
Grid Pathfinding on the 2k Neighborhoods

Nicolás Rivera
Department of Informatics

King’s College London
London, UK

Carlos Hernández
Depto. de Ciencias de la Ingenierı́a

Universidad Andrés Bello
Concepción, Chile

Jorge A. Baier
Pontificia Universidad Católica de Chile
Center for the Semantic Web Research

Santiago, Chile

Abstract

Grid pathfinding, an old AI problem, is central for the de-
velopment of navigation systems for autonomous agents. A
surprising fact about the vast literature on this problem is
that very limited neighborhoods have been studied. Indeed,
only the 4- and 8-neighborhoods are usually considered, and
rarely the 16-neighborhood. This paper describes three con-
tributions that enable the construction of effective grid path
planners for extended 2k-neighborhoods. First, we provide a
simple recursive definition of the 2k-neighborhood in terms
of the 2k−1-neighborhood. Second, we derive distance func-
tions, for any k > 1, which allow us to propose admissible
heurisitics which are perfect for obstacle-free grids. Third,
we describe a canonical ordering which allows us to imple-
ment a version of A* whose performance scales well when
increasing k. Our empirical evaluation shows that the heuris-
tics we propose are superior to the Euclidean distance (ED)
when regular A* is used. For grids beyond 64 the overhead
of computing the heuristic yields decreased time performance
compared to the ED. We found also that a configuration of
our A*-based implementation, without canonical orders, is
competitive with the “any-angle” path planner Theta∗ both in
terms of solution quality and runtime.

Introduction

Grid pathfinding is one of the most well-known problems in
AI. It is important because of its applications, which include
robotics (Lee and Yu 2009) and videogames (Björnsson et
al. 2005). Furthermore, it still captures significant attention
from the community. Notably, three editions of the Grid
Path Planning Competition (GPPC) have been recently held
(Sturtevant et al. 2015), putting to test latest advances in the
area (Botea and Harabor 2013; Harabor and Grastien 2011;
Uras, Koenig, and Hernández 2013).

Research on grid pathfinding has focused on simple 4-
neighbor grids, in which cardinal movements are allowed,
and 8-neighbor grids, which extend 4-neighbor movements
with diagonal movements. Besides their simplicity, perhaps
the main reason to focus on these grids is that good heuristics
are well-known for them. Indeed, the Manhattan and Oc-
tile distances (Sturtevant and Buro 2005) are perfect heuris-
tics for, respectively, 4- and 8-neighbor obstacle-free grids.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although distance functions on the 16-neighborhoods have
been discovered and studied by researchers of the Computer
Vision community (Marchand-Maillet and Sharaiha 1997),
to our knowledge, evaluations of grid pathfinding over 16-
neighborhoods (e.g., Nash 2012, Aine and Likhachev 2016)
have never considered these heuristics and, rather, have used
the Euclidean distance (ED).

Perfect heuristics for obstacle-free grids do not only al-
low algorithms like A* to find solutions quickly but they
are a key enabler of other techniques for grid pathfind-
ing. One example is the approach by Uras, Koenig, and
Hernández (2013), winner of the 2013 GPPC, optimal track,
which relies heavily on the Octile distance to compute sub-
goal graphs that are later exploited for fast pathfinding. An-
other example is FRIT (Rivera et al. 2014), the state-of-the-
art real-time heuristic search pathfinding algorithm that uses
the Octile/Manhattan distance to build an initial ideal tree.

In this paper we study grid pathfinding on the 2k-
neighborhoods. Our first contribution is a definition of
such neighborhoods. A rather notable property we prove
is that the radius of the smaller square that contains the
movements is given by the Fibonacci series. Furthermore,
we derive a distance function for the 2k-neighborhood, the
2k-tile heuristic, and prove its correctness. Our proof and
construction works for any k, thus generalizing the Man-
hattan and Octile distances, and the distance function of
Marchand-Maillet and Sharaiha. Our proof, however, seems
much shorter and simpler than the one given by Marchand-
Maillet and Sharaiha for the 16-neighborhood. Finally,
we define canonical orderings (Harabor and Grastien 2011;
Sturtevant and Rabin 2016) for the 2k-neighborhood. These
orderings are at the core of fast pathfinding algorithms.

We implemented two 2k-grid path planners: regular A*
and A* with our canonical orderings. We evaluated them
over standard benchmarks. We tested different values of k
and compared our 2k-tile heuristic with the ED. Runtime
of Canonical A* scales with k while this does not hold for
regular A*. Our heuristics yield faster search compared to
the ED, for every neighborhood with regular A*, and up
to the 32-neighborhood with Canonical A*. We compared
also with the any-angle path planner Theta*, and found that
Theta* is outperformed by regular A* when k = 32.

