥ degS(v).
Since |S′| = |S| and v is k-satisfied in G[S], we know that u
is also k-satisfied in G[S′]. All vertices in S′ are k-satisfied
in G[S′] and then S′ forms a k-plex.

Reductions Based on Lower Bounds. As we will develop
a branch-and-search algorithm (to be elaborated later) for
solving the MAXIMUM k-PLEX, we move further to discuss
some properties to be used to prune a search tree. Once we
have obtained a feasible solution of size s, we may be able
to abandon branches which will only reach feasible solutions
of size at most s.

Given an integer s as a lower bound on the size of the
solution. We are only interested in the instances with solu-
tion size greater than s. The following properties allow us to
prune the search tree in our algorithm.

Lemma 7. Given an instance I = (G, k, F) and an integer
s. For any vertex v in the graph, if degG(v) ≤ s − 1 − k,
then any solution to I of size at least s (if it exists) will not
contain v.

Proof. For any vertex set S of size at least s, v is not adja-
cent to at least k+1 vertices in S. If S contains v, then S is
not a k-plex.

The above lemma also implies that we can abandon the
instances with at most s vertices directly once a lower bound
s of the solution size is given.

Lemma 8. Given an instance I = (G, k, F) and an integer
s. If there is a vertex u ∈ F and a vertex v ∈ V \ F such
that disG(u, v) > max(2, 2k − s+ 1), then any solution to
I of size at least s (if it exists) will not contain v.

Proof. For any subgraph G′ containing u and v, it holds that
disG′(u, v) ≥ disG(u, v) > max(2, 2k − s+ 1). By Prop-
erty 3, we know that if G′ contains at least s vertices then
G′ is not a k-plex. So any k-plex of size at least s will not
contain both u and v.

The properties in this section will be used to design some
reduction rules to reduce the instance directly and some
branching rules with a good performance.

Branching Rules

In a branch-and-search algorithm, we may search a max-
imum solution to an instance by recursively branching on
the current instance into several smaller instances until the
instance becomes polynomially solvable or satisfies some
properties. To evaluate the size of the search tree gener-
ated by this paradigm, we need to evaluate the size of the
search tree in the algorithm. In our algorithm, we will sim-
ply select the number n0 of vertices in U = V \ F as the
measure. Clearly, the problem can be solved directly when
n0 ≤ 0. Let C(n0) denote the maximum number of leaves
in the search tree generated by the algorithm for any instance
with |U | ≤ n0. For a branching operation, where we branch
on an instance with |U | = n0 into l branches such that in the

921

i-th branch the size of U decreases by at least ai, we obtain
a recurrence relation

C(n0) ≤ C(n0 − a1) + C(n0 − a2) + · · ·+ C(n0 − al).

The largest root of the function f(x) = 1 − ∑l
i=1 x

−ai is
called the branching factor of the recurrence. Let γ be the
maximum branching factor among all branching factors in
the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an input
instance with |U | = n0 is given by O(γn0). More details
about the analysis and how to solve recurrences can be found
in the monograph (Fomin and Kratsch 2010).

Our branch-and-search algorithm first applies some re-
duction rules to reduce instances. When the instances cannot
be reduced anymore, we use branching rules to search a so-
lution. We have three branching rules below.

Branching Rule 1: Branching on dominated vertices. If
there are two vertices v, u ∈ U such that v is dominated
by u, then we branch into two branches by either deleting
v from the instance or including both of v and u to F . The
correctness of this rule is based on Lemma 5 and Lemma 6.
In the first branch vertex v is removed from U , and in the
second branch vertices v and u are removed from U . We
can get the following recurrence at least for this operation,
the branching factor of which is 1.6181.

C(n0) ≤ C(n0 − 1) + C(n0 − 2). (1)

Branching Rule 2: Branching on F -vertices. This branch-
ing rule only considers k-unsatisfied vertices in F . Let v be
a k-unsatisfied vertex in F , i.e.,

|NG(v)| = |V | − degG(v) ≥ k + 1.

Any F -constrained k-plex contains at most k−|NF (v)| ver-
tices in NU (v) = U \NU (v); otherwise, the degree of v will
not satisfy the definition of k-plex. Let q = k−|NF (v)| and
p = |NU (v)|. We have that

p > q, (2)

since v is a k-unsatisfied vertex. Note that v ∈ NF (v) and
then |NF (v)| ≥ 1. We have that

q ≤ k − 1. (3)

Let
NU (v) = {x1, x2, . . . , xp}.

