
On Equivalence and Inconsistency of
Answer Set Programs with External Sources∗

Christoph Redl
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
redl@kr.tuwien.ac.at

Abstract
HEX-programs extend of answer-set programs (ASP) with ex-
ternal sources. In previous work, notions of equivalence of
ASP programs under extensions have been developed. Most
well-known are strong equivalence, which is given for pro-
grams P and Q if P ∪ R and Q ∪ R have the same answer
sets for arbitrary programs R, and uniform equivalence, which
is given if this is guaranteed for sets R of facts. More fine-
grained approaches exist, which restrict the set of atoms in
the added program R. In this paper we provide a characteriza-
tion of equivalence of HEX-programs. Since well-known ASP
extensions (e.g. constraint ASP) amount to special cases of
HEX, the results are interesting beyond the particular formal-
ism. Based on this, we further characterize inconsistency of
programs wrt. program extensions. We then discuss possible
applications of the results for algorithms improvements.

1 Introduction
Answer-Set Programming (ASP) is a declarative program-
ming paradigm based on nonmonotonic programs and a multi-
model semantics (Gelfond and Lifschitz 1991). In previous
works, characterizations of equivalence of answer set pro-
grams under programs extensions have been developed. That
is, two programs P and Q are considered to be equivalent if
P ∪R and Q∪R have the same answer sets for all programs
R of a certain type, which depends on the notion of equiv-
alence. Most importantly, for strongly equivalent programs
we have that P ∪R and Q∪R have the same answer sets for
any program R (Lifschitz, Pearce, and Valverde 2001), while
uniformly equivalent programs guarantee this only if R is a
set of facts (Eiter and Fink 2003). Later, these notions were
extended to the non-ground case (Eiter et al. 2005a). A more
fine-grained approach is the one by Woltran [2007], where R
can contain rules other than facts, but the sets of atoms which
can occur in rule heads and bodies are restricted.

HEX-programs are an extension of ASP with external
sources such as description logic ontologies and Web re-
sources. So-called external atoms pass information from
the logic program (given by predicate extensions and con-
stants), to an external source, which in turn returns val-
ues to the program. For instance, the external atom

∗This research has been supported by the Austrian Science Fund
(FWF) project P27730.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

&synonym[car](X) might be used to find the synonyms
X of car , e.g. automobile . Also recursive data exchange be-
tween the program and external sources is supported, which
leads to high expressiveness of the formalism.

In this paper, we present a characterization of equivalence
and of inconsistency of HEX-programs. Since well-known
ASP extensions (such as programs with aggregates (Faber,
Leone, and Pfeifer 2011) and constraint ASP (Gebser, Os-
trowski, and Schaub 2009)) amount to special cases of HEX-
programs, the results are interesting beyond the specific for-
malism. Our approach is based on a recent technique for
inlining of external atoms and a generalization of results
by Woltran [2007] from ordinary ASP programs to HEX-
programs. We are able to show that equivalence can be
characterized similarly to ordinary ASP progams, which is
convenient; however, due to the support for external atoms
and the use of the FLP-reduct (Faber, Leone, and Pfeifer
2011) instead of the GL-reduct (Gelfond and Lifschitz 1988))
in the semantics of HEX-programs, this result is not immedi-
ate. Afterwards, we derive also a characterization of inconsis-
tency of a program wrt. program extensions, which we call
persistent inconsistency. While the main results are decision
criteria based on programs and their reducts, we further de-
rive a criterion for checking persistent inconsistency based on
unfounded sets; this is driven by possible applications. We
then give an outlook of an intended application of the results
to algorithmic improvements.

The structure of the paper is as follows:

• In Section 2 we recapitulate HEX-programs and an ap-
proach for external atom inlining.

• Based on this inlining approach, Section 3 characterizes
equivalence of HEX-programs, which generalizes results
by Woltran [2007]. The generalization of strong (Lifschitz,
Pearce, and Valverde 2001) and uniform equivalence (Eiter
and Fink 2003) correspond to special cases thereof.

• In Section 4 we present a characterization of inconsistency
of HEX-programs wrt. program extensions, which we call
persistent inconsistency. This characterization is derived
from the previously presented notion of equivalence.

• Section 5 presents envisaged applications of the results.

• In Section 6 we discuss related work and conclude.

For space reasons, proofs are outsourced to the extended

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1229

version at http://www.kr.tuwien.ac.at/research/projects/inthex/
hexequivalence-ext.pdf.