Next we introduce background and then define the 2k-
neighborhood. Then we derive our 2k-tile heuristic. We

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

891

continue proposing our canonical orderings, and finish with
our empirical evaluation and conclusions.

Pathfinding in 4- and 8-neighbor Grids

An m×n grid, where m and n are positive naturals, is com-
posed by mn cells, each of which is denoted by an ordered
pair (x, y). In grid pathfinding we are given a grid and a
set of obstacle cells in the grid, and the objective is to find
a path from an initial cell (x0, y0) to a goal cell (xg, yg)
that never goes through cell in a given set of obstacle cells.
Given two integers m and n that are not both equal to 0,
an (m,n) movement is one such that, when executed in cell
(x, y) leads to cell (x+m, y + n). An (m,n) movement is
executable in cell (x, y) of grid G if (x+m, y+n) is in G and
no cell touched by the segment between defined by these two
cells is an obstacle.1 A path is a sequence of cells that result
from the successive application of a sequence of executable
moves. The cost of an (m,n) movement is

√
m2 + n2. The

cost of a path is the sum of the cost of the movements in the
path. Cell (x′, y′) is the neighbor of (x, y) if the former can
be reached from the latter by performing one movement.

A grid G is a 4-neighbor grid when the allowed move-
ments for (x, y) are those executable movements in:

M4 = {(m,n) : |m|+ |n| = 1},
which can be interpreted as vertical and horizontal move-
ments of cost 1. In addition, the allowed movements for an
8-neighbor grid are:

M8 = {(m,n) : |m|, |n| ≤ 1} \ {(0, 0)},
which extends M4 with diagonal movements.

Below we treat ordered pairs like vectors. As such, if
k is natural or real number, and (x, y) is an ordered pair,
then the notation k(x, y) denotes the pair (kx, ky). More-
over, (x, y) + (x′, y′) denotes (x + x′, y + y′). We say
that a vector (x, y) is in the first quadrant if x, y ≥ 0. If
two vectors (x, y) and (x′, y′) are in the first quadrant then
we say that (x, y) � (x′, y′) if the angle with the Y axis
formed by (x, y) is smaller than or equal to that of (x′, y′)
(or, alternatively, (x′, y′) is to the right of (x, y), clockwise).
Formally (x, y) � (x′, y′) iff xy′ ≤ x′y. Furthermore,
‖(x, y)‖ =

√
x2 + y2.

The 2k-neighborhoods

We now define the 2k-neighborhoods, i.e. M2k , for any
k. Below we define the succession M22 ,M23 , . . . in terms
of another succession N 0,N 1, . . ., which is simpler to de-
fine. Thus for now, we focus our attention on the latter suc-
cession. Its first element, N 0, contains the 4-neighborhood
movements on the first (i.e., positive) quadrant. Therefore,
N 0 = 〈(0, 1), (1, 0)〉. Now if N i = 〈a0, . . . , an〉, N i+1

is constructed from N i by inserting between each consec-
utive elements aj and aj+1 the sum aj + aj+1. Formally,

1For diagonal movements sometimes another definition is
adopted. More on this in our experimental section.

Figure 1: 4-, 8-, and 16-neighborhoods.

N i+1 = 〈b0, b1, . . . , b2n〉, where

b2j = aj ,when 0 ≤ j ≤ n, and (1)
b2j+1 = aj + aj+1,when 0 ≤ j < n. (2)

The first three elements of the succession are:

N 0 = 〈(0, 1), (1, 0)〉 (3)

N 1 = 〈(0, 1), (1, 1), (1, 0)〉 (4)

N 2 = 〈(0, 1), (1, 2), (1, 1), (2, 1), (1, 0)〉 (5)

Observe that elements in N i are pairwise linearly indepen-
dent. This is an important property because it says that two
movements are unique in the sense that they cannot by sim-
ulated by repeating other movements in the neighborhood.
We can prove this fact by induction. Indeed, N 0 is such that
its two elements are linearly independent. Moreover, every
new element added to N i+1 that was not in N i is linearly
independent from each element in N i, because it is the sum
of two (linearly independent) elements of N i. We formalize
this as:

Proposition 1 If u, v ∈ N i, and there exists a k such that
u = kv, then u = v.

Now we give a definition for the full set of movements in
terms of N . Observe that, to generate a complete neighbor-
hood from N i we need to map every movement to all four
quadrants. As a result, for the orthogonal movements ((0, 1)
and (1, 0)), we generate two new movements ((0,−1) and
(−1, 0)) while each non-orthogonal (x, y) generates 3 addi-
tional movements that correspond to changing the signs of x
and y. In short, for every natural i, we define:

M22+i

= {(kx, k′y) | (x, y) is in N i and k, k′ ∈ {−1, 1}}
(6)

Proposition 2 The cardinality of M2k is 2k, for every k ≥
2.