Our branching rule on a k-unsatisfied vertex v ∈ F is to
generate q + 1 branches:
- in the first branch, x1 is deleted from the graph;
- for i ∈ {2, . . . , q}, in the ith branch, {x1, x2, . . . , xi−1} is
included to F and xi is deleted from the graph;
- in the (q + 1)th branch, {x1, x2, . . . , xq} is included to F
and {xq, xq+1, . . . , xp} is deleted from the graph.

The correctness of this branching rule is based on the fol-
lowing observation: Let S be an arbitrary solution to the
instance. If S contains all the q vertices {x1, x2, . . . , xq},
then S cannot contain any vertices in {xq+1, xq+2, . . . , xp},
since any k-plex contains at most q vertices in NU (v). For

this case, the last branch will not lose the solution. Other-
wise, we let i0 is the smallest index such that xi0 is not in S
and it holds that i0 ≤ q. For this case, the i0th branch will
not lose the solution.

Next, we analyze the branching factor of this operation.
For i ∈ {1, 2, . . . , q}, in the ith branch exactly i vertices
are removed from U . In the last branch, all the p vertices in
NU (v) are removed from U . We get a recurrence relation

C(n0) ≤ C(n0 − 1) + C(n0 − 2)

+ · · ·+ C(n0 − q) + C(n0 − p),
(4)

where p ≥ q+1 and q ≤ k−1 by (2) and (3). The branching
factor of this recurrence is a root of the function

xp − xp−1 − xp−2 − · · · − xp−q − 1 = 0.

It is not hard to check that when p = q + 1 and q = k − 1,
the branching factor reaches the largest value. For the worst
case, the branching factor is a root of the function

xk − xk−1 − xk−2 − · · · − x1 − 1 = 0,

which is equivalent to

xk+1 − 2xk + 1 = 0. (5)

The largest root of the above function, denoted by γk, is the
branching factor of recurrence (4). Some values of γk for
different k are given in Table 2. Note that γ1 = 1. This
means when k = 1, this operation is not a branching oper-
ation. It only generates one instance by deleting all vertices
in NU (v), which can be regarded as a reduction operation.

k = 1 2 3 4 5

γk = 1 1.6181 1.8637 1.9476 1.9786

k = 6 7 8 9 10

γk = 1.9910 1.9961 1.9983 1.9992 1.9996

Table 2: The values of γk for some small k

Branching Rule 3: Branching on U -vertices. We have
shown that k-unsatisfied vertices in F may not always exist.
When there are no such kind of vertices, Branching Rule 2
cannot by applied and we turn to consider k-unsatisfied ver-
tices in U . Assume that there are no k-unsatisfied vertices
in F . Now there must exist k-unsatisfied vertices in U ; oth-
erwise, the instance has only k-satisfied vertices and the in-
stance can be solved directly by Lemma 4.

Let v be a k-unsatisfied vertex in U . Our branching rule
first generates two branches by either deleting v from the
graph or including v to F . In each branch, the number of
vertices in U decreases by 1. We look at the second branch
I2 where v is included to F . Now v becomes a k-satisfied
vertex in F and we can further branch on it with (4) by
Branching Rule 2. Combining them, we get a recurrence

C(n0) ≤ C(n0 − 1) + C(n0 − 2) +

· · ·+ C(n0 − q − 1) + C(n0 − p− 1),
(6)

where p ≥ q+1 and q ≤ k−1 by (2) and (3). The branching
factor of this recurrence is a root of the function

xp+1 − xp − xp−1 − xp−2 − · · · − xp−q − 1 = 0.

922

It is not hard to check that when p = q + 1 and q = k − 1,
the branching factor reaches the largest value. For the worst
case that p = q + 1 and q = k − 1, the branching factor is a
root of the function

xk+1 − xk − xk−1 − xk−2 − · · · − x1 − 1 = 0,

which is equivalent to

xk+2 − 2xk+1 + 1 = 0. (7)

The largest root of the above function, denoted by σk, is the
branching factor for this case. We can see that

σk = γk+1 > γk.

The Branch-and-Search Algorithm

As presented below, the Branch-and-Search (BS) Algorithm
plex(I = (G, k, F), bound) takes an instance I of the con-
strained k-plex problem and an integer bound as the input,
and checks whether I has an F -constrained k-plex of size at
least bound. Note that for the purpose of presentation, the
algorithm is described to solve a decision problem, i.e., only
needs to answer yes or no. It can be modified to return a
solution directly if it exists.