2 Preliminaries
A ground atom a is of form p(c1, . . . , c�) with predicate
symbol p and constant symbols c1, . . . , c� from a finite set
C, abbreviated as p(c); we write c ∈ c if c = ci for some
1 ≤ i ≤ �. An assignment Y over the (finite) set A of
atoms is a set Y ⊆ A; here a ∈ Y expresses that a is
true, also denoted Y |= a, and a �∈ Y that a is false, also
denoted Y �|= a. For a default-literal not a over atom a we
let Y |= not a if Y �|= a and Y �|= not a otherwise. An
assignment satisfies a set S of atoms, denoted Y |= S, if
Y |= a for some a ∈ S; it does not satisfy S, denoted
Y �|= S, otherwise.
HEX-Programs.. We briefly recall HEX-programs, which
generalize (disjunctive) logic programs under the answer set
semantics (Gelfond and Lifschitz 1991); for more details and
background, see Eiter et al. [2005b] and Eiter et al. [2014].
Syntax. HEX-programs extend ASP programs by external
atoms, which enable a bidirectional interaction between a
program and external sources of computation. An external
atom is of the form &g [p](c), where p = p1, . . . , pk is a list
of input parameters (predicate names or object constants),
called input list, and c = c1, . . . , cl are constant output terms.
Definition 1. A HEX-program P consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn ,

where each ai is an ordinary atom and each bj is either an
ordinary atom or an external atom.
For a rule r, its head is H(r) = {a1, . . . , ak}, its body
B(r) = {b1, . . . , bm, not bm+1, . . . , not bn}, its positive
body is B+(r) = {b1, . . . , bm} and its negative body is
B−(r) = {bm+1, . . . , bn}. For a program P we let X(P) =⋃

r∈P X(r) for X ∈ {H,B,B+, B−}.
In this paper we discuss only variable-free programs.

Semantics. Assignments are over the set A(P) of ordinary
atoms that occur in the program P at hand. The seman-
tics of an external atom &g [p](c) wrt. an assignment Y is
given by the value of a 1+k+l-ary two-valued (Boolean)
oracle function f&g that is defined for all possible values
of Y , p and c. Thus, &g [p](c) is true relative to Y iff
f&g(Y,p, c) = T, where the value of f&g(Y,p, c) depends
only on atoms p(c) ∈ Y such that p ∈ p (i.e., only those
atoms in Y influence the result, whose predicate occurs as in-
put parameter). In practice, oracle functions are implemented
as reasoner plugins in order to integrate external data or com-
putation sources. Similarily to Gelfond and Lifschitz [1991],
a rule r as by Definition 1 is true under Y , denoted Y |= r,
if Y |= h for some h ∈ H(r) or Y �|= b for some b ∈ B(r).

The answer sets of a HEX-program P are defined as fol-
lows. Let the FLP-reduct of P wrt. an assignment Y be
the set fPY = {r ∈ P | Y |= b for all b ∈ B(r)} of all
rules whose body is satisfied by Y (Faber, Leone, and Pfeifer
2011). Then
Definition 2. An assignment Y is an answer set of a HEX-
program P , if Y is a subset-minimal model of fPY . 1

1For ordinary Π, these are Gelfond & Lifschitz’s answer sets.

We let AS(P) denote the set of all answer sets of P .
Example 1. Consider the program P = {p ← &id [p]()},
where &id [p]() is true iff p is true. Then P has the answer set
Y1 = ∅; indeed it is a subset-minimal model of fPY1 = ∅.

External Source Inlining. We now recapitulate a rewrit-
ing which compiles HEX-programs into equivalent ordinary
ASP programs (modulo auxiliary atoms); for details we refer
to Redl [2017].

For an external atom e in a program P , we denote by
Ie,P the set of all ordinary atoms in P which are input to
e, i.e., whose predicate occurs as a predicate parameter in
e. Moreover, let Se,P = {A | A ⊆ Ie,P , A |= e} be the
set of all assignments over the input atoms of e in P which
satisfy e (previously, such a characterization of an external
atom was called a complete family of support sets). Note
that the possible exponentiality of Se,P is not relevant for our
purposes as we use it only as a theoretical construct.
Definition 3 (External Atom Inlining). Let P be a HEX-
program and e be an external atom which occurs only posi-
tively in P . We define:

P[e] = {xe ← S ∪ {ā | a ∈ Ie,P \ S} | S ∈ Se,P } (1)

∪
{
ā← not a; ā← xe

a ∨ ā← not x̄e

∣∣ a ∈ Ie,P

}
(2)

∪ {x̄e ← notxe} (3)
∪ P |e→xe

, (4)

where ā is a new atom for each a, xe and x̄e are new atoms
for e, and P |e→xe

=
⋃

r∈P r|e→xe
where r|e→xe

denotes
rule r with every occurrence of e replaced by xe.

Intuitively, atom xe represents that the former external
atom is true and x̄e that it is false. Each rule in (1) represents
one possibility to satisfy e. For an input atom a of e, the
auxiliary atom ā represents that a is false or that xe (resp. e)
is true, as formalized in (2), which amounts to a saturation
encoding. The rule (3) enforces x̄e to be true whenever xe is
false. and the rules (4) resemble the original program.