Proof: Observe that |N 0| = 2 and that |N i+1| = 2|N i|−1,
which is a recurrence equation whose solution is |N i| =

2i+1. The size of M22+i

is 4(|N i|−2)+4 because there are
4 orthogonal movements and non-orthogonal movements
need to be considered 4 times. This yields |M22+i | = 22+i.
�

A property of our definition is that the size of the smallest
square in which all movements in N i can be circumscribed

892

grows exponentially (see Figure 1). Specifically, the radius
of the square, defined as the largest of all coordinates of the
movements of the region, grows like the Fibonacci series.

To establish this result let us define Fib(i) = Fib(i−1)+
Fib(i− 2) for i > 1 and Fib(0) = Fib(1) = 1.

Theorem 1 Let �i be the largest coordinate among all of the
pairs in N i then �i = Fib(i).

To simplify notation, below we use Nk to denote the ele-
ment in position k of sequence N , where k may take values
from 0 to |N | − 1; that is, the first position of N is N0.
To prove Theorem 1, we first observe that Equation 2 entails
that N i

k = N i−1
(k−1)/2+N i−1

(k+1)/2, when k is and odd number.
In addition, observe that (k + 1)/2 and (k − 1)/2 are con-
secutive and thus one of them is an even number. Therefore,
if (k + 1)/2 is even, then, via Equation 1:

N i
k = N i−1

(k−1)/2 +N i−2
(k+1)/4. (7)

Otherwise, if (k − 1)/2 is even:

N i
k = N i−1

(k+1)/2 +N i−2
(k−1)/4. (8)

The proof of for Theorem 1 is straightforward from the fol-
lowing two lemmata.

Lemma 1 Each coordinate of any pair in N i is lower than
or equal to Fib(i).

Proof: By induction on i, we verify by inspection that this
is true in the base case (i = 0). Assume the property holds
for every i ∈ {1, . . . , n − 1}. Now, we prove that for every
k, Nn

k ≤ Fib(n). Indeed, assume k is even. Then Nn
k =

Nn−1
k/2 . By the inductive hypothesis, Nn

k ≤ Fib(n− 1) and
therefore we conclude Nn

k ≤ Fib(n), because Fib is non-
decreasing.

Now assume k is odd. Then we have two cases (Equations
7 and 8) which are proven analogously. The proof follows
in the same way for both cases so we simply assume:

Nn
k = Nn−1

(k−1)/2 +Nn−2
(k+1)/4 (9)

By the induction hypothesis and the definition of Fib,

Nn
k ≤ Fib(n− 1) + Fib(n− 2) = Fib(n),

which concludes the proof. �

Lemma 2 Let Fi be the succession defined by F0 = 0, and
Fi = 2Fi−1 + (−1)i−1, for i > 0. Then the second coordi-
nate of N i

Fi
equals Fib(i), for every i.

Proof: The first observation is that Fi is formed by adding
or substracting 1 to an even number (2Fi−1) and thus is odd,
for every i > 0. Now the proof proceeds by induction on
i. Note that for the base case (i = 0) the property holds.
Assume the property holds for every i ∈ {1, . . . , n − 1}.
Now we prove it also holds for n.

We now have two cases: n is even and n is odd. We focus
only on the former case because the proof for the latter is
analogous.

Because n is even, Fn = 2Fn−1 − 1 and (Fn + 1)/2 =
Fn−1 is odd. In addition,

Fn − 1

4
=

Fn−1 − 1

2
=

2Fn−2 + 1− 1

2
= Fn−2.

Now we use Equation 8 to write:

N i
k = N i−1

Fi−1
+N i−2

Fi−2
. (10)

With the inductive hypothesis and the definition of Fib we
obtain the desired result. �

A Distance for the 2k-Neighborhood

In grid path finding it is essential to use a good heuristic. In
4- and 8- neighbor grids, good heuristics are well-known:
the Manhattan and the Octile Distance, respectively. These
heuristics are actually distances because they correspond to
the shortest path that can be traversed between an arbitrary
location and the goal location, ignoring any obstacles.

So now we focus on answering a more general question:
Given an arbitrary i, what is the cost of the shortest path
between (0, 0) and (x, y) when only movements in N i can
be applied?

The problem can be formalized as an Integer Program
(IP). Indeed, if N i = 〈v0, . . . , vn〉, we want to solve the
following IP, Pi:

Minimize
n∑

i=0

αi‖vi‖ (11)

subject to:

n∑

i=0

αivi = (x, y), αi ≥ 0, for every i ∈ {0, . . . , n},
(12)

where each αi is an integer variable that intuitively repre-
sents how many times movement vi is applied.