Algorithm 1 The Branch-and-Search (BS) Algorithm
plex(I = (G, k, F), bound).
Input: an instance I of the constrained k-plex problem and

an integer bound.
Output: 1 if I has an F -constrained k-plex of size at least

bound or 0 otherwise.
1: if G[F] is not a k-plex then
2: return 0
3: else if F = V (G) then
4: return 1 if |F | ≥ bound or 0 if |F | < bound
5: else if there is a D-reducible vertex v identified by

Lemma 2 or Lemma 3 then
6: return plex((G \ {v}, k, F), bound)
7: else if there is an F -reducible vertex v identified by

Lemma 4 then
8: return plex((G, k, F ∪ {v}), bound)
9: else if there is a vertex v such that degG(v) ≤ bound−

1− k then
10: return plex((G \ {v}, k, F), bound)
11: else if there is a vertex u ∈ F and a vertex v ∈ V \ F

such that disG(u, v) > max(2, 2k − bound+ 1) then
12: return plex((G \ {v}, k, F), bound)
13: else if there are two vertices v, u ∈ V \ F such that v is

dominated by u then
14: return plex((G \ {v}, k, F), bound) ∧

plex((G, k, F ∪ {v, u}), bound)
15: else if there are k-unsatisfied vertices in F then
16: let v be a such kind of vertex of minimum degree
17: return ∧q+1

i=1plex(Ii, bound)
18: else if there are k-unsatisfied vertices in U then
19: let v be a such kind of vertex of minimum degree
20: return ∧q+2

i=1plex(I
′
i, bound)

21: end if

In the algorithm, lines 1-2 check whether the input sat-
isfies the condition in Property 1. Lines 3-4 deal with
the boundary cases. Lines 5-8 delete some reducible ver-
tices based on Lemmas 2 to 4. The correctness of lines
9-12 are based on Lemma 7 and Lemma 8. Lines 13-14
branch on dominated vertices with Branching Rule 1, lines
15-17 branch on k-unsatisfied vertices in F with Branching
Rule 2, and lines 18-20 branch on k-unsatisfied vertices in
U = V \ F with Branching Rule 3. We have analyzed that
when the graph has no k-unsatisfied vertices, all vertices in
V \F will become F -reducible vertices and will be included
to F in lines 7-8. When the graph has some k-unsatisfied
vertices, at least one condition in lines 15 and 18 can be ful-
filled. These imply the algorithmic correctness.

In the algorithm, we have the three kinds of branches in
lines 13-20. We have analyzed the branching factors of these
three branching rules, the largest branching factor of them is
σk, where σk < 2 is the biggest root of function (7). Except
these three branches, each of other steps of the algorithm
can be executed in polynomial time. Therefore, plex(I =
(G, k, F), bound) runs in σn

kn
O(1) time.

To solve the original constrained k-plex problem, we
only need to find the maximum value of bound such
that plex(I = (G, k, F), bound) = 1 and plex(I =
(G, k, F), bound + 1) = 0. We can search for bound in
increasing order of value, which will increase the running
time bound by a factor of n. Therefore, our problem can be
solved in σn

kn
O(1) time, which implies Theorem 1.

We can also use a binary search to find the maximum
value of bound, which will reduce the polynomial part of
the running time by a factor of n/ log n. We initially set the
search space [a, b] to be [0, n], iteratively check whether the
graph has a k-plex of size

⌈
a+b
2

⌉
and then update the search

space by [a, b] ← [a,
⌈
a+b
2

⌉
] if no or [a, b] ← [

⌊
a+b
2

⌋
, b] if

yes. By using this method, we only need to execute O(log n)
loops instead of n loops to compute the maximum value of
bound.

Experimental Results

To evaluate the performance, we compare the branch-and-
search algorithm (BS) with three well-known exact algo-
rithms for MAXIMUM k-PLEX on two types of data sets
to evaluate its performance. The three previous algorithms
are IPBC by Balasundaram et al. (2011), OsterPlex by Mc-
Closky and Hicks (2012) and GuidedBranching by Moser et
al. (2012). Our algorithm, namely BS algorithm, is imple-
mented in C++ and the experiments run on a 2.5 GHz Intel
Core i5-3210M processor with 4GB memory. The experi-
mental environment of the three previous algorithms are a
little bit different, but on the same level. The experiments
of Balasundaram et al. (2011) were performed on Dell Pre-
cision PWS690 machines with a 2.66 GHz Xeon Processor,
3GB main memory, implemented using ILOG CPLEX 10.0.
The experiments of McClosky and Hicks (2012) were run
on a 2.2GHz Dual-Core AMD Opteron processor with 3GB
main memory. Moser et al. (2012) used an AMD Athlon 64
3700+ machine with 2.2GHz, 1M L2 cache, and 3GB main
memory.