The following result states that external atoms can be in-
lined without changing the answer sets:
Proposition 1. For all HEX-programs P , external atoms e
in P , the answer sets of P are equivalent to P[e], modulo the
atoms newly introduced in P[e].

Obviously, multiple external atoms can be inlined by it-
erated application of the rewriting. For a program P and a
set E of external atoms in P we denote by P[E] the program
after all external atoms from E have been inlined.

3 Equivalence of HEX-Programs
In this section we present a notion for equivalence of HEX-
programs P and Q under extensions by additional rules R.
The possibly added rules are constrained such that their head
and body atoms and input atoms to external atoms can only
come from fixed sets.

We proceed as follows. In the first step, only the programs
P and Q can be HEX-programs, but the added program R
must be ordinary. This amounts to a generalization of the re-
sults by Woltran [2007] from ordinary ASP to HEX-programs.

1230

Note that because of external atoms in P and Q, which can
be nonmonotonic, and the use of the FLP- instead of the
GL-reduct, it is not immediate that this generalization goes
through. In the second step, we allow also the added program
R to contain external atoms. For this purpose, we exploit the
possibility to inline external atoms.

Generalizing Equivalence Results
In the following, for sets H and B of atoms we let P〈H,B〉 =
{P is an ASP program|H(P) ⊆ H, B+(P)∪B−(P) ⊆ B}
be the set of ordinay programs whose head and body atoms
come only from H and B, respectively.

Ordinary ASP programs P and Q are called 〈H,B〉-
equivalent, if the answer sets of P ∪ R and Q ∪ R are the
same whenever the ordinary ASP program R uses only head
atoms fromH and body atoms from B. We first lift this result
to the case where P and Q are general HEX-programs which
possibly contain external atoms; in the first step R remains
an ordinary ASP program. Formally:

Definition 4. HEX-programs P and Q are equivalent wrt. a
pair 〈H,B〉 of sets of atoms, or 〈H,B〉-equivalent, denoted
P ≡〈H,B〉 Q, if AS(P ∪ R) = AS(Q ∪ R) for all R ∈
P〈H,B〉.

Similarily, we write P ⊆〈H,B〉 Q if AS(P ∪ R) ⊆
AS(Q ∪R) for all R ∈ P〈H,B〉.

Towards a characterization of equivalence, one can first
show that if there is a counterexample R for P ≡〈H,B〉 Q,
i.e., an R ∈ P〈H,B〉 such that AS(P ∪ R) �= AS(Q ∪ R),
then there is also a ‘simple’ counterexample in form of a
positive program R′ ∈ P〈H,B〉.

Proposition 2. Let P and Q be HEX-programs, R be an
ordinary ASP program, and Y be an interpretation s.t. Y ∈
AS(P∪R) but Y �∈ AS(Q∪R). Then there is also a positive
ordinary ASP program R′ such that Y ∈ AS(P ∪ R′) but
Y �∈ AS(Q∪R′) and B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

Next, we show that the concepts on equivalence generalize
from ordinary ASP to HEX-programs. In the following, for
an interpretation Y and a set of atoms A we write Y |A for
Y ∩A. Moreover, for sets of atoms X , Y we write X ≤BH Y
if X|H ⊆ Y |H and X|B ⊇ Y |B. Intuitively, if X ≤BH Y
then Y satisfies all positive programs from P〈H,B〉 which are
also satisfied by X because it satisfies no fewer heads and
no more bodies than X . We write X <BH Y if X ≤BH Y and
X|H∪B �= Y |H∪B.

We use the following concept for witnessing that AS(P ∪
R) ⊆ AS(Q ∪R) does not hold.

Definition 5. A witness for P �⊆〈H,B〉 Q is a pair (X,Y) of
interpretations with X ⊆ Y such that2:

(i) Y |= P and for each Y ′ � Y with Y ′ |= fPY we have
Y ′|H � Y |H; and

(ii) if Y |= Q then X � Y , X |= fQY and for all X ′ with
X ≤BH X ′ � Y we have X ′ �|= fPY .

2Note that Woltran [2007] called this a witness for P ⊆〈H,B〉 Q,
but since it is actually a witness for the violation of the containment,
we change the terminology.

The idea is that a witness represents a counterexample to
the containment, where X characterizes a program R such
that Y is an answer set of P ∪R but not of Q ∪R. One can
show that the existence of a witness and the violation of the
containment are equivalent.

Because some steps in the according considerations for
ordinary ASP depend on the fact that GL-reducts of programs
wrt. assignments are positive programs (cf. ≤BH), it is an
interesting result that the following propositions still hold in
its generalized form. Because we use FLP-reducts instead,
and P and Q might even contain nonmonotonic external
atoms, the results do not automatically carry over. However,
a closer analysis reveals that the property of being a positive
program is only required from reducts of R but not of P or
Q. Since we restricted R to ordinary ASP programs for now,
and Proposition 2 allows us to further restrict it to positive
programs, the use of the FLP-reduct does not harm: if R is
positive from the beginning, then also its FLP-reduct (wrt. any
assignment) is positive.

