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Abstract

The Zero-suppressed Sentential Decision Diagram (ZSDD)
is a recently discovered tractable representation of Boolean
functions. ZSDD subsumes the Zero-suppressed Binary De-
cision Diagram (ZDD) as a strict subset, and similar to ZDD,
it can perform several useful operations like model counting
and Apply operations. We propose a top-down compilation
algorithm for ZSDD that represents sets of specific graph sub-
structures, e.g., matchings and simple paths of a graph. We
experimentally confirm that the proposed algorithm is faster
than other construction methods including bottom-up meth-
ods and top-down methods for ZDDs, and the resulting ZS-
DDs are smaller than ZDDs representing the same graph sub-
structures. We also show that the size constructed ZSDDs can
be bounded by the branch-width of the graph. This bound is
tighter than that of ZDDs.

Introduction

The Binary Decision Diagram (BDD) (Bryant 1986) is a
data structure that represents a Boolean function in a com-
pressed form. Once a Boolean function is compiled into a
BDD, it can answer several types of queries in polytime
against BDD size. Due to its effectiveness, BDDs have many
variants, e.g., Sentential Decision Diagrams (SDD) (Dar-
wiche 2011), Zero-suppressed BDDs (ZDD) (Minato 1993),
and Zero-suppressed SDDs (ZSDD) (Nishino et al. 2016).
Among them, SDD and ZSDD are prominent in that they
support bottom-up construction and are more succinct than
either BDD or ZDD (Darwiche 2011; Nishino et al. 2016).

Boolean functions appear in various situations. An impor-
tant one is to represent specific graph substructures. Here we
use graph substructures as subsets of graph nodes and edges
satisfying specific conditions. A graph has several important
substructures such as matchings, cycles, and simple paths.
A set of such substructures can be represented as a Boolean
function whose input variables correspond to every node or
edge of the graph. It is known that decision diagrams can
succinctly represent a set of graph substructures. For exam-
ple, Knuth (Knuth 2011) shows that the set of all connected
components of a graph, whose size is more than 1010, can be
represented as a BDD that has only several hundred nodes.
Due to their succinctness and efficiency with regard to graph

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

manipulation, decision diagrams representing sets of graph
substructures appear in several applications including the
task of assessing the reliability of networks (Hardy, Lucet,
and Limnios 2007), graph coloring (Morrison, Sewell, and
Jacobson 2016), and loss minimization over distribution net-
works (Inoue et al. 2014).

A key to the effective use of decision diagrams in ma-
nipulating graph substructures is a fast algorithm for com-
piling the set of graph substructures into decision diagrams.
BDDs and ZDDs support the top-down construction method
called SimPath (Knuth 2011). SimPath constructs BDDs
and ZDDs representing sets of graph substructures directly
from the input graphs, and is known to be much more effi-
cient than the standard bottom-up construction method us-
ing the Apply operation since SimPath avoids constructing
many intermediate decision diagrams.

We extend SimPath to construct ZSDDs. One of the most
important properties of SimPath is that it can give a theo-
retical upper bound on the sizes of constructed BDDs and
ZDDs (Inoue and Minato 2016). This upper bound is derived
from the path-width of the input graph. Therefore, SimPath
may take a long time, or even fail to compile graphs with
large path-widths. In contrast, the proposed algorithm also
can give an theoretical upper bound on the sizes of con-
structed ZSDDs, which is derived from the branch-width of
the graph. Since the branch-width of a graph is equal to or
smaller than the path-width, our algorithm can give tighter
upper bounds than SimPath. Experiments show that our top-
down construction algorithm is more efficient than bottom-
up construction methods and SimPath, and can construct ZS-
DDs that are smaller than ZDDs obtained by SimPath.

Our method can be seen as a variant of a recently pro-
posed top-down compilation algorithm for SDDs (Oztok and
Darwiche 2015). The algorithm takes a CNF as its input and
returns the corresponding SDD. The main difference from
ours is that the algorithm uses CNFs as its input. For some
graph substructures including simple paths and connected
components, the size of CNFs representing the set of all sub-
structures have exponentially many clauses, and it is imprac-
tical to prepare such CNFs. The other approach shown in
(Choi, Tavabi, and Darwiche 2016), first exploits SimPath to
construct a ZDD representing graph substructures and then
converts it into a SDD and reduces the size by applying the
dynamic minimization method (Choi and Darwiche 2013).
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Since our algorithm is faster than SimPath, it runs faster than
this method of converting ZDDs to SDDs.

Technical Preliminaries

Let G = (V,E) be an undirected graph where V is the set
of nodes and E is the set of edges. Let |V | be the number
of nodes and |E| be the number of edges. Since some graph
substructures can be represented as sets of edges, a set of
such substructures can be represented as a family of sets
whose universe is E. A family of sets whose universe is E
can be represented as an |E|-ary Boolean function. There-
fore, ZSDDs can be seen as representing families of sets.
In the following, we treat ZSDDs as representing families
of sets since this approach is suitable for representing graph
substructures. We use P to represent the family consisting
of all subsets.
(X,Y)-decomposition is the process of decomposing

sets families into sub-families. Let f be a family of sets, and
X, Y be subsets of the universe of f ; they form a partition
of the universe. By using (X,Y)-decomposition, f can be
decomposed as

f = [p1(X) � s1(Y)] ∪ · · · ∪ [pn(X) � sn(Y)] ,

where pi(X), si(Y) are sets families whose universes are
X and Y, respectively. In the following, we write pi and si
instead of pi(X) and si(Y). Operations ∪ and � are union
and join operations over sets of families defined as f ∪ g =
{a | a ∈ f or a ∈ g}, and f � g = {a ∪ b | a ∈ f and
b ∈ g}. We call p1, . . . , pn primes and s1, . . . , sn subs. If
primes are exclusive (pi ∩ pj = ∅ for all i �= j), exhaustive
(
⋃n

i=1 pi = P), and consistent (pi �= ∅ for all i), then we say
the decomposition is an (X,Y)-partition, and denote it as
{(p1, s1), . . . , (pn, sn)}. Here we define ∩ as f ∩ g = {a |
a ∈ f and a ∈ g}. Moreover, if si �= sj for all i �= j is
satisfied, we say the (X,Y)-partition is compressed.