923

The first data set consists of two batches of well-known
scientific collaboration networks and one batch of news re-
lation networks, which are large-scale, real-life social net-
work instances and have been used to evaluate several previ-
ous algorithms for MAXIMUM k-PLEX. In a scientific col-
laboration network, the vertices represent scientists, and an
edge connects two of them if they co-author some papers.
The collaboration networks centered around Paul Erdös are
called Erdös collaboration networks or Erdös graphs. In-
stances named ERDOS-x-y in Table 3 are the Erdös col-
laboration networks of all authors with an Erdös number at
most y as of year x, where the Erdös number of an author is
the length of the shortest path between Paul Erdös and the
author in the collaboration networks (Grossman, Ion, and
Castro 2007). Instances named GEOM-t in Table 4 are col-
laboration networks for computational geometers (Batagelj
and Mrvar 2006), where two authors are adjacent if they
have jointly published more than t articles. Instances named
DAYS-t in Table 5 are text-mining networks based on news
released by Reuter during 66 days beginning with the terror-
ist attacks in New York on September 11, 2001 (Batagelj and
Mrvar 2006). Each vertex is a selected word that appeared
in the news. Given a threshold t, two words are connected
by an edge if there exist more than t sentences in which both
appear. This is the meaning of t in the instance name. In Ta-
bles 3- 5, all the four algorithms compute the same optimal
size of a maximum k-plex. However, our algorithm (BS)
uses much less running time. It seems that the time used by
our algorithm varies slightly for different small k. In fact,
our algorithm can solve these instances within 0.1 second
for k ≤ 10. We think that it is contributed by the extremely
low density of these social networks, which makes our re-
duction rules very efficient.

The second data set consists of the clique instances from
the second DIMACS implementation challenge (DIMACS
1995). Those DIMACS instances were developed as a stan-
dard test bed for clique algorithms. For some instances, the
algorithms may not be able to compute the optimal solution
in time limitation three hours. For this case, the algorithms
will return [a, b] to denote that the optimal value is between
a and b. Table 6 shows that our algorithm is much more
efficient than other algorithms for most instances.

Conclusion
We have designed a practical algorithm for MAXIMUM k-
PLEX. Experimental results on standard benchmark sets
show that our algorithm runs much faster than previous ex-
act algorithms on real-world social network instances, which
are usually sparse graphs. For clique instances, which are
dense with a large size of a maximum k-plex, our algorithm
still has advantages on most instances. More importantly,
we theoretically show the time complexity of our algorithm.
Our algorithm is the first algorithm that brakes the trivial
exponential bound of 2n on this problem for each k ≥ 3.

The increasing efficiency of our algorithms facilitates
real-world social network analysis. For example, a maxi-
mum k-plex size can be viewed as a global measure char-
acterizing the cohesiveness of a social network, and our al-
gorithm can serve as a powerful tool to detect it. In many

Instances
k

Running time in seconds
(|V |, |E|) IPBC OsterPlex GuidedBranching BS

ERDOS-97-1
(472, 1314)

2 1.5 0 0.26 0.01
3 1.8 19 0.57 0.01
4 2.2 1897 1.12 0.00
5 5.7 - 6.12 0.01

ERDOS-97-2
(5488, 8972)

2 392.9 1253 4.76 0.01
3 394.1 ≥3600 12.53 0.03
4 424.0 ≥3600 8.86 0.01
5 1042.8 - 45.07 0.01

ERDOS-98-1
(485, 1381)

2 1.7 0 0.14 0.01
3 1.8 20 0.98 0.02
4 2.8 1675 1.14 0.00
5 7.9 - 6.11 0.01

ERDOS-98-2
(5822, 9505)

2 464.3 1514 5.88 0.02
3 457.1 ≥3600 23.58 0.04
4 614.7 ≥3600 10.31 0.01
5 1664.6 - 52.81 0.02

ERDOS-99-1
(492, 1417)

2 1.8 0 0.17 0.01
3 1.8 21 1.8 0.02
4 1.8 1783 1.47 0.01
5 9.9 - 8.04 0.01

ERDOS-99-2
(6100, 9939)

