
Efficient Evaluation of Answer Set Programs with
External Sources Based on External Source Inlining∗

Christoph Redl
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
redl@kr.tuwien.ac.at

Abstract

HEX-programs are an extension of answer set programming
(ASP) towards external sources. To this end, external atoms
provide a bidirectional interface between the program and an
external source. Traditionally, HEX-programs are evaluated
using a rewriting to ordinary ASP programs which guess truth
values of external atoms; this yields answer set candidates
whose guesses are verified by evaluating the source. Despite
the integration of learning techniques into this approach, which
reduce the number of candidates and of necessary verification
calls, the remaining external calls are still expensive. In this
paper we present an alternative approach based on inlining
of external atoms, motivated by existing but less general ap-
proaches for specialized formalisms such as DL-programs.
External atoms are then compiled away such that no verifica-
tion calls are necessary. To this end, we make use of support
sets, which describe conditions on input atoms that are suffi-
cient to satisfy an external atom. The approach is implemented
in the DLVHEX reasoner. Experiments show a significant per-
formance gain.

1 Introduction

HEX-programs are an extension of answer set programming
(ASP) (Gelfond and Lifschitz 1991) towards external sources.
As ASP, HEX-programs are based on nonmonotonic pro-
grams and have multi-model semantics. External sources
are used to represent knowledge and computation sources
such as, for instance, description logic ontologies and Web
resources. To this end, so-called external atoms are used
to send information from the logic program to an external
source, which returns values to the program. Cyclic rules
that involve external atoms are allowed, such that recursive
data exchange between the program and external sources is
possible. Moreover, value invention allows for returning val-
ues which are not contained in the input program, i.e., which
expand the domain. A concrete example is the external atom
&edge[G](X,Y) which returns for a filename G, pointing to
a file which stores a graph, the contained edges (X,Y).

The traditional evaluation procedure for HEX-programs
is based on rewriting external atoms to ordinary atoms and
guessing their truth values. This yields answer set candidates,

∗This research has been supported by the Austrian Science Fund
(FWF) project P27730.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which are subsequently checked to ensure that the guessed
values coincide with the actual semantics of the external
atoms. Furthermore, an additional minimality check is nec-
essary to exclude self-justified atoms, which involves even
more external calls. Although this approach has been refined
by integrating advanced techniques for learning (Eiter et al.
2012) and efficient minimality checking (Eiter et al. 2014a),
which tightly integrate the solver with the external sources
and reduce the number of external calls, the remaining calls
are still expensive. In addition to the complexity of the exter-
nal sources themselves, also overhead on the implementation
side, such as calls of external libraries and cache misses af-
ter jumps out of core algorithms, may decrease efficiency
compared to programs without external calls.

In this paper we present a novel method for HEX-program
evaluation based on inlining of external atoms. In contrast to
existing approaches for DL-programs (Heymans, Eiter, and
Xiao 2010), ours is generic and can be applied to arbitrary
external sources. Therefore, it is interesting beyond HEX-
programs and also applicable to specialized formalisms such
as constraint ASP (Gebser, Ostrowski, and Schaub 2009).
The approach uses support sets (cf. e.g. Darwiche and Mar-
quis [2011]), i.e., sets of literals which define assignments of
input atoms that guarantee that an external atom is true. Sup-
port sets were previously exploited for HEX-program (Eiter
et al. 2014b); however, this was only for improving but not
for eliminating the necessary verification step. In contrast,
our new approach compiles external atoms away altogether
such that there are no guesses at all which need to be ver-
ified. i.e., the semantics of external atoms is embedded in
the ASP program. We show that this can lead to significant
performance improvements.

After the preliminaries in Section 2, we proceed as follows:
• In Section 3 we show how external atoms can be inlined

(embedded) into a program. To handle non-monotonicity,
we use a saturation encoding based on support sets.

• While Section 3 focuses on positive external atoms, Sec-
tion 4 shows how our approach can be extended to the
negative case. To this end we make use of negative sup-
port sets, which can be gained from positive ones.

• In Section 5 we implement the approach in the DLVHEX
system. Experimental evaluation shows a significant
speedup, both over traditional evaluation and over a previ-
ous approach based on support sets for guess verification.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1222

• Section 6 discusses related work and concludes the paper.
For space reasons, proofs are outsourced to the extended

version at http://www.kr.tuwien.ac.at/research/projects/inthex/
extinlining-ext.pdf.