Proposition 3. For HEX-programs P and Q and sets H and
B of atoms, there is a program R ∈ P〈H,B〉 with AS(P ∪
R) �⊆ AS(Q ∪R) iff there is a witness for P �⊆〈H,B〉 Q.

While witnesses compare the sets of answer sets of two
programs directly, the next concept of 〈H,B〉-models can be
used to characterize a single program. In the following, for
two sets of atomsH and B, a pair (X,Y) of interpretations is
called ≤BH-maximal for P if X |= fPY and for all X ′ with
X <BH X ′ � Y we have X ′ �|= fPY .

Definition 6. Given sets H, B of atoms, a pair (X,Y) of
interpretations is an 〈H,B〉-model of a program P if

(i) Y |= P and for each Y ′ � Y with Y ′ |= fPY we have
Y ′|H � Y |H; and

(ii) if X � Y then there exists an X ′ � Y with X ′|H∪B =
X such that (X ′, Y) is ≤BH-maximal for P .

One can show that 〈H,B〉-equivalence of two programs
can be reduced to a comparison of their 〈H,B〉-models.
We denote the set of all 〈H,B〉-models of a program P by
σ〈H,B〉(P).

Proposition 4. For sets H and B of atoms and HEX-
programs P and Q, we have P ≡〈H,B〉 Q iff σ〈H,B〉(P) =
σ〈H,B〉(Q).

We demonstrate the lifted results using two examples.

Example 2. Consider the programs P = {a ←
&neg [b](); b← &neg [a](); a← b} and Q = {a∨b; a← b}
where &neg [x]() evaluates to true whenever x is false and to
true otherwise.

For H = {a, b} and B = {b} we have that σ〈H,B〉(P) =
σ〈H,B〉(Q) = {({a}, {a}), ({a}, {a, b}), ({a, b}, {a, b})},
and thus the programs are 〈H,B〉-equivalent. The most inter-
esting candidate which fails to be an 〈H,B〉-model of either
progam is (∅, {a, b}). For P we have that fP {a,b} = {a←
b}, of which ∅ is a model, but for {a}we have ∅ ≤BH {a} � Y

and {a} |= fP {a,b}, thus ∅ is not ≤BH-maximal for P . For Q
we have that fQ{a,b} = {a ∨ b; a← b}, which is unsatisfied
under ∅.

1231

Example 3. Consider the programs P and Q from Example 2
and H = {a, b} and B = {a, b}. We have that σ〈H,B〉(P) =
{({a}, {a}), (∅, {a, b}), ({a}, {a, b}), ({a, b}, {a, b})}.
Note that (∅, {a, b}) is now an 〈H,B〉-model of P because
∅ is a model of fP {a,b} = {a ← b} and there is no X ′

with ∅ ≤BH X ′ � Y with X ′ |= fP {a←b} (because now
∅ �≤BH {a}); thus ∅ is ≤BH-maximal for P . On the other hand,
σ〈H,B〉(Q) = {({a}, {a}), ({a}, {a, b}), ({a, b}, {a, b})}.
That is, (∅, {a, b}) is still not an 〈H,B〉-model of Q because
∅ is not a model of fQ{a,b} = {a ∨ b; a← b}. And thus the
programs are not 〈H,B〉-equivalent.

Indeed, for R = {b ← a} ∈ P〈H,B〉 we have that Y =
{a, b} is an answer set of Q ∪R but not of P ∪R.

Adding General HEX-Programs
Until now we allow only the addition of ordinary ASP pro-
grams R ∈ P〈H,B〉. As a preparation for the addition of HEX-
programs, we show that if programs P and Q are 〈H,B〉-
equivalent, then sets B and H can be extended by atoms
that do not appear in P and Q and the programs are still
equivalent wrt. the expanded sets. Intuitively, this allows in-
troducing auxiliary atoms without harming their equivalence.
Afterwards, we extend the above results to the case where R
is a general HEX-program.

Expanding Sets B andH. If programs P and Q are 〈H,B〉-
equivalent, then they are also 〈H′,B′〉-equivalent whenever
H′ \ H and B′ \ B contain only atoms which do not appear
in P or Q. This is intuitively the case because such atoms
cannot interfere with atoms which are already in the program.

Formally, one can show the following result:

Proposition 5. For sets H and B of atoms, HEX-programs
P and Q, and an atom a which does not occur in P or Q,
the following holds:

(i) P ≡〈H,B〉 Q iff P ≡〈H∪{a},B〉 Q; and
(ii) P ≡〈H,B〉 Q iff P ≡〈H,B∪{a}〉 Q.

By iterative applications of this result we get further:

Corollary 1. For sets H and B of atoms, programs P and
Q, and an sets of atoms H′ and B′ which does not occur in
P or Q, we have P ≡〈H,B〉 Q iff P ≡〈H∪H′,B∪B′〉 Q.