Example 1. Given X = {A,B} and Y = {C,D}, a
compressed (X,Y)-partition of {{A,B}, {B}, {B,C},
{C,D}} is

[{{A,B}} � {∅}] ∪ [{{B}} � {∅, {C}}]
∪ [{∅} � {{C,D}}] ∪ [{{A}} � ∅] ,

where {{A,B}}, {{B}}, {∅}, and {{A}} are primes, and
{∅}, {∅, {C}}, {{C,D}}, and ∅ are subs.

A ZSDD represents a family of sets by recursively ap-
plying (X,Y)-partitions to decompose the family into sub-
families, where the order of partitions is determined by a
vtree. A vtree is a binary tree whose leaves correspond to
elements of the universe. We show a vtree example in Fig. 1
(a). Symbols appearing at leaves represent corresponding el-
ements, and numbers appearing in each node represent vtree
node IDs. Every internal node represents a partition of a uni-
verse into two groups: elements appearing in the left and the
right subtrees. In this figure, root vtree node whose ID is 3
(denoted here as v3) represents the (X,Y)-partition of uni-
verse {A,B,C,D} where X = {A,B} and Y = {C,D}.
Similarly, node v1 represents a partition of universe {A,B}
where X = {B} and Y = {A}. We use vl, vr to represent
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Figure 1: A vtree and a ZSDD that respects the vtree and
represents {{A,B}, {B}, {B,C}, {C,D}}.

the left and the right child vtree nodes of v, respectively.
We say that vtree node v is a Shannon vtree node if vl is
a leaf node, otherwise we say v is a decomposition vtree
node. In Fig. 1 (a), v3 is a decomposition vtree node, and
its child nodes v1 and v5 are Shannon vtree nodes. To avoid
confusion we call vtree nodes vnodes and represent them as
vi, v

l, vr. We call ZSDD nodes znodes and represent them
as z. We call graph nodes gnodes and represent them as ui.

Zero-suppressed Sentential Decision Diagrams

The Zero-suppressed Sentential Decision Diagram (ZSDD)
is a variant of the Sentential Decision Diagram (SDD). It
subsumes the Zero-suppressed Binary Decision Diagram
(ZDD) as a strict subset. ZSDDs are more succinct than
ZDDs and support many of the polytime queries and trans-
formations that ZDD supports. By comparison, ZSDDs sup-
port almost all operations supported by SDDs and tend to
be smaller than SDDs when representing sparse families of
sets. We say a family of sets is sparse if it consists of a
small number of subsets, each of which is also small. Graph
substructures such as simple paths tend to be represented
as sparse set families, and are suitable for representation by
ZSDDs. We select ZSDDs as the target of compilation algo-
rithm, but it can be applied to SDDs with some small modi-
fication.

A ZSDD is recursively defined as follows. We say ZSDD
α respects vnode v if the order of (X,Y)-partitions used in
α follows the vtree whose root is v. We use 〈α〉 to represent
the family of sets that ZSDD α represents.

Definition 1. α is a ZSDD that respects vnode v iff:

• α = ε or α = ⊥.
Semantics: 〈ε〉 = {∅} and 〈⊥〉 = ∅

• α = X or α = ±X and v is a leaf with element X .
Semantics: 〈X〉 = {{X}} and 〈±X〉 = {{X}, ∅}.

• α = {(p1, s1), . . . , (pn, sn)}, v is internal, p1, . . . , pn are
ZSDDs that respect a vnode that is in a subtree whose
root is vl, s1, . . . , sn are ZSDDs that respect a vnode that
is in a subtree whose root is vl, and 〈p1〉, . . . , 〈pn〉 is a
partition.
Semantics: 〈α〉 = ⋃n

i=1〈pi〉 � 〈si〉 .

If ZSDDs are either ε, ⊥, X , or ±X , we say that they
are terminal. Otherwise, a ZSDD represents a (X,Y)-
partition, and we call it a decomposition. Fig. 1 (b)
shows an example ZSDD that represents the set family
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{{A,B}, {B}, {B,C}, {C,D}} and respects the root vn-
ode of the tree shown in Fig. 1 (a). A circle node and its
child rectangle nodes represent a decomposition, which cor-
responds to an (X,Y)-partition. The figure in a circle node
represents the vnode ID that the decomposition respects.
Rectangle node p s represents a prime sub pair contained
in an (X,Y)-partition where p is a prime and s is a sub.
Every p, s are terminal ZSDDs or pointers to decomposition
ZSDDs. We call circle nodes decision znodes and rectan-
gle nodes element znodes. We define the size of a ZSDD as
the sum of the sizes of (X,Y)-partitions appearing in the
ZSDD. The size of the ZSDD shown in Fig. 1 (b) is 5.

We say a ZSDD is trimmed if it does not have (X,Y)-
partitions of the form {(ε, α), (ε̄,⊥)}, {(α, ε), (ᾱ,⊥)}, or
{(P,⊥)}, where ᾱ represents a ZDD that corresponds to set
family P − 〈α〉. We say ZSDD α employs implicit parti-
tioning if none of the (X,Y)-partitions contained in α have
an element znode of the form (β,⊥). The ZSDD shown
in Fig. 1 (b) is a compressed and trimmed ZSDD that em-
ploys implicit partitioning. Our top-down algorithm con-
structs trimmed ZSDDs that employ implicit partitioning.