2 Preliminaries

In the following, an atom a is of form p(c1, . . . , c�) with
predicate p and constant symbols c1, . . . , c� from a finite
set C, abbreviated as p(c); we write c ∈ c if c = ci for
some 1 ≤ i ≤ �. An assignment Y over the (finite) set A
of atoms is a set Y ⊆ A; here a ∈ Y expresses that a is
true, also denoted Y |= a, and a �∈ Y that a is false, also
denoted Y �|= a. For a default-literal not a over atom a we
let Y |= not a if Y �|= a and Y �|= not a otherwise.
HEX-Programs.. We briefly recall HEX-programs, which
generalize (disjunctive) logic programs under the answer set
semantics (Gelfond and Lifschitz 1991); for more details and
background, see Eiter et al. [2005] and Eiter et al. [2014a].
Syntax. HEX-programs extend ordinary ASP programs
by external atoms which provide a bidirectional interface
between the program and external sources. A ground external
atom is of the form &g [p](c), where p = p1, . . . , pk is a list
of input parameters (predicates or object constants), called
input list, and c = c1, . . . , cl are output constants.
Definition 1. A HEX-program P consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn ,

where each ai is an atom and each bj is either an ordinary
atom or an external atom.
For a rule r, its head is H(r) = {a1, . . . , ak}, its body
is B(r) = {b1, . . . , bm, not bm+1, . . . , not bn}, its posi-
tive body is B+(r) = {b1, . . . , bm} and its negative body
is B−(r) = {bm+1, . . . , bn}. For a program P we let
X(P) =

⋃
r∈P X(r) for X ∈ {H,B,B+, B−}.

For a program P and set of constants C, let HBC(P) de-
note the Herbrand base containing all atoms constructible
from the predicates in P and constants C.

We restrict the formal discussion to programs without vari-
ables as suitable safety conditions guarantee the existence of
a finite grounding which suffices for answer set computation.
Semantics. In the following, assignments are over the
set A(P) of ordinary atoms that occur in the program P at
hand. The semantics of an external atom &g [p](c) wrt. an
assignment Y is given by the value of a 1+k+l-ary two-
valued (Boolean) oracle function f&g that is defined for all
possible values of Y , p and c. Thus, &g [p](c) is true relative
to Y iff f&g(Y,p, c) = T. Satisfaction of ordinary rules and
ASP programs (Gelfond and Lifschitz 1991) is then extended
to HEX-rules and programs in the obvious way: a rule r as by
Definition 1 is true under Y , denoted Y |= r, if Y |= h for
some h ∈ H(r) or Y �|= b for some b ∈ B(r).

The answer sets of a HEX-program P are defined as fol-
lows. Let the FLP-reduct of P wrt. an assignment Y be the
set fPY = {r ∈ P | Y |= b for all b ∈ B(r)}. Then
Definition 2. An assignment Y is an answer set of a HEX-
program P , if Y is a subset-minimal model of fPY . 1

1For ordinary P , these are Gelfond & Lifschitz’s answer sets.

Example 1. Consider the program P = {p ← &id [p]()},
where &id [p]() is true iff p is true. Then P has the answer set
Y1 = ∅; indeed it is a subset-minimal model of fPY1 = ∅.

Traditional Evaluation Approach. A HEX-programs P is
transformed to ordinary ASP programs as follows. Each ex-
ternal atom &g [p](c) in P is replaced by an ordinary replace-
ment atom e&g[p](c) and a rule e&g[p](c) ∨ ne&g[p](c) ← is
added. The answer sets of the resulting guessing program P̂
are computed by an ASP solver. However, the assignment en-
coded by such an answer set may not satisfy P , as &g [p](c)
under f&g may differ from the guess e&g[p](c). The answer
set is merely a candidate; if a check against the external
source succeeds, it is a compatible set:
Definition 3. A compatible set of a program P is an answer
set Ŷ of the guessing program P̂ such that f&g(Ŷ ,p, c) = T

iff e&g[p](c) ∈ Ŷ for all external atoms &g [p](c) in P .
Each answer set Y of P is the projection of some compati-

ble set Ŷ to A(P), but not vice versa. To discard non-answer
sets, minimality wrt. fPY is checked (Eiter et al. 2014a).
Example 2 (cont’d). Reconsider P = { p ← &id [p]() } from
above. Then P̂ = {p ← e&id[p](); e&id[p] ∨ ne&id[p] ← }
has the answer sets Ŷ1 = ∅ and Ŷ2 = {p, e&id[p]}. Here Y1

is a ⊆-minimal model of fPY1 = ∅, but Y2 not of fPY2 = P .

Evaluation Based on Support Sets. A positive resp. nega-
tive support set for an external atom e is a set of literals over
the input atoms of e whose satisfaction implies satisfaction
resp. falsification of e (Eiter et al. 2014b).

For a set S of literals a or ¬a, where a is an atom, let
¬S = {¬a | a ∈ S} ∪ {a | ¬a ∈ S} be the set of literals S
with swapped sign. We formalize support sets as follows:
Definition 4 (Support Set). Let e = &g [y](x) be an external
atom in a program P . A support set for e is a consistent
set Sσ = S+

σ ∪ S−σ with σ ∈ {T,F}, S+
σ ⊆ HBC(P), and

S−σ ⊆ ¬HBC(P) s.t. A ⊇ S+
σ and A ∩ ¬S−σ = ∅ implies

A |= e if σ = T and A �|= e if σ = F for all assignments A.
We call Sσ positive if σ = T and negative if σ = F.