Below we prove that the linear-programming (LP) relax-
ation of Pi has always an integer solution. Before proving
such a result, we turn our attention to the LP relaxation of
Pi, that we denote Pi

LP, studying its properties and solution.

A Solution to P i
LP

Our first result establishes that we can focus on a sim-
pler, two-variable problem instead of the original n-variable
problem.

Theorem 2 Assume N i = 〈v0, . . . , vn〉, and let j be such
that aj � (x, y) � aj+1. Then Pi

LP is equivalent to P̂i
LP,

defined as:

Minimize αj‖vj‖+ αj+1‖vj+1‖ (13)

subject to:
αjvj + αj+1vj+1 = (x, y), (14)

893

Proof: Assume that the optimal solution to Pi
LP is an assign-

ment, σ, to all variables αi such that σ(αk) > 0, for some
k such that k < j. (The same proof below can be slightly
modified to accommodate the case in which k > j + 1,
but we omit this for simplicity.) Now consider the curve
formed by putting all vectors vi one after the other, with vk
put first. Because the curve ends in (x, y) and starts in (0, 0),
it must itersect the ray generated by vector vj . This curve
can then be “split” into two parts: the part that goes before
such an intersection, and the part that goes after the intersec-
tion. Moreover, there is one of the vectors that crosses the
ray of vj , and such a vector cannot be vk. Let us assume this
vector is vT .

Now we formalize the fact that the sum can be separated
in two parts, one containing the vectors before the intersec-
tion; the other, containing the vectors after it. This means
(x, y) can be expressed as the sum of vectors whose indices
are in two disjoint sets: A− and A+, representing, respec-
tively the vectors before and after the intersection. Note that
A− is non-empty since it must contain k. Furthermore, for
some positive value m and some non-negative value β ≤ αT

we have that:
∑

�∈A−
α�v� + βvT = mvj , for some m (15)

mvj + (αT − β)vT +
∑

�∈A+

α�v� = (x, y) (16)

Note that Equation 16 yields a different assignment, say σ′,
that satisfies all constraints of Pi

LP and which assigns to 0 all
αi such that i ∈ A−. Furthermore D(σ′) < D(σ). Indeed,
this new assignment has replaced a curve of the original so-
lution by a straight line.

The argument above can be used with any assignment that
uses vectors whose index is either lower than j or greater
than j + 1. We conclude therefore that the optimal solution
must be such that αi = 0, for every i such that 0 ≤ i < j or
such that j + 1 < i ≤ n. Therefore, the solution to Pi

LP is
equivalent to that of P̂i

LP.
Observe, finally that P̂i

LP has only one feasible assignment
yielded by the solution to Equation 14, which must be such
that both αj and αj+1 be positive. �
Given Theorem 2, a solution to Pi

LP can be computed very
easily since P̂i

LP has only one feasible point. Specifically,
this is the assignment to αj and αj+1 that solves the system
of two linear equations of Equation 14. Observe also that the
solution to Pi

LP can therefore be computed in constant time.
The following result finally establishes that a solution to

P̂i
LP has an integer solution, for every i ≥ 0, and therefore

that it is a solution for Pi.

Theorem 3 P̂i
LP has an integer optimal solution, for every

i ≥ 0.

Proof: We prove that the values for αj and αj+1 that sat-
isfy Equation 14, are integer, for every i. The proof is by
induction on i. For the base case, observe that for i = 0 the
solution is αj = x and αj+1 = y, and thus integer.

Now we assume that the solution for P̂k
LP is integer. Let

us assume that Equation 14 for P̂k+1
LP is:

αjvj + αj+1vj+1 = (x, y), (17)

Beacause vj and vj+1 are consequtive pairs in N k+1, one
of them is in N k whereas the other is the sum of two ele-
ments in N k. Without loss of generality, let us assume the
former is vj+1 and that the latter is vj . Then we can rewrite
Equation 17 as αjvj−1 + αjvj+1 + αj+1vj+1 = (x, y), or
equivalently:

αjvj−1 + (αj + αj+1)vj+1 = (x, y), (18)

where vj−1, vj+1 ∈ N k. Now we use the inductive hypoth-
esis to conclude that the system of equations given by (18)
has an integer solution; hence αj and αj +αj+1 are integer,
which ultimately implies αj+1 is integer too. �

The following result is straightforward from Theorem 3.
We infer our heuristics and canonical orderings from there.