Top-down Compilation Algorithm

SimPath constructs ZDDs representing all graph substruc-
tures by creating ZDD nodes in order from the root to the
terminals; it first makes a ZDD node that respects the first
element, and then recursively makes child nodes of the cre-
ated nodes to finally construct a ZDD. Our top-down algo-
rithm is partially identical to SimPath, but it employs addi-
tional procedures for constructing ZSDDs. Similar to Sim-
Path, our top-down construction algorithm can be used for
constructing several different graph substructures by chang-
ing a few details of the algorithm. Due to the space limita-
tion, we select matchings and simple paths as examples and
describe algorithms for constructing them. We use the algo-
rithm for constructing all matchings as the running example,
since matchings are easier to construct than simple paths.
We treat substructures that can be represented as families
of sets whose universe is E = {e1, . . . , e|E|}. In the fol-
lowing, we use edge-IDs instead of edges, i.e., we represent
{{eA, eB}, {eC}} as {{A,B}, {C}}.

Frontier Nodes

We first introduce an important mechanism for checking the
equivalency of znodes. The proposed algorithm takes a vtree
and graph G as its input, and generates znodes in order from
the root to leaves; it first generates a znode that respects the
root vnode, then it makes child znodes of the root znode. By
recursively repeating this procedure for all child znodes, we
can obtain the ZSDD representing all substructures. How-
ever, if we naively construct znodes in a top-down man-
ner, the number of child znodes will grow exponentially. We
therefore merge equivalent znodes when constructing them
to avoid this.

Two znodes are equivalent if they respect the same vnode
v and represent the same family of sets. Let α be the ZSDD
respecting vnode v and representing family of sets f , and
Ev ⊆ E be the set of graph edges that correspond to leaf

v1 v2 v3

v4 v5 v6

v7 v8 v9

eA eB

eC eD eE
eF eG

eH eI eJ
eK eL

(a) A graph (b) Equivalent connection patterns

Figure 2: An example graph and assignments of elements
{A,B, . . . , G} that give the same connection pattern.

vnodes of the vtree whose root is v. Ev is the universe of f .
Since f appears as a subfamily of the family of sets repre-
senting all graph substructures, f has some S ⊆ E \ Ev for
which f � {S} is the set of specific graph substructures. If
S changes, the corresponding f also changes, but for some
S, S′ ⊆ E \ Ev , the corresponding family f is equivalent.
Frontier gnodes or frontiers can be used to judge this equiv-
alency of S and S′. Let G1 be the subgraph induced by Ev

and G2 be the subgraph induced by E \ Ev . We call the gn-
odes appearing in both G1 and G2 frontier gnodes. For some
substructures, the possible family of sets, f , is determined
by how edges in G2 are connected to frontier gnodes, and
hence we can check the equivalency of S and S′ by check-
ing the equivalency of edge connections to frontier gnodes.
In the following, we use F (v) to represent the set of frontier
gnodes corresponding to vnode v.

Matching is an example of the substructure on which
the above frontier-based equivalency check can be applied.
Fig. 2 (a) is an example graph, and we want to find the
family of sets whose universe is Ev = {H, I, . . . , L} that
forms the set of all matchings when combined with al-
ready selected edges from {A,B, . . . , G}. The set of fron-
tier nodes F (v) is {u4, u5, u6}. Fig. 2 (b) shows two dif-
ferent choices of edges from {A,B, . . . , G}. Both choices
make u4, u5 incident an edge, and u6 incident no edge.
It means both choices have the same connection patterns
on frontier gnodes. Then the set of possible choices from
Ev is {∅, {J}, {J,K}, {K}, {L}}, the same for both exam-
ples. This example shows the equivalency of znodes can be
judged from how frontier nodes incident edges.

The top-down construction algorithm we will show below
uses states of frontier gnodes as the label of generated ZSDD
nodes, and we judge two znodes as equivalent if they respect
the same vnode and have the same label. Labels are repre-
sented as |V | element array m, where the state of frontier
node ui ∈ V is stored in m[i]. In the case of matching, state
m[i] is represented by any of the following four symbols U
(unconnected), C (connected), R (reserved), or F (finished).
m[i] = C means ui is a frontier gnode and incidents an edge.
m[i] = U means ui incidents no edge. m[i] = R means ui is
a frontier gnode and currently incidents no edge, but it must
eventually incident an edge. m[i] = F means ui is currently
not a frontier node.

Algorithm

We show the scheme of the general top-down construction
algorithm for ZSDDs in Alg. 1. The algorithm takes graph
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Algorithm 1: A top-down construction algorithm
Input: G = (V,E), a the root vtree node, v
Output: ZSDD representing the set of substructures of G

1 Z[v] ← rootState()
2 construct(v, Z)
3 Z ← reduce(Z)
4 (Optionally Z ← compress(Z))
5 return Z

Algorithm 2: construct(v, Z)

1 if v is a Shannon vnode then
2 for z ∈ Z[v] do
3 elems ← ∅
4 mf ← shannonChild(v, z, false)
5 if mf �= ⊥ then
6 elems ← elems ∪{(ε, unique(mf ))}
7 mt ← shannonChild(v, z, true)
8 if mt �= ⊥ then
9 elems ← elems ∪ {(X, unique(mt))}

10 if mf �= ⊥ and mf = mt then
11 elems ← {(±X, unique(mf))}
12 Set elems as the child nodes of z

13 if vr is not a leaf vnode then construct(vr, Z)
14 else // v is a decomposition vnode
15 for z ∈ Z[v] do
16 elems ← ∅
17 for (mp,ms) ∈ decompChild(v, z) do
18 yp ← unique(mp), ys ← unique(ms)
19 elems ← elems ∪ {(yp, ys)}
20 Set elems as the child nodes of z

21 construct(vl, Z), construct(vr, Z)