Example 3. Suppose &diff [p, q](c) computes the set of all
elements c which are in the extension of p but not in that
of q. Then {p(a),¬q(a)} is a positive support set for
&diff [p, q](a) because any assignment A with {p(a)} ⊆ A
but A ∩ {q(a)} = ∅ satisfies &diff [p, q](a).

Positive support sets ST for &g [p](c) can be added as con-
straints ← S+

T , {not a | ¬a ∈ S−T}, not&g [p](c) to exclude
wrongly false guesses (analogously for negative support sets).

We are interested in families (=sets) of support sets which
describe the behavior of external atoms completely:
Definition 5 (Support Set Family). A positive resp. negative
family of support sets Sσ with σ ∈ {T,F} for external atom
e is a set of positive resp. negative support sets of e; Sσ is
complete if for each assignment A with A |= e resp. A �|= e
there is an Sσ ∈ Sσ s.t. A ⊇ S+

σ and A ∩ ¬S−σ = ∅.
Complete support set families Sσ can be used for the veri-

fication of external atoms as follows. One still uses the rewrit-
ing P̂ , but instead of explicit evaluation and comparison of

1223

the guess of a replacement atom to the actual value under the
current assignment, one checks if for some Sσ ∈ Sσ we have
A ⊇ S+

σ and A ∩ ¬S−σ = ∅ for the current assignment A.
If this is the case, the external atom must be true if σ = T
and false if σ = F; otherwise, it must be false if σ = T and
true if σ = F. Note that this check is necessary even if all
Sσ ∈ Sσ are added as constraints (as described above) be-
cause constraints prevent only wrong false guesses for σ = T
and wrong true guesses for σ = F, but not vice versa. This
method is in particular advantageous if the support sets in Sσ

are small and few. The approach was lifted to the non-ground
level (Eiter et al. 2014b).

3 External Source Inlining

In this section we present a rewriting which compiles HEX-
programs into equivalent ordinary ASP programs (modulo
auxiliary atoms). Due to nonmonotonic behavior of exter-
nal atoms, inlining is not straightforward. In particular, it
is not sufficient to substitute external atoms by ordinary re-
placement atoms and derive them based on their input when-
ever the original external atom is true, which is surprising
at first glance. Intuitively, this is because rules, which de-
fine replacement atoms, can be missing in the reduct and
it is not guaranteed any longer that the replacement atoms
resemble the original semantics; we will demonstrate this in
Section 3.1. Afterwards we present a sound and complete
encoding based on the saturation technique, cf. Section 3.2.
While in the worst case it is exponential due to exponentially
many support sets, many realistic external sources are guaran-
teed to have small support set families. Generally, they tend
to be small for sources whose behavior is structured (cf. pa-
rameterized complexity), i.e., whose output does not change
completely with small changes in the input. We focus on such
sources, which include e.g. certain description logics Eiter et
al. [2014b] and those we use in the benchmarks.

Constructing support sets depends on the external source.
We assume that they are already given and refer to Eiter et
al. [2014b] for a discussion of how to create them.

3.1 Observations

The first intuitive attempt to inline an external atom e might
be to replace it by an ordinary atom xe and add rules of kind
xe ← L, where L is constructed from a positive support set
ST of e by adding S+

T as positive atoms and S−T as default-
negated ones. However, this alone is in general incorrect
even if repeated for all ST ∈ ST for a complete family of
support sets ST, as the following example demonstrates.

Example 4. Consider P = {a ← &true[a]()} where e =
&true[a]() is always true. The program is expected to have
the answer set A = {a}. However, the translated program
P ′ = {xe ← a; xe ← not a; a ← xe} has no answer set
because the only candidate is A′ = {a, xe} and fP ′A =
{xe ← a; a ← xe} has the smaller model ∅.

In the example, P ′ fails to have an answer set because
the former external atom &true[a]() is true also if not a
holds, but the rule xe ← not a, which represents this case,
is dropped from the reduct because its body not a is unsatis-
fied by A′. Hence, although the external atom e holds both

under A′ and under the smaller model ∅ of the reduct which
dismisses A′, this is not detected since the representation of
the external atom in the reduct is incomplete. Then the value
of xe and e under a model of the reduct can differ.

An attempt to fix this might be to explicitly guess the value
of the external atom and represent both when it is true and
when it is false. Indeed, P ′′ = {xe ∨ x̄e; ← a, notxe; ←
not a, notxe; a ← xe} is a valid rewriting of the previous
program (A′ is an answer set). However, this rewriting is
also incorrect in general, as the next example shows.