Corollary 1 Assume N k−2 = 〈v0, . . . , vm〉, and that cell
(x, y) is in the positive quadrant. Furthermore, let j be such
that vj � (x, y) � vj+1. Then (x, y) can be reached opti-
mally from (0, 0) on the 2k-neighborhood using an integer
combination of vj and vj+1.

The 2k-Tile Heuristic for 2k-Grids

From Theorems 2 and 3, we obtain the following algo-
rithm that computes length of the optimal path to a point
(x, y) in a 2k-connected neighborhood, assuming Nk−2 =
〈v0, . . . , vm〉:
1. Determine an j such that vj � (x, y) � vj+1. This can

be done by iterating over the elements of Nk−2. This can
be checked efficiently using a binary search scheme.

2. Solve the system of two linear equations given by Equa-
tion 17, and return αj‖vj‖+ αj+1‖vj+1‖.

Algorithm 1 shows heuristics for some 2k-neighborhoods.

Canonical Orderings for 2k

We have formally characterized the 2k−neighborhoods and
given admissible heuristics which are perfect for obstacle-
free grids. Yet an important issue of 2k−neighborhoods is
the increase in branching factor, which is exponential with
k. By just observing this fact one might, at first sight, dis-
card an A* implementation of 2k−neighborhoods. Indeed,
with each A* expansion we would need to generate 2k suc-
cessors, many of which potentially have to be added to the
Open list, incurring in much overhead.

Nevertheless an opposing and quite interesting observa-
tion is that in obstacle-free 2k−grids, the number of optimal
paths between two cells may decrease exponentially as k
increases. To see this, let us consider the number of paths
between (0, 0) and (4, 2). When k = 2 (4-neighborhood),
we reach (4, 2) with any sequence of moves that has 4 verti-
cal moves and 2 horizontal moves, yielding 6!

4!2! = 15 paths.
When k = 3 (8-neighborhood), we require 2 diagonal (1,1)

894

Algorithm 1: Heuristics for the 8-, 16-, and 32-
neighborhoods

1 function h8(x, y)
2 if x > y then swap x and y

3 return (y − x) +
√
2x

4 function h16(x, y)
5 if x > y then swap x and y
6 if 2x < y then

7 return (y − 2x) +
√
5x

8 else

9 return
√
5(y − x) +

√
2(2x − y)

10 function h32(x, y)
11 if x > y then swap x and y
12 if 3x < y then

13 return (y − 3x) +
√
10x

14 else if 2x < y then

15 return
√
10(y − 2x) +

√
5(3x − y)

16 else if 3x < 2y then

17 return
√
5(2y − 3x) +

√
13(2x − y)

18 else

19 return
√
13(y − x) +

√
2(3x − 2y)

movements plus 2 vertical movements, yielding 4!
2!2! = 6 op-

timal paths. Finally, when k ≥ 4 there is only one optimal
path with two (2, 1) moves.

Thus even though the branching factor increases expo-
nentially with k, the number of optimal paths between two
points may decrease exponentially with k. Therefore, at
least at a theoretical level, it is not obvious that increasing
k should degrade performance of a standard A*.

But recent developments in 8-neighbor grid pathfind-
ing can also be leveraged for the 2k−neighborhoods.
Canonical orderings—recently described by Sturtevant and
Rabin (2016), but originally underlying in the Jump
Point Search (JPS) (Harabor and Grastien 2011; 2014)
algorithm—is one of these. A canonical ordering is a to-
tal order between paths on an 8-neighbor obstacle-free grid
where paths that have diagonal movements first are preferred
to those that use diagonal movements later.

Sturtevant and Rabin (2016) showed how to incorporate
the notion of canonical orderings within best-first search
(A*, in particular) for 8-neighbor grids. In summary, there
are two elements that need to be incorporated. First, we dis-
tinguish between two types of nodes: bidimensional and uni-
dimensional. The former nodes may generate successors in
more than one direction, whereas the latter may only gen-
erate one successor in a single direction. The initial state
of the search is a bidimensional node that has 8 successors.
To make the description more precise, a bidimensional node
(x + d, y + d) whose parent is (x, y) (thus, d ∈ {−1, 1})
may expand nodes (x + 2d, y + 2d), (x + d, y + 2d) and
(x + 2d, y + d). The first is a bidimensional node, whereas
the latter two are set to be unidimensional. Furthermore, if
(x + d, y) is a unidimensional node whose parent is (x, y)
(thus, d ∈ {−1, 1}) may expand only (x+2d, y) and such a
successor is set as unidimensional. The description is anal-
ogous for unidimensional the form (x, y + d). If (x′, y′) is
the successor of (x, y) following the rules described above,
we say that (x′, y′) is a canonical successor of (x, y).