Addition of General HEX-Programs. In the following, for
sets H, B of atoms we let Pe

〈H,B〉 denote the set
{

HEX-program P
∣∣ H(P) ⊆ H, B+(P) ∪B−(P) ⊆ B,

only B are input to external atoms

}

of general HEX-programs whose head atoms come only from
H, and whose body atoms and input atoms to external atoms
come only from B (the latter restriction is necessary since
these atoms appear in bodies of our rewriting in Lemma 1
below), respectively. We then extend Definition 4 as follows.

Definition 7. HEX-programs P and Q are e-equivalent wrt. a
pair 〈H,B〉 of sets of atoms, or 〈H,B〉e-equivalent, denoted
P ≡e

〈H,B〉 Q, if AS(P ∪ R) = AS(Q ∪ R) for all R ∈
Pe
〈H,B〉.

Towards a characterization of 〈H,B〉e-equivalence, we
make use of external atom inlining as by Definition 3 without
changing the answer sets of a program, cf. Proposition 1.

We start with a technical result which allows for renaming
a predicate input parameter pi ∈ p of an external atom
e = &g [p](c) in a program P to a new predicate q which
does not occur in P . This allows us to rename predicates
such that inlining does not introduce rules which derive atoms
other than auxiliaries, which is advantageous in the following.

The idea of the renaming is to add auxiliary rules which
define q such that its extension represents exactly the former
atoms over pi, i.e., each atom pi(d) is represented by q(pi,d).
Then, external predicate &g is replaced by a new &g ′ whose
semantics is adopted to this encoding of the input atoms.

For the formalization of this idea, let p|pi→q be vector p
after replacement of its i-th element pi be q. Moreover, for
an assignment A let Aq = A ∪ {pi(d) | q(pi,d) ∈ A} be
the extended assignment which ‘extracts’ from each atom
q(pi,d) ∈ A the original atom pi(d). Then one can show:
Lemma 1. For an external atom e = &g [p](c) in program P ,
pi ∈ p, a new predicate q, let e′ = &g ′[p|pi→q](c) s.t.
f&g′(A,p|pi→q, c) = f&g(A

q,p, c) for all assignments A.
For P ′ = P |e→e′ ∪ {q(pi,d) ← pi(d) | pi(d) ∈ A(P)},

AS(P) and AS(P ′) coincide, modulo atoms q(·).
We now come to the actual inlining. Observe that Defini-

tion 3 is modular in the sense that inlining external atoms
E in a program P affects only the rules of P containing
some of E and adds additional rules, but does not change the
remaining rules. If X�Y = (X \ Y) ∪ (Y \ X) denotes
the symmetric difference between sets X and Y , one can
formally show:
Lemma 2. For a HEX-program P and a set of exter-
nal atoms E in P , we have P�P[E] = {r ∈ P |
none of E occur in r}.

This equips us to turn to our main goal of characterizing
equivalence of HEX-programs. If programs P and Q are
〈H,B〉-equivalent, then P ∪ R and Q ∪ R have the same
answer sets for all ordinary ASP-programs R ∈ P〈H,B〉.
We will show that equivalence holds in fact even for HEX-
programs R ∈ Pe

〈H,B〉. To this end, assume that P and Q are
〈H,B〉-equivalent for some H and B and let R ∈ Pe

〈H,B〉.
We apply the following transformation to all external

atoms E in P ∪R and Q∪R which appear in the R part, but
not in the P part or Q part3:
(1) rename their input parameters using Lemma 1; and
(2) subsequently inline them by applying Definition 3.

Let R′ denote the result after applying the two steps to R.
Note that neither of the two steps modifies P or Q: for (1)
this is by construction of the modified program in Lemma 1,
for (2) this follows from Lemma 2. As observable from
Lemma 1 and Definition 3, head atoms H(R′) in R′ come
either from H(R) or are newly introduced auxiliary atoms;

3If the same external atom e is shared between P and R resp. Q
and R, the restriction of the inlining to the R part is still possible
by standardizing external atoms in R apart from those in P and Q,
e.g., by introducing a copy of the external predicate.

1232

the renaming as by Lemma 1 prohibits that H(R′) contains
input atoms to external atoms in R. Body atoms B(R′) in R′
come either from B(R), from input atoms to external atoms
in R (see rules (2)), or are newly introduced auxiliary atoms.
Since R ∈ Pe

〈H,B〉, this implies that H(R′) ⊆ H ∪ H′ and
B(R′) ⊆ B ∪ B′, where H′ and B′ are newly introduced
auxiliary atoms. Since the auxiliary atoms do not occur in
P and Q, by Corollary 1 they do not harm equivalence, i.e.,
〈H,B〉-equivalence implies 〈H ∪ H′,B ∪ B′〉-equivalence.
Thus, 〈H,B〉-equivalence of P and Q implies that P ∪ R′
and Q ∪R′ have the same answer sets.