Example 5. Consider P = {a ← &id [a]()} where e =
&id [a]() is true iff a is true. The program is expected to have
the answer set A = ∅. However, the translated program
P ′ = {xe ∨ x̄e; ← a, notxe; ← not a, xe; a ← xe} has
not only the intended answer set {x̄e} but also A′ = {a, xe}
because fP ′A

′
= {xe ∨ x̄e; a ← xe} has no smaller model.

While the second rewriting attempt from Example 5 works
for Example 4, and, conversely, the one applied in Example 4
works for Example 5, a general rewriting schema must be
more elaborated. In fact, since HEX-programs with recursive,
nonmonotonic external atoms are on the second level of the
polynomial hierarchy (Faber, Leone, and Pfeifer 2011), such
a rewriting must involve disjunctions with head-cycles.

3.2 Encoding in Disjunctive ASP

We now present such a general rewriting. In the following, for
an external atom e in a program P , let I(e, P) be the set of
all ordinary atoms in P whose predicate occurs as a predicate
parameter in e, i.e., the set of all input atoms to e. Let further
ST(e, P) be an arbitrary but fixed complete positive support
set family over atoms in P . We first show how single positive
external atoms can be inlined into a program.

Definition 6 (External Atom Inlining). For a HEX-program
P and external atom e which occurs only positively in P , let

P[e] = {xe ← S+
T ∪ {ā | ¬a ∈ S−T} | ST ∈ ST(e, P)} (1)

∪
{
ā ← not a; ā ← xe

a ∨ ā ← not x̄e

∣∣ a ∈ I(e, P)

}
(2)

∪ {x̄e ← notxe} (3)
∪ P |e→xe (4)

where ā is a new atom for each a, xe and x̄e are new atoms
for e, and P |e→xe =

⋃
r∈P r|e→xe where r|e→xe denotes

rule r with every occurrence of e replaced by xe.

Note that the rewriting is only defined for positive external
atoms; we discuss the negative case in Section 4.

The rewriting works as follows. The atom xe represents the
former external atom, i.e., that e is true, while x̄e represents
that it is false. The rules in (1) represent all input assignments
which satisfy xe (resp. e). More specifically, each rule in
{xe ← S+

T ∪ {ā | ¬a ∈ S−T} | S ∈ ST(e, P)} represents
one possibility to satisfy the former external atom e, using
the complete positive family of support sets ST. Next, for
an input atom a, the atom ā represents that a is false or
that xe (resp. e) is true, as formalized by the rules (2). This
is in order to ensure that for an assignment A, all relevant
rules in (1), i.e. those which might apply to subsets of A, are

1224

contained in the reduct wrt. A (because a could become false
in a smaller model of the reduct); recall that in Example 4
the reason for incorrectness of the rewriting was exactly that
these rules were dropped. The derivation of ā despite a being
true is only necessary if xe is true wrt. A; if xe is false then
all rules containing xe are dropped from the reduct anyway.
The idea amounts to a saturation encoding (Eiter, Ianni, and
Krennwallner 2009); the use of disjunctions with head-cycles
is in general unavoidable for complexity reasons (unless the
polynomial hierarchy collapses). Next, rule (3) enforces x̄e

to be true whenever xe is false. Finally, rules (4) resemble
the original program with xe in place of e.

We show now that the rewriting is sound and complete.
For the following result we assume that the complete family
of support sets ST(e, P) is chosen such that for all ST ∈
ST(e, P) we have that S+

T ∪ ¬S−T = I(e, P), i.e., all input
atoms to e in P are explicitly constrained to be true or false.2
While this might lead to an exponential blowup it simplifies
the proof. We show afterwards that rewriting is still correct
even if ST(e, P) does not fulfill the property.

Proposition 1. For all HEX-programs P , external atoms e
in P and a positive complete family of support sets ST(e, P)
such that S+

T ∪ ¬S−T = I(e, P) for all ST ∈ ST(e, P), the
answer sets of P are equivalent to P[e], modulo the atoms
newly introduced in P[e].

The following results shows that the idea still works for
arbitrary complete positive families of support sets ST(e, P).

Proposition 2. Let X be a set of atoms and P be a HEX-
program such that

P ⊇ {r1 : xe ← B, b; r2 : xe ← B, b̄}
∪ {ā ← not a; ā ← xe; a ∨ ā ← not x̄e | a ∈ X}
∪ {x̄e ← notxe}

where B ⊆ {a, ā | a ∈ X}, b ∈ X , and x̄e occurs only in
the rules explicitly shown above. Then P is equivalent to
P ′ = (P \ {r1, r2}) ∪ {r : xe ← B}.

Corollary 1. For all HEX-programs P , external atoms e in
P and a positive complete family of support sets ST(e, P),
the answer sets of P are equivalent to P[e], modulo the atoms
newly introduced in P[e].