S

G

Figure 2: Left: An ilustration of the preferred canonical
paths on the 16-neighborhood. Right: A preferred canon-
ical path (in black) and non-preferred paths between S and
G (in gray).

The second element that needs to be incorporated are
jump points. These are certain cells in the grid which, if ex-
panded, have to be considered as bidimensional, even if they
were generated by a unidimensional node. More generally,
these are nodes that have forced successors; that is, they will
generate successors that do not follow the rules imposed by
the canonical order. Forced successors are required to pre-
serve completeness. In the proximity of an obstacle, it may
happen that a cell is not the canonical successor of any cell
and thus we must guarantee such a cell is generated by some
other reachable cell. Formally, a node (x′, y′) is a forced
successor of (x, y) if (1) (x′, y′) is a successor of (x, y) and
(2) (x′, y′) is not a canonical successor of any other node
(x′′, y′′). The geometric conditions under which a cell is set
to be a jump point are described in detail by Sturtevant and
Rabin (2016).

Canonical A*, the version of A* that results from impos-
ing canonical successors, has the interesting advantage that
average branching factor is reduced, and, moreover, because
of the ordering, each cell can only be generated once which
also has an impact on performance (because, potentially, the
number of times a state may enter the Open list is reduced).

Defining a canonical ordering for 2k is surprisingly sim-
ple. This is because by Corollary 1 we know that each cell in
the obstacle-free grid is reached optimally by applying only
two types of moves from N k−2, vj and vj+1, for some j. To
define a canonical ordering we simply need to define which
of these movements we prefer. To subsume the definition
for 8-neighbor grids, we prefer to use first the movement
whose subindex is an odd number. Observe that this means
we prefer (1, 1) over (1, 0) on 8-connected grids.

Given this canonical ordering it is simple to define canon-
ical successors in a manner that is analogous to 8-neighbor
grids. Indeed, there are two types of nodes: unidimen-
sional and bidimensional. The initial state is a bidimen-
sional node with 2k successors. Like above, unidimensional
nodes may expand a single nodes in the direction from which
they where expanded. A bidimensional node (x, y) that was
expanded by applying movement vj in Nk−2 (we restrict
to the positive quadrant for simplicity) may expand only
3 succesors (x, y) + vj , (x, y) + vj−1, and (x, y) + vj+1,
where the first is a bidimensional node and the 2 following
are unidimensional nodes. An important observation is that

895

2k-tile Heuristics Euclidean Heuristics

N Cost Mov Exp Perc Time Exp Perc Time
Starcraft

4 804.2 804 55,501 313,662 10.59 110,911 918,104 25.42
8 668.0 570 52,840 595,331 12.98 69,373 619,202 17.40

16 642.5 425 52,884 607,963 17.17 58,182 601,855 18.56
32 637.0 335 53,147 621,548 24.16 55,165 618,450 24.87
64 635.4 273 53,217 657,585 37.94 54,161 650,121 38.12

128 634.8 230 53,279 690,190 60.32 53,769 685,635 60.84
BG

4 304.6 305 8,025 37,310 1.55 16,161 109,059 3.46
8 247.4 207 6,881 62,412 1.67 9,943 73,383 2.40

16 239.0 159 6,818 65,002 2.07 8,066 69,749 2.42
32 237.1 128 6,771 65,910 2.89 7,370 70,011 3.12
64 236.5 105 6,711 70,723 4.50 7,052 72,990 4.69

128 236.3 88 6,694 75,605 7.49 6,895 77,309 7.69
WC3

4 245.3 245 6,979 33,532 1.37 14,160 99,299 3.19
8 206.8 179 6,696 64,297 1.65 9,102 69,477 2.23

16 199.8 139 6,772 68,030 2.14 7,684 69,219 2.40
32 198.1 113 6,803 69,741 3.05 7,192 71,280 3.19
64 197.5 93 6,770 75,119 4.84 6,987 75,450 4.95

128 197.3 80 6,764 80,179 8.05 6,889 80,515 8.15

Table 1: A* on the 2k-Neighborhood.

 8
 10

 25

 50

 100

4 8 16 32 64 128

R
un

tim
e

(m
s)

 (
lo

g
sc

al
e)

Neighborhoods

Regular A* - 2^k Heuristics
Regular A* - ED Heuristics

Canonical A* - 2^k Heuristics
Canonical A* - ED Heuristics

Figure 3: Average runtime in Starcraft maps.

most bidimensional nodes, like in 8-neighbor grids, have a
branching factor of 3, independent of k. Figure 2 shows an
illustration of canonical paths on the 16-neighhorhood.

Forced neighbors are defined as described above. A cell is
a jump point if it is a jump point on the 8-neighborhood. The
proof of the following result is straightforward but requires
an enumeration of cases (omitted for space).