2 526.5 1757 7.05 0.02
3 520.0 ≥3600 33.82 0.05
4 526.3 ≥3600 17.23 0.02
5 653.5 - 122.6 0.02

Table 3: Results for Erdös instances

Instances
k

Running time in seconds
(|V |, |E|) IPBC OsterPlex GuidedBranching BS

GEOM-0
(7343, 11898)

2 2384.4 397 9.73 0.01
3 2387.1 ≥3600 9.67 0.01
4 2383.7 ≥3600 9.6 0.01
5 2298.1 - 9.64 0.01

GEOM-1
(7343, 3939)

2 753.2 1118 5.23 0.00
3 747.7 ≥3600 5.15 0.01
4 743.7 ≥3600 5.45 0.01
5 691.6 - 8.11 0.01

GEOM-2
(7343, 1976)

2 530.6 1145 3.36 0.01
3 524.3 ≥3600 3.42 0.00
4 522.2 ≥3600 3.46 0.00
5 472.6 - 13.68 0.01

Table 4: Results for GEOM instances

Instances
k

Running time in seconds
(|V |, |E|) IPBC GuidedBranching BS

DAYS-3
(13332, 5616)

2 3367.8 20.44 0.01
3 3395.4 21.49 0.01
4 3489.8 20.45 0.01
5 15336.9 78.64 0.01

DAYS-4
(13332, 3251)

2 2635.7 17.69 0.00
3 2625.1 17.85 0.00
4 2642.3 17.68 0.00
5 6201.4 37.74 0.01

DAYS-5
(13332, 2179)

2 2462.9 0.11 0.01
3 2445.5 0.37 0.01
4 2426.3 0.31 0.00
5 2820.8 2.09 0.00

Table 5: Results for DAYS instances

924

Instances
k

k-plex size, running time in seconds
(|V |, |E|) IPBC GuidedBranching BS
c-fat200-1

(200, 1534)
1 12, 17.1 12, 0.21 12, 0.01
2 12, 148.9 12, 1.10 12, 0.01

c-fat200-2
(200, 3235)

1 24, 10.4 24, 0.42 24, 0.01
2 24, 19.1 24, 3.53 24, 0.01

c-fat200-5
(200, 8473)

1 58, 2.1 58, 1.17 58, 0.01
2 58, 2.1 58, 22.44 58, 0.01

c-fat500-1
(500, 4459)

1 14, 1334.4 14, 3.95 14, 0.04
2 14, 1356.1 14, 11.01 14, 0.05

c-fat500-2
(500, 9139)

1 26, 535.7 26, 7.25 26, 0.05
2 26, 605.3 26, 50.21 26, 0.06

c-fat500-5
(500, 23191)

1 64, 141.6 64, 17.61 64, 0.05
2 64, 141.5 64, 350.56 64, 0.05

c-fat500-10
(500, 46627)

1 126, 39.9 126, 36.28 126, 0.07
2 126, 76.5 126, 1547.25 126, 0.07

hamming6-2
(64, 1824)

1 32, 0.0 32, 0.00 32, 0.04
2 32, 0.0 32, 1.77 32, 33.36

hamming6-4
(64, 704)

1 4, 0.2 4, 0.05 4, 0.00
2 6, 0.3 6, 0.24 6, 0.06

hamming8-4
(256, 20864)

1 16, 52.2 16, 243.11 16, 129.25
2 16, 8115.2 [16,171],≥10800 [2,64],≥10800

johnson8-2-4
(28, 210)

1 4, 0.0 4, 0.00 4, 0.00
2 5, 0.0 5, 0.02 5, 0.01

johnson8-4-4
(70, 1855)

1 14, 0.1 14, 0.44 14, 0.21
2 14, 4.4 14, 40.70 14, 265.32

MANN a9
(45, 918)

1 16, 0.0 16, 0.00 16, 11.7
2 26, 0.0 26, 0.09 26, 4.78

brock200 1
(200, 14834)

1 [20,31], ≥10800 21, 794.73 21, 2206.61
2 [25,53],≥10800 [24,134],≥10800 [2,100],≥10800

brock200 2
(200, 9876)

1 12, 152.5 12, 23.13 12, 3.54
2 [13,24],≥10800 13, 606.16 13, 512.59

brock200 4
(200, 13089)

1 17, 6617.5 17, 204.58 17, 117.2
2 [19,41],≥10800 20, 9691.01 [2,50],≥10800

p hat300-1
(300, 10933)