Example 6. Consider P = {a ← &aOrNotB [a, b]()},
where e = &aOrNotB [a, b]() evaluates to true if a is true or
b is false. Let ST(e, P) = {{a}, {¬b}}. Then we have:

P[e] = {xe ← a; xe ← b̄

ā ← not a; ā ← xe; b̄ ← not b; b̄ ← xe

a ∨ ā ← not x̄e; b ∨ b̄ ← not x̄e

x̄e ← notxe; a ← xe}
The program has the unique answer set Y ′ = {a, xe, ā, b̄},
which represents the answer set Y = {a} of P .

2Note that each complete family of support sets can be modified
to fulfill this criterion: replace each ST ∈ ST(e, P) with S+

T ∪
¬S−

T � I(e, P) by the set of all support sets constructible by
distributing undefined atoms to S+

T or S−
T in all possible ways.

Multiple external atoms can be inlined by iterative appli-
cation. However, separate auxiliaries must be introduced for
atoms that are input to multiple external atoms.

4 Inlining Negated External Atoms

Until now we restricted the discussion to positive external
atoms based on positive support sets. One can observe that
the rewriting from Definition 6 does indeed not work for
external atoms e, which occur (also) in form not e because
progams P and P [e] are in this case in general not equivalent.

Example 7. Consider P = {p ← not&neg [p]()}, where
&neg [p]() is true if p is false and vice versa. The only answer
set of P is Y = ∅ but the rewriting (Definition 6) yields

P[&neg[p]()] = {xe ← p̄; p̄ ← not p; p̄ ← xe

p ∨ p̄ ← not x̄e; x̄e ← notxe; p ← notxe}
which has the answer sets Y ′

1 = {xe, p̄} and Y ′
2 = {x̄e, p},

which represent the interpretations Y1 = ∅ and Y2 = {p}
over P . However, only Y1 (= Y) is an answer set of P .

Intuitively, the rewriting does not work for negated external
atoms because input atoms of external atoms may support
themselves. More precisely, due to rule (3), an external atom
is false by default if none of the rules (1) applies. If one of
the external atom’s input atoms depends on falsehood of the
external atom, as in Example 7, then the input atom might be
supported by falsehood of the external atom, although this
falsehood itself depends on the input atom.
Extending the Rewriting to Negated External Atoms. In
order to extend our approach to the inlining of negated exter-
nal atoms not e in a program P , we make use of an arbitrary
but fixed negative complete family SF(e, P) of support sets
as by Definition 5. The idea is to replace a negated external
atom not e by a positive one e′ such that A |= e′ iff A �|= e
for all assignments A; obviously, the resulting program has
the same answer sets as before. Then the semantics of e′ is
fully described by the negative complete family of support
sets of e and we may apply the rewriting of Definition 6.

The idea is formalized by the following definition:

Definition 7 (Negated External Atom Inlining). For a HEX-
program P and negated external atom not e in P , let

P[not e]={xe ← S+
F ∪ {ā | ¬a ∈ S−F }|SF ∈ SF(e, P)} (5)

∪
{
ā ← not a; ā ← xe

a ∨ ā ← not x̄e

∣∣ a ∈ I(e, P)

}
(6)

∪ {x̄e ← notxe} (7)
∪ P |not e→xe (8)

where ā is a new atom for each a, xe and x̄e are new atoms
for e, and P |not e→xe =

⋃
r∈P r|not e→xe where r|not e→xe

denotes rule r with every occurrence of not e replaced by xe.

One can show that this rewriting is sound and complete.

Proposition 3. For all HEX-programs P , negated external
atoms not e in P and a negative complete family of support
sets SF(e, P), the answer sets of P are equivalent to P[not e],
modulo the atoms newly introduced in P[not e].

1225

Transforming Complete Families of Support Sets. One
can change the polarity of complete families of support sets:

Proposition 4. Let Sσ be a positive resp. negative complete
family of support sets for some external atom e in a program
P , where σ ∈ {T,F}. Then Sσ̄ = {Sσ̄ ∈ ∏

Sσ∈Sσ
¬Sσ |

Sσ̄ is consistent} is a negative resp. positive complete family
of support sets, where T̄ = F and F̄ = T.

However, similarly to a transformation of the formula in
conjunctive normal form to disjunctive normal form or vice
versa, this may result in an exponential blow-up. In the spirit
of our initial assumption that compact complete families of
support sets exist, it is suggested to construct families of
support sets of the required polarity right from the beginning.

5 Implementation and Evaluation

We implemented external source inlining in the DLVHEX
system, which is based on GRINGO and CLASP. External
sources are supposed to provide a complete set of (possi-
bly nonground) support sets. The approach from this paper
allows for evaluating a HEX-program completely by the back-
end without any external calls during solving (external calls
are only necessary at the beginning for support set learning).