Theorem 4 Canonical A* on the 2k-Neighborhood is com-
plete.

Empirical Findings

The objective of our evaluation was threefold. First, we
wanted to investigate the impact of using 2k-neighbor grids
in pathfinding with A*, the most standard heuristic search
algorithm, comparing the performance of the 2k-tile heuris-
tic with the Euclidean heuristic. Second, we wanted to in-
vestigate the impact of using canonical orders in pathfinding

2k-tile Heuristics Euclidean Heuristics

N Exp Perc Time Exp Perc Time
Starcraft

4 58,617 195,956 8.79 110,941 888,288 23.67
8 53,620 587,413 10.72 69,386 557,109 14.28

16 53,174 516,861 11.65 58,191 473,421 12.53
32 53,259 495,083 12.56 55,173 467,565 12.59
64 53,304 505,937 13.80 54,166 490,821 12.62

128 53,335 546,201 15.29 53,774 535,795 14.20
BG

4 10,859 28,767 1.60 16,192 105,458 3.39
8 7,950 68,281 1.51 9,957 65,254 2.00

16 7,223 55,004 1.49 8,079 52,756 1.66
32 6,946 51,589 1.53 7,382 50,600 1.58
64 6,785 52,365 1.63 7,062 52,457 1.57

128 6,752 57,027 1.89 6,903 56,930 1.69
WC3

4 8,283 23,617 1.25 14,183 97,017 3.08
8 7,089 62,609 1.37 9,112 61,797 1.84

16 6,926 54,974 1.46 7,692 52,467 1.61
32 6,859 52,956 1.53 7,198 51,358 1.55
64 6,810 54,515 1.62 6,992 53,671 1.55

128 6,792 59,054 1.88 6,893 58,432 1.67

Table 2: Canonical A* on the 2k-Neighborhood.

with A* in 2k-neighbor grids, and to compare regular A*
with canonical A*. Third, we wanted to do a preliminary
study on the performance of Theta* (Daniel et al. 2010) and
pathfinding with 2k-neighbor grids.

All algorithms have a common code base and use a stan-
dard binary heap for Open. All experiments were ran on a
2.60GHz Intel Core i7 under Linux.

We used maps from the MovingAI repository (Sturte-
vant 2012). Specifically, we used five Starcraft maps of
size 1024 × 1024 cells (Cauldron, Expedition, Octopus,
PrimevalIsles and TheFrozenSea), all 75 maps of size 512×
512 from the video game Baldur’s Gate (BG) and all 36
maps of size 512 × 512 maps from the video game World
of Warcraft III (WC3). For each Starcraft map we generated
150 random solvable problems. For each BG and WC3 map
we generated 50 random solvable problems. We present av-
erages of 750 problems on Starcraft (5 × 150), 3750 prob-
lems on BG (75× 50) and 1800 problems on BG (36× 50).

Table 1 shows the average solution cost (Cost), agent
moves (Mov), cell expansions (Exp), heap percolations
(Perc) and runtime (Time) of regular A* for different neigh-
borhoods. We evaluated six values for 2k: 4, 8, 16, 32, 64
and 128. The expansions, percolations, and runtime are
shown for A* with the 2k-tile heuristic and A* with Eu-
clidean heuristic. We make the following observations.

• Solution cost improves when k increases in all three
benchmarks. The improvements are marginal as k in-
creases over 5 (32-neighborhood).

• The runtime increases with k in all three benchmarks.
This can be explained by the larger branching factor.

• A* runs faster using the 2k-tile heuristic than using the
Euclidean heuristic, for every k. Nonetheless, for k ≥ 8
(256-neighborhood) A*, used with ED is slightly faster
due to the overhead in computing our heuristic.

Table 2 shows cell expansions, heap percolations and run-
time of A* with canonical orders for the two heuristics.

896

With both, runtime increases smoothly. We can observe
that Canonical A* is more efficient than regular A*, espe-
cially for higher values of k. Here, the 2K-tile heuristic
is more efficient than the Euclidean heuristic up to k = 5
(32-Neighborhood), for higher values of k, the opposite hap-
pens. This can be explained by the overhead to compute the
heuristics. In regular A* the overhead of cell expansions
dominate the overhead to calculate the heuristics. In Canon-
ical A*, the overhead of cell expansions is reduced drasti-
cally. Figure 3 shows in the Starcraft maps, how the runtime
increases when the amount of neighbor increases.