G = (V,E) and a vnode as its input, and returns a ZSDD
representing the set of all substructures. Z[v] is a table stor-
ing decision znodes that respect vnode v. Since a ZSDD is
represented as a set of decision znodes, the set of Z[v] for
all internal vnodes v can be seen as representing a ZSDD.
The algorithm first calls rootState(), which returns the root
znode with its label. The procedure differs when we con-
struct different substructures. Next the algorithm calls con-
struct(v, Z), which recursively construct znodes that respect
vnode v and its descendant vnodes. Procedure reduce(Z)
recursively deletes and merges znodes to make a trimmed
and implicitly partitioned ZSDD. We omit details of re-
duce(Z). The obtained ZSDD is trimmed and implicitly
partitioned, but not compressed. Procedure compress uses
Apply operations to make a compressed ZSDD. Compressed
ZSDDs are canonical, but compression may increase ZSDD
size (Van den Broeck and Darwiche 2015).

Alg. 2 shows the procedure construct(v, Z). It uses a dif-
ferent procedure depending on whether v is a Shannon vn-
ode or not. If v is a Shannon vnode (lines 1-13), it calls
shannonChild(v, z, t) with different t ∈ {true, false}. This
procedure creates m that is either the label of a child of z
that respects vr or a terminal znode. unique(m) takes m as

Algorithm 3: Subroutines used for Matchings
1 function shannonChild(v, z, t):
2 m ← copy of label of z
3 X ← element corresponds to vnode vl

4 (ua, ub) ← vertices incident with edge eX
5 if t = true then
6 if m[a] = C or m[b] = C then return ⊥
7 m[a] ← C, m[b] ← C

8 for ui ∈ F (v) \ F (vr) do
9 if m[i] = R then return ⊥

10 else m[i] ← F

11 if vr is not a leaf node then return m
12 else
13 Y ← the element corresponds to vr

14 (ua, ub) ← gnodes incident with edge eY
15 if (m[a],m[b]) = (C,R) or (R,C) then return ⊥
16 else if m[a] = C or m[b] = C then return ε
17 else if m[a] = R or m[b] = R then return Y
18 else return ±Y

19 function decompChild(v, z):
20 elems ← ∅
21 common ← F (vl) ∩ F (vr)
22 mp,ms ← copies of the label of z
23 for ui ∈ F (vl) \ F (v) do mp[i] ← F
24 for ui ∈ F (vr) \ F (v) do ms[i] ← F
25 if common = ∅ then return {(mp,ms)}
26 for ui ∈ common do
27 if mp[i] = C then combs[i] ← {(C,C)}
28 else if mp[i] = U then
29 combs[i] ← {(R,C), (C,U)}
30 else if mp[i] = R then
31 combs[i] ← {(R,C), (C,R)}
32 for vals ∈ enumerateCombination(combs) do

33 m′
p ← copy of mp, m′

s ← copy of ms

34 for ui ∈ common do (m′
p[i],m

′
s[i]) ← vals[i]

35 elems ← elems ∪ {(m′
p,m

′
s)}

36 return elems

the input, and returns m if m is a terminal znode. Otherwise
it checks whether there already exists a znode respecting vr

and has the same label in Z[vr]. If such a znode exists, the
procedure returns the address of the znode. Otherwise it cre-
ates a new decision znode that respects vr and has label m,
stores it in Z[vr] and returns the address of the znode. If nei-
ther mf nor mt are ⊥ or mf �= mt, we set (X,Y)-partition
{(ε, unique(mf )), (X, unique(mt))} as the child of z (line
12). If mf = mt, we compress the child nodes to make
element {(±X, unique(mf ))} (line 11). If v is a decompo-
sition vnode (line 14-21), it calls decompChild(v, z) for ev-
ery node z ∈ Z[v]. decompChild(v, z) returns a set of pairs
of labels or terminal znodes that form primes and subs. Fi-
nally, we set elements as children of znode z, and recursively
call construct(v, Z) for v = vl and v = vr (line 21). If a
right-linear vtree is given as the input, construct(v, Z) al-
ways calls shannonChild(v, z, t). Then the algorithm is al-
most identical to SimPath. Our top-down algorithm extends
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Figure 3: An example graph and a vtree used in Example 2.

SimPath by introducing decompChild(v, z) to make child
znodes of a parent that respect a decomposition vnode.

The proposed method can be applied to several graph sub-
structures by designing rootNode(), shannonChild(v, z, t),
and decompChild(v, z) appropriately for the target sub-
structure. We first show concrete procedures used for con-
structing the set of all matchings. Procedure rootState() re-
turns table m where m[i] = U for every ui ∈ V , since no
gnodes incident edges in the initial state. Alg. 3 shows shan-
nonChild(v, z, t) and decompChild(v, z). Procedure shan-
nonChild(v, z, t) updates the label of znode z to make labels
of its child nodes. If t = true, then the procedure updates la-
bels by adding edge X corresponding to leaf vnode vl. Let
ua, ub ∈ V be the gnodes that incident X . If m[a] or m[b] is
C, then adding X makes more than two edges incident ua or
ub, which violates the definition of matching, thus it returns
⊥ (line 6). Otherwise, we update m[a] and m[b]. We then
set m[i] ← F for every ui ∈ F (v) that will not appear in
F (vr) (line 8-10). If m[i] = R for some ui ∈ F (v) \F (vr),
it returns ⊥ since the condition that ui must incident an edge
will not be satisfied (line 9). If vr is not a leaf node, we fin-
ish the procedure and return m (line 11). If vr is a leaf, the
procedure returns the terminal ZSDD node according to the
states of frontier nodes (line 12-18).