The claim follows then from the observation that, due
to Lemma 1 and soundness and completeness of inlining
(cf. Proposition 1), P ∪R and Q ∪R have the same answer
sets whenever P ∪R′ and Q∪R′ have the same answer sets.

Example 4. Consider the programs

P ={a← &neg [b](); b← &neg [a](); a← b}
Q ={a ∨ b; a← b}

and let H = {a, c} and B = {b}. Note that P ≡〈H,B〉 Q.4

Let R = {c ← &neg [b]()} ∈ Pe
〈H,B〉. Renaming the in-

put predicate of &neg [b]() by step (1) yields the program
{q(b)← b; c← &neg ′[q]()}. After step (2) we have:

R′ = {q(b)← b; c← xe; xe ← ¯q(b); x̄e ← notxe

¯q(b)← not q(b); ¯q(b)← xe; q(b) ∨ ¯q(b)← xe}
Here, rule q(b)← b comes from step (1), c← xe represents
the rule in R, and the remaining rules from inlining in step
(2). Except for new auxiliary atoms, we have that H(R′) use
only atoms from H and B(R′) only atoms from B(R′). One
can check that P ∪ R′ and Q ∪ R′ have the same (unique)
answer set {a, c, x̄e, ¯q(b)}, which corresponds to the (same)
unique answer set {a, c} of P ∪R and Q ∪R, respectively.

One can then show that equivalence wrt. program exten-
sions that contain external atoms is characterized by the same
criterion as extensions with ordinary ASP programs only.

Proposition 6. For sets H and B of atoms and HEX-
programs P and Q, we have P ≡e

〈H,B〉 Q iff σ〈H,B〉(P) =

σ〈H,B〉(Q).

Finally, for the Herbrand base HBC(P) of all atoms con-
structable from the predicates in P and the constants C,
strong equivalence (Lifschitz, Pearce, and Valverde 2001)
corresponds to the special case of 〈HBC(P),HBC(P)〉-
equivalence, and uniform equivalence (Eiter and Fink 2003)
corresponds to 〈HBC(P), ∅〉-equivalence; this follows di-
rectly from definition of strong resp. uniform equivalence.
One may instantiate the sets H and B directly in Definition 6
to get simplification of the conditions. However, this is akin
to ordinary ASP and we thus refer to Woltran [2007].

4We know P ≡〈{a,b},{b}〉 Q from Example 2, which implies
P ≡〈{a},{b}〉 Q. As c �∈ A(P), c �∈ A(Q), Proposition 5 implies
further P ≡〈{a,c},{b}〉 Q.

4 Inconsistency of HEX-Programs
We turn now to inconsistency of HEX-programs. Similarly to
equivalence, we want to characterize inconsistency wrt. pro-
gram extensions. Akin to equivalence, sets H and B con-
strain the atoms that may be occur in rule heads, rule bodies
and input atoms to external atoms of the added program, re-
spectively. In contrast to equivalence, the criterion naturally
concerns only a single program. However, we are still able
to derive the criterion from the above results.
Deriving a Criterion for Inconsistency. We define:
Definition 8. A HEX-program P is called persistently incon-
sistent wrt. sets of atoms H and B, if P ∪ R is inconsistent
for all R ∈ Pe

〈H,B〉.

Example 5. The program P = {p ← &neg [p]()} is persis-
tently inconsistent wrt. all H and B such that p �∈ H. This
is because any model Y of P , and thus of P ∪ R for some
R ∈ Pe

〈H,B〉, must set p to true due to the rule p← &neg [p]().
However, Y \{p} is a model of f(P ∪R)Y if no rule in R de-
rives p, hence Y is not a subset-minimal model of f(P ∪R)Y .

We start deriving a criterion by observing that a program
P⊥ is persistently inconsistent wrt. any H and B whenever it
is classically inconsistent. Then P⊥ ∪R does not even have
classical models for any R ∈ Pe

〈H,B〉, and thus it cannot have
answer sets. For such a P⊥, another program P is persistently
inconsistent wrt. H and B iff it is 〈H,B〉e-equivalent to P⊥;
the latter can by Proposition 4 be checked by comparing their
〈H,B〉-models. This allows us to derive the desired criterion
in fact as a special case of the one for equivalence.

Classically inconsistent program do not have 〈H,B〉-
models due to violation of Property (i) of Definition 6. There-
fore, checking for persistent inconsistency works by checking
if P does not have 〈H,B〉-models either. To this end, it is nec-
essary that each classical model Y of P violates Property (i)
of Definition 6, otherwise (Y, Y) (and possibly (X,Y) for
some X � Y) would be 〈H,B〉-models of P . Formally:
Proposition 7. Let P be a HEX-program. Then P ∪ R is
inconsistent for all R ∈ Pe

〈H,B〉 iff for each model Y of P
there is an Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H.