The rewriting makes both the compatibility check (cf. Def-
inition 3) and the minimality check wrt. the reduct and exter-
nal sources (cf. Section 2 and Eiter et al. [2014a]) obsolete.
Experimental Setup. We compare three evaluation ap-
proaches. The traditional evaluation algorithm guesses the
truth values of external atoms and verifies them by evaluation.
During evaluation, conflict-driven learning techniques are
applied to learn parts of the external atom’s behavior. The
approach based on support sets (sup.sets) learns support
sets provided by the external source at the beginning. It then
guesses external atoms as in the traditional approach, but
verifies them by matching candidate compatible sets against
support sets rather than by evaluation. The new inlining
approach also learns support sets at the beginning, but uses
them for rewriting external atoms as demonstrated in Sec-
tion 3. Then all answer sets of the rewritten ASP program
are accepted without the necessity for additional checks.

We present four benchmarks with 100 randomly generated
instances each, which were run on a Linux server with two
12-core AMD 6176 SE CPUs/128GB RAM using a 300 secs
timeout. Despite similar benchmarks, the runtimes are not
directly comparable to those by Eiter et al. [2014b] because
of other solver improvements in the meantime and, for the
taxi benchmark, an adopted scenario; however, the trends
concerning sup.sets and traditional are the same. Note that
our goal is to show improvements compared to previous HEX-
algorithms, but not to compare HEX to other formalisms.

Our hypothesis is that inlining outperforms both tradi-
tional and sup.sets. This is because the only significant costs
when generating the rewriting come from support set learn-
ing. However, this is also necessary with sup.sets, which was
already shown to outperform traditional if small complete
families of support sets exist (as in our benchmarks).3 On

3If they are not small, traditional might be faster than sup.sets
and inlining. Consider P = {p(n+1) ← &even[p](})∪{p(i) ←|

n all answer sets first answer set
traditional sup.sets inlining traditional sup.sets inlining

6 185.45 (35) 23.57 (1) 11.47 (0) 12.05 (0) 1.09 (0) 0.76 (0)
7 251.68 (81) 83.24 (3) 22.21 (2) 22.25 (2) 3.19 (0) 1.53 (0)
8 266.22 (85) 183.48 (43) 59.54 (11) 61.33 (10) 22.42 (1) 3.10 (0)
9 272.70 (85) 263.01 (85) 86.07 (13) 76.74 (12) 56.57 (12) 6.18 (0)

10 278.26 (83) 275.47 (83) 121.39 (16) 102.86 (12) 98.96 (12) 11.97 (0)
11 292.05 (85) 300.00 (100) 167.00 (45) 158.73 (41) 176.44 (49) 22.52 (0)
12 300.00 (100) 300.00 (100) 180.43 (41) 159.64 (47) 210.52 (51) 40.43 (0)

Table 1: House Configuration Problem

the other hand, with inlining, (i) no external calls and (ii) no
additional minimality check are needed. Hence, we expect
further benefits and negligible additional costs.
House Problem. An abstraction of configuration problems
considers sets of cabinets, rooms, objects and persons and
assigns cabinets to persons, cabinets to rooms, and objects
to cabinets, such that there are no more than four cabinets
in a room or more than five objects in a cabinet (Mayer et
al. 2009). Objects belonging to a person must be stored in a
cabinet belonging to the same person, and a room must not
contain cabinets of more than one person. We assume that we
have already a partial assignment to be completed. We use
an existing guess-and-check encoding4 which implements
the check as external source. Instances of size n have n
persons, n+2 cabinets, n+1 rooms, and 2n objects randomly
assigned to persons; 2n−2 objects are already stored.

Table 1 shows the results, where numbers in parentheses
indicate timeout instances. We have that sup.sets clearly
outperforms traditional when computing all answer sets
due to faster candidate checking; inlining leads to a further
speedup as it eliminates wrong guesses and the checking
step altogether, while the additional initialization overhead is
negligible. If only one answer set is computed, this initializa-
tion overhead even exceeds the benefits of sup.sets in some
cases because the benefit is limited due to early abortion (as
also observed by Eiter et al. [2014b]). However, the further
performance boost by inlining compensates this drawback
of sup.sets s.t. it is clearly the most efficient configuration.
Non 3-Colorability. We consider the problem of deciding
if a given graph is not 3-colorable, i.e., if it is not possible
to color the nodes s.t. adjacent nodes have different colors.
We use an encoding which splits the guessing part Pcol from
the checking part Pcheck . The latter is used as an external
source from the guessing part. For a color assignment, given
by facts of kind inp(col , v, c) where v is a vertex and c is
a color, Pcheck derives the atom inv in its only answer set,
otherwise it has an empty answer set. We then use the follow-
ing program Pcol to guess a coloring and check it using the
external atom &query [Pcheck , inp, inv](), which is true iff
Pcheck , extended with facts over predicate inp, delivers an
answer set which contains inv . A compact complete family

1 ≤ i ≤ n} where &even[p]() is true iff the number of true atoms
over p is even. Then P̂ has only two candidates which are easily
checked, while exponentially many support sets must be generated.

4from http://143.205.174.183/reconcile/tools.