Procedure decompChild(v, z) is simple if vl and vr have
no common frontier nodes; in such case, it first copies label
m of a parent node to mp and ms (line 22, 23), and then sets
mp[i] ← F and ms[i] ← F for all gnodes ui that do not ap-
pear in F (vl) and F (vr), respectively (line 24, 25). Finally,
it returns the pair (mp,ms) (line 26). If vl and vr have com-
mon frontier gnodes, we make child gnodes for all possible
pairs of prime and sub labels. Suppose that there is a com-
mon frontier gnode ui ∈ F (vl)∩F (vr), and m[i] = U. Then
ui can incident at most one edge that is either in sub-vtree
vl or vr. If such edge is in vr, then mp[i] = C since no edge
in vl incidents ui, otherwise ms[i] = C. Therefore, possible
assignments on (mp[i],ms[i]) are either (C,U) or (R,C),
they correspond to the two cases above. Here, the latter is
(R,C) instead of (U,C) because primes must be exclusive;
if mp[i] = U, it contains cases in which no edge in vl in-
cidents ui. Such cases may also occur when mp[i] = C. In
this way, we store all possible assignments on (mp[i],ms[i])
for all ui ∈ F (vl) ∩ F (vr) in combs (line 27-33). Then we
enumerate all combinations of possible assignments of states
over common frontier nodes, and make pairs of primes and
subs for every possible assignment (line 34-37). Procedure
enumerateCombination enumerates all possible combina-
tions of pairs of gnode states stored in combs, and every vals

contains pairs of (mp[i],ms[i]) for all ui ∈ common.
Example 2. Let us construct the ZSDD representing all
matchings of the graph shown in Fig. 3 (a), where the con-
structed ZSDD follows the vtree shown in Fig. 3 (b). The
graph has four gnodes u1, . . . , u4, so the labels of znodes
are represented by arrays with 4 elements. In the following
,we use a tuple of four elements (m[1],m[2],m[3],m[4]) to
represent the value of label m. We run the top-down con-
struction algorithm shown in Alg. 1. First, it creates a root
znode whose label is (U,U,U,U) by using rootState(). The
procedure then calls construct(v1, z). Since v1 is a Shan-
non vnode, the procedure calls shannonChild(v1, z, t) for
different values of t ∈ {true, false}. Since u1, u2 are con-
nected with eA, mf = (U,U,U,U) and mt = (C,C,U,U).
Thus, the root znode has two child elements (ε,mf ) and
(A,mt). Fig. 4 (a) shows the state after two element nodes
are generated, where two decision znodes respecting v2 are
associated with labels mf and mt. We call znode with label
mf z1, and that with mt z2.

Next, construct(v2, Z) is called. Since v2 is a decom-
position vnode, procedure decompChild(v2, z) is called
for znodes z1, z2. Here vl = v3 and vr = v4, and
common frontier gnodes of left and right child vnodes are
F (v3) ∩ F (v4) = {u2, u3}. z1 has four possible labels
of prime child nodes (U,C,C,F), (U,C,R,F), (U,R,R,F),
and (U,R,C,F), and these prime labels form pairs with
subs (F,U,U,U),(F,U,C,U), (F,C,C,U), and (F,C,U,U).
Since these labels are distinct, we make 4 znodes respect-
ing v3, and 4 znodes respecting v4. These znodes appear in
Fig. 4 (b) in left-to-right order.

Similarly, znode z2 has two possible labels of prime
child znodes (C,C,R,F) and (C,C,C,F). Corresponding
sub child znodes are (F,C,C,U) and (F,C,U,U). Since
there are subs with the same labels, we do not make ad-
ditional sub child znodes and instead point to znodes with
the same labels (Fig. 4 (b)). After that, every znode respect-
ing v3 or v4 are processed and finally the ZSDD in Fig. 4
(c) is obtained. We show how the leftmost znode respect-
ing v3, say z3, is processed. It has label (U,C,C,F), and
F (v3) = {u1, u2, u3}. Since v3 is a Shannon vnode, proce-
dure construct(v3, Z) calls shannonChild(v3, z3, t) with
t = {true, false}. If t = false, the procedure returns ele-
ment (ε, ε) since vr is a leaf vnode and the corresponding
edge eC cannot be taken since both m[2],m[3] = C . If
t = true, the procedure returns ⊥ since m[3] = C and tak-
ing eB violates the condition for matching. As a result, the
child element gnodes of z3 become {(ε, ε)}. The obtained
ZSDD is later reduced and compressed by applying reduce
and compress.

Relation to Branch Decomposition

We can give upper bounds on the sizes of ZSDDs.
Theorem 1. If α is the ZSDD representing the set of all
matchings obtained by our top-down construction algo-
rithm, the size of α is O(|E|22W ), where W is the width
of vtree and is defined as W = maxv |F (v)|.
Proof. The number of decision znodes that respect vtree
node v is bounded by the number of possible frontier pat-
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Figure 4: Illustrating construct procedure of Example 2.

terns, since every ZSDD node respecting the same vnode
must have a distinct label. In our top-down construction al-
gorithm, every frontier node can have three different values:
C, U, or R. Since non-frontier nodes all have the same values
in label m (either of U or F), the number of distinct labels
are upper bounded by 3|F (v)| for znodes that respect vnode
v. This bound can be further tightened to 2|F (v)|, since if we
select a vnode, v, and select a frontier gnode, ui ∈ F (v),
then the set of possible values of m[i] is either {R,C} or
{U,C}. Hence the number of decision znodes are bounded
by |E|2W . Since every decision znode has at most 2W child
element nodes, the ZSDD size is O(|E|22W ).

We can also show that the time and space complexity
of the top-down algorithm for constructing all matchings
is O(|E|W22W ), since the procedure construct requires
O(W ) time and space for every constructed ZSDD node.