Example 6 (cont’d). For the program P from Example 5 we
have for each classical model Y ⊇ {p} that Y ′ = Y \ {p}
is a model of fPY , Y ′ � Y and Y |H = Y ′|H.

Example 7. Consider the program P = {a ←
&aOrNotB [a, b](); ← a}. It is persistently inconsistent
wrt. all H and B such that b �∈ H. This is the case be-
cause the rule a← &aOrNotB [a, b]() derives a whenever b
is false, which violates the constraint ← a.

Formally, one can observe that we have a �∈ Y and b ∈ Y
for each classical model Y of P . But then Y ′ = Y \ {b} is a
model of fPY , Y ′ � Y and Y |H = Y ′|H.

Applying the Criterion using Unfounded Sets. Proposi-
tion 7 formalizes a condition for deciding persistent incon-
sistency based on models of the program’s reduct. However,
practical implementations do usually not explicitly gener-
ate the reduct, but are often based on unfounded sets (Faber
2005). For a model Y of a program P , smaller models

1233

Y ′ � Y of the reduct fPY and unfounded sets of P wrt. Y
correspond to each other one-by-one. This allows us to trans-
form the above decision criterion such that it can be directly
checked using unfounded sets.

We use unfounded sets for logic programs as introduced
by Faber [2005] for programs with arbitrary aggregates.
Definition 9 (Unfounded Set). Given a program P and an
assignment A, let U be any set of atoms appearing in P .
Then, U is an unfounded set for P wrt. A if, for each r ∈ P
with H(r) ∩ U �= ∅, at least one of the following holds:

(i) some literal of B(r) is false wrt. A; or
(ii) some literal of B(r) is false wrt. A \ U ; or

(iii) some atom of H(r) \ U is true wrt. A.

Lemma 3. For a HEX-program P and a model A of P , a set
of atoms U is an unfounded set of P wrt. A iff A\U |= fPA.

By contraposition, the lemma implies that for a model A
of P and a model A′ ⊆ A of fPA we have that A \ A′ is
an unfounded set of P wrt. A. This allows us to restate our
decision criterion as follows:
Corollary 2. For a HEX-program P , P ∪R is inconsistent
for all R ∈ Pe

〈H,B〉 iff for each classical model Y of P there
is a nonempty unfounded set U of P wrt. Y s.t. U ∩ Y �= ∅
and U ∩H = ∅.

Example 8 (cont’d). For the program P from Example 7 we
have that U = {b} is an unfounded set of P wrt. any classical
model Y of P ; by assumption b �∈ H we have U ∩H = ∅.

5 Applications
Generally, a characterization of equivalence paves the way
for program transformations. Such transformations might
be applied, for instance, for optimization purposes, or for
compiling programs to a syntactically simplified form.

We want to discuss a specific use-case in more detail.
The state-of-the-art evaluation approach for HEX-programs
is based on program splitting. That is, the overall program is
partitioned into components which are arranged in an acyclic
graph. Then, beginning from the components without prede-
cessors, each component is separately grounded and solved,
and each answer set is added as facts to the successor compo-
nents. The process is repeated in a recursive manner such that
eventually the leaf components will yield the final answer
sets; for details we refer to Eiter et al. [2015].

The main reason for program splitting is that value inven-
tion may lead to a grounding bottleneck if the program is eval-
uated as monolithic program. This is because the grounder
needs to evaluate external atoms under all possible inputs in
order to ensure that all possible outputs are respected in the
grounding, as demonstrated by the following example.
Example 9. Consider the program

P = {r1 : in(X) ∨ out(X)← node(X)

r2 : ← in(X), in(Y), edge(X,Y)

r3 : size(S)← &count [in](S)}
where facts over node(·) and edge(·) define a graph. Then
r1 and r2 guess an independent set, and r3 computes its size.

The grounder must evaluate &count under all exponentially
many possible extensions of in in order to instantiate rule r3
for all relevant values of variable S.

In the previous example, program splitting allows for
avoiding unnecessary evaluations. The program might be
split into P1 = {r1, r2} and P2 = {r3}. Then the state-
of-the-art algorithm would ground and solve P1, which
computes all independent sets, and for each of them P2

is grounded and solved. Since the number of independent
sets can be exponentially smaller than the set of all node
selections, the grounding bottleneck can be avoided. How-
ever, program splitting has the disadvantage that nogoods
learned from conflict-driven algorithms (Gebser, Kaufmann,
and Schaub 2012) cannot effectively propagated through the
whole program, but only within a component.

We envisage to use the results from Section 4 for decid-
ing when a component remains inconsistent for all possible
inputs, and propagating this information to predecessor com-
ponents to eliminate irrelevant models earlier.