1 8, 127.0 8, 29.72 8, 0.64
2 [9,66],≥10800 10, 502.48 10, 46.83

p hat300-2
(300, 21928)

1 [25,51],≥10800 25, 242.77 25, 91.38
2 [28,85],≥10800 [28,200],≥10800 [29,38],≥10800

p hat700-1
(700, 60999)

1 [11,40],≥10800 11, 1464.41 11, 60.17
2 [10,291],≥10800 [11,467],≥10800 [12,22],≥10800

Table 6: Results for DIMACS instances

applications of social network analysis, one may also be in-
terested in finding all maximal cohesive subgroups in a so-
cial network. It remains a future work to design efficient
algorithms for detecting all maximal k-plexes.

Acknowledgements

The work was supported by the National Natural Science
Foundation of China, under grant 61370071, and the Funda-
mental Research Funds for the Central Universities, under
grant ZYGX2015J057.

References

Alba, R. D. 1973. A graph-theoretic definition of a socio-
metric clique. J. of Mathematical Sociology 3(1):113–126.
Balasundaram, B.; Butenko, S.; and Hicks, I. V. 2011.
Clique relaxations in social network analysis: The maxi-
mum k-plex problem. Operations Research 59(1):133–142.
Batagelj, V., and Mrvar, A. 2006. Pajek datasets.
http://vlado.fmf.uni-lj.si/pub/networks/data.
Butenko, S., and Wilhelm, W. E. 2006. Clique-detection

models in computational biochemistry and genomics. Euro-
pean Journal of Operational Research 173(1):1–17.
Chen, Y.; Liestman, A.; and Liu, J. 2004. Clustering al-
gorithms for ad hoc wireless networks. Ad Hoc and Sensor
Networks 28:76.
DIMACS. 1995. Cliques, coloring, and satisfiability: sec-
ond dimacs implementation challenge. Online reference at
http://dimacs.rutgers.edu/Challenges/.
Du, N.; Wu, B.; Pei, X.; Wang, B.; and Xu, L. 2007. Com-
munity detection in large-scale social networks. In Proceed-
ings of the 9th WebKDD and 1st SNA-KDD, 16–25. ACM.
Fellows, M. R.; Guo, J.; Moser, H.; and Niedermeier, R.
2011. A generalization of nemhauser and trotter’s local op-
timization theorem. Journal of Computer and System Sci-
ences 77(6):1141–1158.
Fomin, F. V., and Kratsch, D. 2010. Exact exponential al-
gorithms. Springer Science & Business Media.
Freeman, L. C. 1992. The sociological concept of “group”:
An empirical test of two models. American journal of soci-
ology 152–166.
Grossman, J.; Ion, P.; and Castro, R. 2007. The erdös num-
ber project (2007). Acessado em Outubro de.
Krebs, V. E. 2002. Mapping networks of terrorist cells.
Connections 24(3):43–52.
Lewis, J. M., and Yannakakis, M. 1980. The node-deletion
problem for hereditary properties is np-complete. Journal of
Computer and System Sciences 20(2):219–230.
McClosky, B., and Hicks, I. V. 2012. Combinatorial algo-
rithms for the maximum k-plex problem. Journal of combi-
natorial optimization 23(1):29–49.
Moser, H.; Niedermeier, R.; and Sorge, M. 2012. Ex-
act combinatorial algorithms and experiments for finding
maximum k-plexes. Journal of combinatorial optimization
24(3):347–373.
Newman, M. E. 2001. The structure of scientific collabo-
ration networks. Proceedings of the National Academy of
Sciences 98(2):404–409.
Seidman, S. B., and Foster, B. L. 1978. A graph-theoretic
generalization of the clique concept. Journal of Mathemati-
cal sociology 6(1):139–154.
Washio, T., and Motoda, H. 2003. State of the art of graph-
based data mining. ACM SIGKDD Explorations Newsletter
5(1):59–68.
Xiao, M., and Kou, S. 2016. Exact algorithms for the
maximum dissociation set and minimum 3-path vertex cover
problems. Theoretical Computer Science.
Xiao, M., and Nagamochi, H. 2013. Exact algorithms for
maximum independent set. In International Symposium on
Algorithms and Computation (ISAAC), 328–338. Springer.
Xiao, M. 2017. On a generalization of Nemhauser and Trot-
ter’s local optimization theorem. Journal of Computer and
System Sciences 84:97–106.

925