Since W determines ZSDD size, finding a vtree with
small width is important. We can make a vtree whose width
equals the maximum width of a branch decomposition of
the input graph. Branch decomposition (Robertson and Sey-
mour 1991) of a graph is an unrooted binary tree, T , where
each leaf corresponds to a distinct edge in E, and each non-
leaf node of T has degree of exactly three. We define the
width for every edge e in T as follows: if an edge is re-
moved from T , then T is decomposed into exactly two con-
nected components. Since leaf nodes of T correspond to
graph edges, these two connected components can be seen
as a partition. Let two subgraphs of G induced by the set of
graph edges contained in each subtree be G1 and G2. We
define the width of tree edge e as the number of graph nodes
appearing in both G1 and G2. Given branch decomposition
T , whose maximum width is W , we can easily construct a
vtree whose maximum frontier size is bounded by W . The
relation between branch decomposition and vtree indicates
that the problem of finding a good vtree corresponds to the
problem of finding a good branch decomposition. Although
finding a branch decomposition with minimum width is gen-
erally a difficult problem, there are practical algorithms that
can find good branch decompositions (e.g., (Cook and Sey-
mour 2003)).

The branch-width of a graph is the smallest width of
all possible branch decompositions. Let bw be the branch-
width of an input graph, then the size of ZSDD represent-

ing all matchings is O(|E|22bw). When we use SimPath to
construct a ZDD representing a set of matchings, then its
size is O(|E|2pw), where pw is the path-width of the input
graph (Inoue and Minato 2016). Since pw and bw satisfy
pw = O(bw log |V |) (e.g., (Bodlaender 1998), (Robertson
and Seymour 1991)), our algorithm can give a tighter upper
bound than SimPath.

Experiments

We conduct experiments to evaluate the performance of the
proposed top-down construction algorithms for construct-
ing ZSDDs representing all matchings and simple paths. As
benchmarks, we use a bottom-up algorithm for ZSDDs and
the top-down algorithm for ZDDs. We used the bottom-up
construction algorithm1 that converts a CNF into a ZSDD.
Since CNFs representing the set of simple paths contains
exponentially many clauses, we apply the bottom-up algo-
rithm only to constructing the set of matchings. Since we
apply the compress operation to ZSDDs constructed by the
top-down algorithm, both the top-down and the bottom-up
methods construct the same ZSDD. To implement the top-
down algorithm for ZDDs, we use the top-down algorithm
for ZSDDs with a limitation that vtrees must be right-linear.
Since a ZSDD respecting a right-linear vtree is equivalent
to a ZDD, the algorithm is equivalent to SimPath for ZDDs.
The vtrees for ZSDDs are obtained by applying a heuris-
tic algorithm for branch decomposition (Cook and Seymour
2003). We use two element orders for ZDDs. The first one
uses the order obtained by a breadth-first traversal of input
graphs, as is used in graphillion (Inoue et al. 2016), a li-
brary that implements a top-down construction algorithm for
ZDDs. The other one uses the order induced from the vtrees
used in the proposed method. Here we say an order is in-
duced if a left-right traversal of a vtree gives the visiting
order of variables (Xue, Choi, and Darwiche 2012).

We use benchmark graphs used in (Cook and Seymour
2003), which were obtained by applying Delaunay triangu-
lation to the geometric instances in TSPLIB. We also used
instances from the RomeGraph dataset 2. We select the first
10 instances that have 100 nodes. We omit instances for
which no method could finish within 600 seconds. All ex-

1https://github.com/nsnmsak/zsdd
2http://www.graphdrawing.org/download/rome-graphml.tgz
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Compilation time (ms) Size
Instance |V | |E| BU TD Z (b) Z (v) TD Z (b) Z (v)

att48 48 130 95 11 132 35 7,420 40,370 20,438
berlin52 52 145 542 23 7,676 158 16,043 520,466 79,726

eil51 51 142 443 22 1,371 217 16,303 366,273 101,306
eil76 76 215 1,888 143 72,474 11,019 103,317 8,253,872 1,152,860
eil101 101 290 17,095 310 – 66,436 177,932 – 10,027,975
pr226 226 660 19,637 83 – 155,318 26,832 – 16,027,488
rat99 99 280 2,147 72 – 18,920 37,421 – 2,157,450
st70 70 197 1,418 62 62,559 70,336 46,288 3,861,677 7,244,529

grafo10106.100 100 119 94 1 371 4 885 141,278 2,690
grafo10116.100 100 149 481 244 – 5,590 108,637 – 853,204
grafo10124.100 100 139 469 118 59,927 385 71,210 5,664,264 187,536
grafo10153.100 100 136 210 36 29,943 119 21,164 4,462,425 55,647
grafo10183.100 100 132 108 10 29,508 658 6,094 3,513,816 213,194

Table 1: Results of constructing ZSDDs and ZDDs representing the set of all matchings.
Construction time (ms) Size

Instance |V | |E| TD Z (b) Z (v) TD Z (b) Z (v)
att48 48 130 597 20,679 1,149 100,131 991,456 240,068

berlin52 52 145 2,059 – 16,225 313,513 – 1,305,617
eil51 51 142 1,705 – 27,873 225,314 – 2,742,091

ulysses22 22 57 2 183 11 1,106 15,649 5,377
grafo10106.100 100 119 2 1,914 4 462 7,861 1,056
grafo10124.100 100 139 36,291 – 60,099 2,043,633 – 4,694,606
grafo10153.100 100 136 14,809 – 3,124 324,406 – 432,263
grafo10183.100 100 132 252 – 140,348 35,318 – 364,206
grafo10184.100 100 140 14,848 – 113,433 616,622 – 2,205,368

Table 2: Results of constructing ZSDDs and ZDDs representing the set of all simple paths.

periments were conducted on a Linux machine with a Xeon
E5-2687W 3.10 GHz CPU and 128 GB RAM.