6 Discussion and Conclusion
We summarize and discuss related work, and give an outlook
on possible future work.

Summary and Discussion of Related Work. We pro-
vided a characterization of equivalence of HEX-programs.
The criteria generalize previous results for ordinary ASP by
Woltran [2007]; this is a convenient result, but it is not im-
mediate due to possibly nonmonotonic external atoms and
the use of the FLP- instead of the GL-reduct. Strong (Lif-
schitz, Pearce, and Valverde 2001) and uniform equiva-
lence (Eiter and Fink 2003) are special cases thereof and
carry over as well. The work is also related to the one
by Truszczyski [2010], who extended strong equivalence
to propositional theories under FLP-semantics. However,
〈H,B〉-equivalence and external sources were not consid-
ered. A recent alternative notion of equivalence is rule equiv-
alence (Bliem and Woltran 2016). Here, not the set of atoms
which can occur in the added program is constrained, but the
type of the rules. In particular, proper rules may be added,
while the addition of facts is limited to certain atoms.

We note that the results are interesting beyond HEX-
programs. Well-known ASP extensions, such as programs
with aggregates (Faber, Leone, and Pfeifer 2011) or with
specific external atoms such as constraint atoms (Gebser, Os-
trowski, and Schaub 2009), amount to special cases of HEX,
and thus the results are applicable in such cases.

Outlook. Future work includes the extension of the results
to non-ground programs, cf. Eiter et al. [2005a]. This might
be necessary in the context of an envisaged application of the
results for improving HEX-program evaluation. In particular,
we plan to exploit the results on inconsistency characteri-
zation for detecting inconsistent program components in an
existing model-building framework based an program decom-
position. Based on this, knowledge about the inconsistency
shall be propagated into other program components.

As another possible starting point, alternative notions of
equivalence, such as rule equivalence for HEX-programs,

1234

might be investigated. Moreover, currently we do not distin-
guish between body atoms and input atoms to external atoms
when we define which programs are allows to be added. A
more fine-grained approach which supports this distinction
may allow for identifying programs as equivalent which are
not equivalent wrt. to the current notion. Also allowing only
external atoms with specific properties, such as monotonicity,
may lead to more fine-grained criteria.

References
Bliem, B., and Woltran, S. 2016. Equivalence between
answer-set programs under (partially) fixed input. In FoIKS,
volume 9616 of Lecture Notes in Computer Science, 95–111.
Springer.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantics. In Palamidessi,
C., ed., Logic Programming, 19th International Conference,
ICLP 2003, Mumbai, India, December 9-13, 2003, Proceed-
ings, volume 2916 of Lecture Notes in Computer Science,
224–238. Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2005a.
Strong and uniform equivalence in answer-set programming:
Characterizations and complexity results for the non-ground
case. In Veloso, M. M., and Kambhampati, S., eds., Pro-
ceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, 695–700. AAAI Press / The MIT Press.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005b. A
Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer-Set Programming. In Kaelbling, L. P.,
and Saffiotti, A., eds., Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI-05), 90–96.
Denver, USA: Professional Book Center.
Eiter, T.; Fink, M.; Krennwallner, T.; Redl, C.; and Schüller, P.
2014. Efficient HEX-program evaluation based on unfounded
sets. Journal of Artificial Intelligence Research 49:269–321.
Eiter, T.; Fink, M.; Ianni, G.; Krennwallner, T.; Redl, C.; and
Schüller, P. 2015. A model building framework for answer
set programming with external computations. Theory and
Practice of Logic Programming.
Faber, W.; Leone, N.; and Pfeifer, G. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Faber, W. 2005. Unfounded sets for disjunctive logic pro-
grams with arbitrary aggregates. In Proceedings of the
Eighth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2005), Diamante, Italy,
September 5-8, 2005, volume 3662, 40–52. Springer.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187-188:52–89.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Hill, P., and Warren, D., eds., Proceed-
ings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in
Computer Science, 235–249. Springer-Verlag.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Kowalski, R., and
Bowen, K., eds., Logic Programming: Proceedings of the 5th
International Conference and Symposium, 1070–1080. MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3–4):365–386.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Trans. Comput. Logic
2(4):526–541.
Redl, C. 2017. Efficient evaluation of answer set programs
with external sources using inlining. In Proceedings of the
Thirty-First AAAI Conference (AAAI 2017), February, 2017,
San Francisco, California, USA. AAAI Press. Accepted for
publication.
Truszczyski, M. 2010. Reducts of propositional theories,
satisfiability relations, and generalizations of semantics of
logic programs. Artificial Intelligence 174(16):1285 – 1306.
Woltran, S. 2007. A common view on strong, uniform, and
other notions of equivalence in answer-set programming. In
Pearce, D.; Polleres, A.; Valverde, A.; and Woltran, S., eds.,
Proceedings of the LPNMR’07 Workshop on Correspondence
and Equivalence for Nonmonotonic Theories (CENT2007),
Tempe, AZ, May 14, 2007, volume 265 of CEUR Workshop
Proceedings. CEUR-WS.org.

1235