1226

n all answer sets first answer set
traditional sup.sets inlining traditional sup.sets inlining

20 299.01 (99) 0.20 (0) 0.16 (0) 0.12 (0) 0.12 (0) 0.12 (0)
60 300.00 (100) 1.63 (0) 1.36 (0) 0.45 (0) 0.45 (0) 0.45 (0)

100 300.00 (100) 8.50 (0) 7.86 (0) 1.99 (0) 1.99 (0) 1.99 (0)
140 300.00 (100) 28.32 (0) 27.56 (0) 6.40 (0) 6.40 (0) 6.43 (0)
180 300.00 (100) 74.88 (0) 73.79 (0) 16.41 (0) 16.45 (0) 16.43 (0)
220 300.00 (100) 152.41 (21) 150.77 (20) 35.19 (0) 35.35 (0) 35.23 (0)

Table 2: Graph Coloring Problem

of support sets for &query [Pcheck , inp, inv]() exists. The
size of the instances is the number of nodes n.

Pcol =

⎧⎪⎪⎨
⎪⎪⎩

col(V, r) ∨ col(V, g) ∨ col(V, b) ← node(V),
inp(p, X, Y) ← p(X,Y) | p ∈ {col , edge},

inval ← &query [Pcheck , inp, inv](),
col(V, c) ← inval ,node(V) | c ∈ {r, g, b}

⎫⎪⎪⎬
⎪⎪⎭

The results are shown in Table 2. While sup.sets already
outperforms traditional, inlining leads to a further small
speedup. Compared to the house problem, there are signifi-
cantly fewer support sets, which makes candidate checking
in sup.sets inexpensive. This explains the large speedup of
sup.sets over traditional, and that avoiding the check in in-
lining does not lead to a large further speedup. However, due
to a negligible additional overhead, inlining does not harm.
Taxi Assignment. We consider a program with access to
an ontology, cf. DL-atoms (Eiter et al. 2008), to assign taxi
drivers to customers. Each customer and driver is in a region.
A customer may only be assigned to a driver in the same
region. Up to four customers may be assigned to a driver. We
let some customers be e-customers who use only electronic
cars, and some drivers be e-drivers who drive electronic
cars. The ontology stores information about individuals such
as their locations (randomly chosen but balanced among
regions). The encoding is from http://www.kr.tuwien.ac.at/
research/projects/inthex/partialevaluation. An instance of size
4 ≤ n ≤ 9 consists of n drivers, n customers including n/2
e-customers and n/2 regions.

Table 3 shows the results. Here, sup.sets is counter-
productive compared to traditional because of the large num-
ber of solution candidates. Although we add support sets as
constraints (cf. Section 2), positive resp. negative support
sets prevent only wrong false resp. true guesses, but not vice
versa. Hence, the costs of not learning from external calls ex-
ceed the benefit of faster checking. However, since inlining
prevents wrong guesses, it does not suffer this problem.
LUBM Diamond. We consider default reasoning over
the LUBM DL-LiteA ontology (http://swat.cse.lehigh.edu/
projects/lubm/). Defaults express that assistants are normally
employees and students are normally not employees. The on-
tology entails that assistants are students, resembling Nixon’s
diamond. The instance size is the number of persons, which
are randomly marked as students, assistants or employees.

Table 4 shows the results. As already observed by Eiter
et al. [2014b] and different from the previous benchmark,
sup.sets outperforms traditional due to a smaller number

n all answer sets first answer set
traditional sup.sets inlining traditional sup.sets inlining

4 0.90 (0) 1.49 (0) 0.26 (0) 0.20 (0) 1.49 (0) 0.18 (0)
5 37.09 (3) 45.42 (0) 1.39 (0) 2.90 (0) 45.28 (0) 0.21 (0)
6 225.01 (59) 262.08 (74) 12.40 (0) 63.71 (17) 262.14 (75) 0.26 (0)
7 300.00 (100) 300.00 (100) 186.74 (29) 207.57 (67) 300.00 (100) 0.32 (0)
8 300.00 (100) 300.00 (100) 295.53 (97) 277.10 (92) 300.00 (100) 0.41 (0)
9 300.00 (100) 300.00 (100) 300.00 (100) 297.01 (99) 300.00 (100) 0.52 (0)

Table 3: Driver - Customer Assignment Problem

n all answer sets first answer set
traditional sup.sets inlining traditional sup.sets inlining

20 1.08 (0) 0.34 (0) 0.31 (0) 0.34 (0) 0.34 (0) 0.31 (0)
30 27.73 (3) 0.98 (0) 0.34 (0) 5.66 (0) 0.98 (0) 0.34 (0)
40 145.06 (35) 16.68 (2) 0.40 (0) 84.73 (14) 16.74 (2) 0.40 (0)
50 249.78 (76) 80.69 (15) 0.48 (0) 213.45 (60) 80.61 (15) 0.47 (0)
60 285.70 (90) 184.25 (47) 0.57 (0) 265.61 (85) 184.23 (47) 0.57 (0)
70 298.13 (99) 254.00 (74) 0.72 (0) 297.17 (99) 254.06 (73) 0.72 (0)

Table 4: Default Rules over LUBM in DL-LiteA

of model candidates, hence fewer wrong guesses occur and
the more efficient check compensates the lost possibility to
learn from external calls. Again, inlining is the most efficient
configuration as it does not only prevent wrong guesses but
also spares external calls. Thanks to a compact family support
sets, the speedup is dramatic.