Experimental results are shown in Tab. 1, 2. Here BU is
the bottom-up method, TD is the top-down method (pro-
posed), Z (b) and Z(v) are top-down methods for ZDDs that
employ breadth first ordering and vtree traversing ordering.
Since TD and BU return the same ZSDD, we only show the
size of ZSDDs constructed by TD. The empty fields show
experiments terminated by out of memory. We can see that
the ZSDDs are always smaller than ZDDs. In the case of
matchings, ZSDDs are up to 600 times smaller than ZDDs.
For compilation time, TD is the fastest for almost all in-
stances. One exception is grafo10124.000 of SimPath, where
the compilation time of TD is longer than that of Z(v). This
result is due to the fact that compilation time depends on the
size of intermediate ZSDDs. If intermediate ZSDDs made
by procedure construct are large, then compilation takes a
long time even when the finally obtained ZSDDs are small.

Conclusion

We proposed top-down knowledge compilation algorithms
for constructing ZSDDs that represent sets of substructures
of input graphs. We showed a general top-down compila-
tion algorithm and two concrete examples of compiling sets
of matchings and sets of simple paths. Comparing with the
SimPath algorithm, our method can give a better theoreti-
cal upper bounds on the sizes of ZSDDs. We experimentally
confirmed that the proposed method runs fast and can con-
struct more succinct ZSDDs than SimPath.

Appendix: Construction of Simple Paths

We show a top-down algorithm for constructing a ZSDD
representing the set of all simple paths between two nodes
s, t ∈ G. Here we say a path is simple if it does not con-
tain nodes that appear more than twice. As in the case of
matchings, the top-down construction algorithm for simple
paths also exploits states of frontier gnodes as labels. Labels
represent the connection relations between frontier nodes.
Fig. 5 shows two equivalent frontier patterns with frontier
u4, u5, u6. In this example, u4 is connected to u1 = s, and
u5 and u6 are terminal gnodes of a path. These connec-
tion relations between frontier nodes determine the possible
choice of remaining edges. In this example, the only pos-
sible choice that forms a simple path in combination with
selected edges is {H, I, J,K}. These two examples use dif-
ferent paths between u5 and u6, but they have the same con-
nection pattern over frontier nodes, thus they are equivalent.

Next we show procedures shannonChild(v, z, t) and de-
compChild(v, z) for constructing ZSDDs representing the
sets of all simple paths. We first overview these subroutines,
then show the concrete design of labels and algorithms.
shannonChild(v, z, t) updates the label of znode z by se-
lecting or not selecting the edge corresponding to vnode vl.
In the same way as for matchings, decompChild(v, z) enu-
merates all possible combinations of primes and subs and
then makes child znodes for every enumerated combination.
This enumeration of possible combinations proceeds by (a)
generating all combinations of possible states over common
frontier gnodes (F (vl)∩F (vr)), and then (b) enumerates all
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Figure 5: Equivalent frontiers (simple path).

GsGp t

s

F (vr)F (vl)

u5 u6 u7u1 u2 u3 u4

(a)

u5 u6 u7u1 u2 u3 u4

s

u5 u6 u7u1 u2 u3 u4

s

u5 u6 u7u1 u2 u3 u4

s

(b)

Figure 6: An example of enumeration of possible labels of
child nodes in decompChild(v, z). (a) an example label of
a parent znode (b) possible combinations of labels of primes
and subs.

possible connections between paths that have terminals both
in prime and sub frontier nodes. Procedure (a) is the same as
that of matchings, and it generates possible assignments of
mp[i],ms[i] depending on the current value m[i] for every
common frontier gnode ui ∈ F (vl) ∩ F (vr).

We elucidate procedure (b) by using the example shown
in Fig. 6. Suppose that F (v) for vnode v is {u1, . . . , u7},
F (vl) = {u1, . . . , u4} and F (vr) = {u5, u6, u7}. If the
label of a znode, z, that respects v has connections shown
in Fig. 6 (a), then the new labels of primes and subs are
obtained by copying the corresponding values of the la-
bel of z. In this case, there remains three paths that con-
nect prime and sub frontier nodes, (u2, u7), (u3, u6), and
(u4, u5). These connections between prime and sub fron-
tiers prevent top-down construction at prime and sub ZSDDs
from running independently. For example, source gnode s is
currently connected to u1 ∈ F (vl), but target gnode t is
contained only in the subgraph Gs that is induced by edges
in vtree vr. Thus we have to connect u1 with either u2, u3,
or u4 to form a path. Since this decision impacts the con-
nection patterns of sub, we cannot process primes and subs
independently. We therefore enumerate all possible connec-
tions between the terminals of these connected paths that
appear in F (vl). If connections between terminals of primes
are once determined, then the connection patterns of subs
can be processed independently. Fig. 6 (b) shows all possi-
ble connection patterns of prime frontier gnodes and corre-
sponding sub frontier gnodes, given the connection pattern
of Fig. 6 (a). There are three possible choices of connect-
ing connecting prime frontier vnodes, and these connections
result in different frontier states in subs. Once these connec-
tion patterns are enumerated, the top-down construction for
vr proceeds independently. The top-down construction pro-
cedure for vl also proceeds so as to find all possible families
of sets that accomplish the desired connections between ter-

Algorithm 4: shannonChild(v, z, t)
1 m ← copy of label of z
2 X ← element corresponds to vtree node vl

3 (ua, ub) ← gnodes incident with edge eX
4 if t = true then
5 if m[a] = 0 or m[b] = 0 then return ⊥
6 if m[a] = b and m[b] = a then return ⊥
7 if m[a] < 0 and m[b] < 0 then
8 if m[a] = −b and m[b] = −a then
9 m[a] ← 0 m[b] ← 0

10 if finished(m) then return ε

11 else return ⊥
12 else
13 if m[a] = −a then m[a] ← a
14 if m[b] = −b then m[b] ← b
15 ta ← m[a], tb ← m[b]
16 m[a] ← 0, m[b] ← 0
17 m[σ(ta) · ta] ← σ(ta) · tb
18 m[σ(tb) · tb] ← σ(tb) · ta
19 for ui ∈ F (vr) \ F (v) do
20 if m[i] �= 0 and m[i] �= i then return ⊥ else m[i] ← 0

21 if vr is not a leaf vnode then return m
22 else
23 if finished(m) then return ε
24 Y ← element corresponds to vtree node vr

25 (ua, ub) ← gnodes incident with edge eY
26 if m[a] = −b and m[b] = −a then
27 m[a] ← 0, m[b] ← 0
28 if finished(m) then return Y

29 return ⊥

minals. We call these desired connections reserved connec-
tions. This procedure also can be performed independently.