Finally, we implemented 2k-neighborhood on top of the
regular A* code used in (Uras and Koenig 2015) (Code
available at: http://idm-lab.org/anyangle). The original code
was used to evaluated any-angle search algorithms. We com-
pared Theta* with the octile distance as heuristic with reg-
ular A* with the 2K-tile heuristic with different neighbor-
hoods on the Dragon Age: Origins maps. We used the sce-
narios of the MovingAI repository as test cases. The main
observation is that from 2k = 32, the solution cost returned
by regular A* is better than the solution cost returned by
Theta*, and for 2k = 32, regular A* is 1.37 times faster
than Theta*. For higher values of 2k, regular A* is slower
than Theta*.

Summary and Perspectives

We presented three key contributions towards the construc-
tion of effective grid path planners on the 2k-neighborhood.
First, we formally define the 2k-neighborhood; second, we
propose the 2k-tile heuristic, and third, we define canoni-
cal orderings. We show that, indeed, using larger neigh-
borhoods yields better solutions with a small sacrifice in
runtime. Moreover, we showed that our Regular A* im-
plementation is competitive with Theta*, a state-of-the-art
sub-optimal any-angle path planner.

This research opens the door to future work that could
investigate the use of 2k−neighborhoods in any-angle in-
cremental search, a problem relevant in robotics, and could
compare its performance with optimal any-angle path plan-
ners such as Anya (Harabor et al. 2016). Integration of these
techniques into state-of-the-art subgoaling techniques and
jump point search, which currently yield very fast planners,
is also a promising avenue of research.

Acknowledgements

We thank Antonio Dı́az for his implementation of the 2k

neighborhood on top of the Theta* Codebase. We thank Di-
etrich Daroch for his comments on an earlier draft of this
paper. Nicolás Rivera acknowledges funding from the Be-
cas Chile initiative. Carlos Hernández and Jorge Baier are
grateful to Fondecyt which partly funded this work through
grants 1150328 and 1161526.

References

Aine, S., and Likhachev, M. 2016. Truncated incremental
search. Artificial Intelligence 234:49–77.
Björnsson, Y.; Enzenberger, M.; Holte, R. C.; and Schaeffer, J.

2005. Fringe search: Beating A* at pathfinding on game maps.
CIG 5:125–132.
Botea, A., and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the 23rd
International Conference on Automated Planning and Schedul-
ing (ICAPS). AAAI.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelli-
gence Research 39:533–579.
Harabor, D. D., and Grastien, A. 2011. Online graph pruning for
pathfinding on grid maps. In Burgard, W., and Roth, D., eds.,
Proceedings of the 25th AAAI Conference on Artificial Intelli-
gence (AAAI). AAAI Press.
Harabor, D. D., and Grastien, A. 2014. Improving jump point
search. In Chien, S. A.; Do, M. B.; Fern, A.; and Ruml, W., eds.,
Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS). AAAI.
Harabor, D.; Grastien, A.; Oz, D.; and Aksakalli, V. 2016. Op-
timal any-angle pathfinding in practice. Journal of Artificial In-
telligence Research 56:89.
Lee, J.-Y., and Yu, W. 2009. A coarse-to-fine approach for fast
path finding for mobile robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2009. IROS 2009.,
5414–5419. IEEE.
Marchand-Maillet, S., and Sharaiha, Y. M. 1997. Discrete con-
vexity, straightness, and the 16-neighborhood. Computer Vision
and Image Understanding 66(3):316–329.
Nash, A. 2012. Any-Angle Path Planning. Doctor of Philoso-
phy, University of Southern California.
Rivera, N.; Illanes, L.; Baier, J. A.; and Hernández, C. 2014.
Reconnection with the ideal tree: A new approach to real-time
search. Journal of Artificial Intelligence Research 50:235–264.
Sturtevant, N. R., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. In Proceedings of the 20th Na-
tional Conference on Artificial Intelligence (AAAI), 1392–1397.
Sturtevant, N. R., and Rabin, S. 2016. Canonical orderings
on grids. In Kambhampati, S., ed., Proceedings of the 25th In-
ternational Joint Conference on Artificial Intelligence (IJCAI),
683–689. IJCAI/AAAI Press.
Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.; Koenig,
S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin, S. 2015. The
grid-based path planning competition: 2014 entries and results.
In Lelis, L., and Stern, R., eds., Proceedings of the 8th Sympo-
sium on Combinatorial Search (SoCS), 241. AAAI Press.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games
4(2):144 – 148.
Uras, T., and Koenig, S. 2015. An empirical comparison of any-
angle path-planning algorithms [short paper]. In Proceedings of
the 8th Symposium on Combinatorial Search (SoCS), 206–210.
AAAI Press.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal graphs
for optimal pathfinding in eight-neighbor grids. In Borrajo, D.;
Kambhampati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of
the 23rd International Conference on Automated Planning and
Scheduling (ICAPS). AAAI.

897