Experiments Summary. The size of the inlining encoding
is linked to the size of the complete family of support sets.
Although it is exponential in the worst case, many practical
source have compact families of support sets. In this case,
the inlining approach is clearly superior to sup.sets (which
is superior to traditional) as it eliminates the compatibility
check and minimality check wrt. external sources altogether,
while it has only slightly higher initialization overhead.

6 Discussion and Conclusion

Related Work. Our approach is related to evaluation ap-
proaches for DL-programs (Eiter et al. 2008) (programs with
ontologies), cf. e.g. Heymans, Eiter, and Xiao [2010], but is
more general. The rewriting uses the saturation technique and
is related to the one by Alviano, Faber, and Gebser [2015]
who translated aggregates to disjunctions. However, they
support only a fixed set of aggregates while our approach
supports arbitrary sources. Moreover, it eliminates external
atoms completely, while Alviano, Faber, and Gebser [2015]
still use simplified (monotonic) aggregates in the result.

Conclusion and Outlook. We presented an approach for
external source inlining based on support sets. The program
can then be evaluated by an ordinary ASP solver and external
atom guesses do not need to be verified at all. All our experi-
ments show a clear improvement over the previous approach
by Eiter et al. [2014b], which is explained by the fact that
the slightly higher initialization costs are exceeded by the
significant benefits of avoiding external calls altogether.

1227

Future work may include refinements of the rewriting. Cur-
rently, a new auxiliary variable ā is introduced for all input
atoms a of all external atoms. Note that it introduces even a
new auxiliary atom for each external atom that uses a as in-
put. Thus, a quadratic number of auxiliary atoms is required.
While the reuse of the auxiliary variables is not always possi-
ble, the identification of cases were auxiliary variables can be
shared among multiple inlined external atoms is interesting.

References
Alviano, M.; Faber, W.; and Gebser, M. 2015. Rewriting
recursive aggregates in answer set programming: back to
monotonicity. CoRR abs/1507.03923.
Darwiche, A., and Marquis, P. 2011. A knowledge compila-
tion map. CoRR abs/1106.1819.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005. A
Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer-Set Programming. In Kaelbling, L. P.,
and Saffiotti, A., eds., Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI-05), 90–96.
Denver, USA: Professional Book Center.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining answer set programming
with description logics for the semantic web. Artif. Intell.
172(12-13):1495–1539.
Eiter, T.; Fink, M.; Krennwallner, T.; and Redl, C. 2012.
Conflict-driven ASP solving with external sources. TPLP
12(4-5):659–679.
Eiter, T.; Fink, M.; Krennwallner, T.; Redl, C.; and Schüller,
P. 2014a. Efficient HEX-program evaluation based on un-
founded sets. Journal of Artificial Intelligence Research
49:269–321.
Eiter, T.; Fink, M.; Redl, C.; and Stepanova, D. 2014b. Ex-
ploiting support sets for answer set programs with external
evaluations. In Brodley, C. E., and Stone, P., eds., Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, July 27 -31, 2014, Québec City, Québec, Canada.,
1041–1048. AAAI Press.
Eiter, T.; Ianni, G.; and Krennwallner, T. 2009. Answer
Set Programming: A Primer. In Tessaris, S.; Franconi, E.;
Eiter, T.; Gutierrez, C.; Handschuh, S.; Rousset, M.-C.; and
Schmidt, R. A., eds., 5th International Reasoning Web Sum-
mer School (RW 2009), Brixen/Bressanone, Italy, August 30–
September 4, 2009, volume 5689 of LNCS, 40–110. Springer.
Faber, W.; Leone, N.; and Pfeifer, G. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Hill, P., and Warren, D., eds., Proceed-
ings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in
Computer Science, 235–249. Springer-Verlag.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3–4):365–386.
Heymans, S.; Eiter, T.; and Xiao, G. 2010. Tractable rea-
soning with dl-programs over datalog-rewritable description

logics. In Coelho, H.; Studer, R.; and Wooldridge, M., eds.,
ECAI 2010 - 19th European Conference on Artificial Intelli-
gence, Lisbon, Portugal, August 16-20, 2010, Proceedings,
volume 215 of Frontiers in Artificial Intelligence and Appli-
cations, 35–40. IOS Press.
Mayer, W.; Bettex, M.; Stumptner, M.; and Falkner, A. 2009.
On solving complex rack configuration problems using csp
methods. In IJCAI’09 Workshop on Configuration.

1228