Next we show the concrete procedures. We first show how
to represent connection patterns between frontier gnodes. In
the following, we assume s = u1 and t = u|V | without loss
of generality. We represent connection patterns by using size
|V | array m whose values are integers ranging from −|V | to
|V |. Suppose every gnode ui ∈ V is represented by inte-
ger 1 ≤ i ≤ |V |. If m[i] = 0, it means ui incidents two
edges and appears as an internal point of a simple path. If
m[i] = i, the gnode incidents no edges. If m[i] = j where
1 ≤ j ≤ |V | and j �= i, i is a terminal gnode of a path that
is not connected to both s and t, and another terminal of the
path is uj , i.e., m[i] = j means m[j] = i. If m[i] = j where
−|V | ≤ j ≤ −1 and j �= −i, then i and j has a reserved
connection, i.e., i and j must be connected by a simple path.
Since u1 = s must be connected to u|V | = t, s and t have
a reserved connection. It is represented as m[1] = −|V | and
m[|V |] = −1 in the initial state. The reserved connections
appearing in the upper prime label in Fig. 6 (b) is represented
by (m[1],m[2],m[3],m[4]) = (−2,−1,−4,−3). The cor-
responding sub label is represented by (m[5],m[6],m[7]) =
(6, 5,−s). If m[i] = −i, then ui currently incidents no
edges but it must be incident two edges.

We next show the three sub-procedures. rootState() re-
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Algorithm 5: decompChild(v, z)
1 elems ← ∅
2 common ← F (vl) ∩ F (vr)
3 mp ← label of z, ms ← label of z
4 for ui ∈ F (vl) \ F (v) do mp[i] ← 0
5 for ui ∈ F (vr) \ F (v) do ms[i] ← 0
6 for ui ∈ common do
7 if mp[i] = 0 then
8 combs[i] ← {(0, 0)}
9 else if mp[i] = i then

10 combs[i] ← {(−i, 0), (0, i), (π, π)}
11 else if mp[i] = −i then
12 combs[i] ← {(−i, 0), (0,−i), (π, π)}
13 else
14 combs[i] ← {(m[i], 0), (0,m[i])}
15 for vals ∈ enumerateCombination(combs) do

16 m′
p ← copy of mp, m′

s ← copy of ms

17 for ui ∈ common do

18 (m′
p[i],m

′
s[i]) ← vals[i]

19 connection ← connections between m′
p and m′

s

20 if connection is empty then

21 elems ← elems ∪ {(m′
p,m

′
s)}

22 else
23 for cVals ∈ enumeratePats(connection) do

24 m′′
p ← m′

p, m′′
s ← m′

s

25 Update m′′
p ,m

′′
s so as to follow cVals

26 elems ← elems ∪ {(m′′
p ,m

′′
s )}

27 return elems

turns initial state m whose values are m[1] = −|V |,
m[|V |] = −1, and m[i] = i for i = 2, . . . , |V | − 1.

We show shannonChild(v, z, t) in Alg. 4. If t = true, the
algorithm first tries to add edge eX that corresponds to leaf
vnode vl (line 4-18). If either ua or ub already incidents two
edges (line 5), or ua and ub are terminal gnodes of a path and
connecting them makes an cycle (line 6), we return ⊥ since
the set of selected edges will never form a simple path. If
m[a] < 0 and m[b] < 0, we check if they are reserved to be
connected (line 8), and if so, we check whether a simple path
has been found or not by calling finished(m). If m[i] = 0
or m[i] = i for all ui ∈ V , then finished(m) returns true.
If finished, then terminal znode ε is returned (line 10). If
ua, ub are not reserved, then ⊥ is returned. In other cases, we
connect ua, ub to update values to reflect the new connection
made by adding eX (line 12-18), where σ(t) is 1 if t ≥ 0,
otherwise −1. Then for all ui that will be removed from
frontier, we set u[i] = 0. If ui is a terminal of a path or
reserved to be connected, we return ⊥. Finally, if vr is a leaf
vnode, we return a terminal znode depending on the current
label m, otherwise we return m.

Procedure decompChild(v, z) starts working in almost the
same way as matchings; it enumerates possible assignments
over common gnodes in F (vl) ∩ F (vr), and makes m′

p or
m′

s for every assignment (line 1-14). Symbol π, appears in
lines 10 and 12, is used to indicate that ui will incident

two edges, one is in vl and the other is in vr. It means if
mp[i] = ms[i] = π, it can be treated as a path connecting
prime and sub frontier gnodes. After enumerating all pos-
sible assignments on common frontier nodes, the procedure
finds all connection paths between m′

p and m′
s (line 19). If

no connection exists, it adds (m′
p,m

′
s) to elems (line 21).

Otherwise, the procedure also enumerates all possible re-
served connections between prime frontier gnodes (line 23).
textsfcVals stores reserved connections between prime fron-
tier gnodes and values of subs reflecting the reserved con-
nections. We use cVal to update m′′

p and m′′
s (line 25), then

we add them to elems (line 26).
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