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Abstract

Inference from an observed or hypothesized condition to a
plausible cause or explanation for this condition is known as
abduction. For many tasks, the acquisition of the necessary
knowledge by machine learning has been widely found to be
highly effective. However, the semantics of learned knowl-
edge are weaker than the usual classical semantics, and this
necessitates new formulations of many tasks. We focus on
a recently introduced formulation of the abductive inference
task that is thus adapted to the semantics of machine learn-
ing. A key problem is that we cannot expect that our causes
or explanations will be perfect, and they must tolerate some
error due to the world being more complicated than our for-
malization allows. This is a version of the qualification prob-
lem, and in machine learning, this is known as agnostic learn-
ing. In the work by Juba that introduced the task of learning
to make abductive inferences, an algorithm is given for pro-
ducing k-DNF explanations that tolerates such exceptions: if
the best possible k-DNF explanation fails to justify the con-
dition with probability ε, then the algorithm is promised to
find a k-DNF explanation that fails to justify the condition
with probability at most O(nkε), where n is the number of
propositional attributes used to describe the domain. Here, we
present an improved algorithm for this task. When the best k-
DNF fails with probability ε, our algorithm finds a k-DNF
that fails with probability at most Õ(

√
nkε) (i.e., suppress-

ing logarithmic factors in n and 1/ε). We also examine the
empirical advantage of this new algorithm over the previous
algorithm in two test domains, one of explaining conditions
generated by a “noisy” k-DNF rule, and another of explain-
ing conditions that are actually generated by a linear threshold
rule.

Introduction

Abductive reasoning is the process of inferring a reasonable
explanation for an observation or hypothetical situation. For
example, suppose a man walks into a hotel and his clothing
is wet. We may naturally assume that it is raining outside.
This might not be true, and his clothing may have gotten wet
some other way, but it is the most reasonable explanation
of the given facts. Abduction is powerful—in enabling us
to find hidden explanation of events, it furthermore enables
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us to generate new theories. Abductive reasoning can be ap-
plied in diverse problems, such as image understanding (Cox
and Pietrzykowski 1986; Poole 1990), natural language un-
derstanding (Hobbs et al. 1990), plan recognition (Charniak
and McDermott 1985), and so on.

Although most early work on abduction relied on explicit
knowledge engineering to capture the domains in which
such inference was to be performed, much knowledge engi-
neering has been replaced by machine learning. The reasons
can be explained roughly as follows: the main lessons of the
CYC project (Lenat 1995) were that (i) the scope of knowl-
edge needed to support ordinary human inferences is vast,
and would take many decades to formalize in its entirety
and (ii) such a large knowledge engineering effort seems to
inevitably suffer from semantic drift and consequently, brit-
tleness. Machine learning is a means to circumvent both of
these problems. The price of using learned knowledge is that
its semantics are inevitably weaker than those of classical
knowledge. So, while these weaker semantics may grant us
some additional robustness (as has been argued, for exam-
ple, by Valiant (2000a; 2000b)), they also require us to re-
consider the foundations of the various tasks we wish to per-
form. A surprising benefit of this exercise is that it turns out
that a combined learning and reasoning task may be easier
than either of its constituent parts: Khardon and Roth (1997)
demonstrated that algorithms for such combined tasks may
efficiently learn and reason with representations that would
be intractable to learn or reason about using standalone al-
gorithms. Motivated by these advantages, we will likewise
consider a combined learning and abductive reasoning task.

In particular, we focus on a new formulation of abduc-
tive reasoning introduced by Juba (2016) based on PAC-
learning (Valiant 1984). In this model, learning is accom-
plished using examples that consist of settings of each of
the various Boolean attributes. For example, if our domain
is reasoning about people, then our attributes may include
“female” (yes or no), “male” (yes or no), “brown hair” (yes
or no), “taller than 1.5m” (yes or no) and so on. Each exam-
ple corresponds to a person, and consists of a setting of all
of these attributes. All of the examples contain the same at-
tributes, but they may be set differently. In the model, these
examples are drawn from an arbitrary distribution D over
{0, 1}n (for our n attributes). The abduction task is then,
given a condition that we wish to explain, that is captured
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by a Boolean formula c, to use these examples to find a hy-
pothesis formula h that explains the condition in the follow-
ing sense. h should (approximately) entail c, that is, when
h is true, c should almost always also be true; and, h itself
should be true as often as possible, i.e., we wish to find the
most likely such h. For example, the query might indicate
whether or not the stated facts of the story hold in a specific
example, while h is some other (most likely) condition that
yields the given condition.

A key problem with such formalizations is that we cannot
expect our explanations to be perfect. Those explanations
must tolerate some errors – situations where the explanation
should hold, but the condition in question fails to material-
ize – due to our failure to model the real world in every last
detail. This is essentially a variant of the qualification prob-
lem (McCarthy 1980). In the work by Juba that introduced
this task, an algorithm is given for producing k-DNF expla-
nations that features some tolerance to such exceptions: if,
under the best possible k-DNF explanation, the condition
fails to materialize with probability ε, then the algorithm
is promised to find a k-DNF explanation under which the
condition only fails to materialize with probability at most
O(nkε) (where again, n is the number of propositional at-
tributes). Of course, this could be quite a bit larger than the
best probability ε, and we would like to reduce (if not elimi-
nate) this dependence on n.

In this work, we introduce an improved algorithm for this
task which finds a k-DNF explanation that fails with prob-
ability at most Õ(

√
nkε)1. Our algorithm is an extension of

an earlier algorithm by Peleg (2007) for the closely related
“Red-Blue Set Cover” problem (Carr et al. 2000). Roughly,
in such a problem, we are given a collection of sets that we
wish to use to cover all of the “blue” elements while cover-
ing as few “red” elements as possible. The correspondence
then, is that we assign every example a blue element, while
assigning examples in which the desired condition fails to
hold a “red” element, and take the possible terms of size
k (for a k-DNF) as our collection of sets. Now, our task
is to choose terms of size k that “cover” as many blue el-
ements as possible while covering as few red elements as
possible—the main difference is that we no longer require
covering all of the blue elements. More precisely, in the vari-
ant that is relevant to us, we are given a target fraction μ of
the blue elements to cover (less than 1), and we seek to min-
imize the ratio of red-to-blue elements we cover in meeting
this objective. Thus our task is actually also distinct from
the “positive-negative partial set cover” problem studied by
Miettinen (2008), in which one wishes to minimize the sum
of the number of negative (red) elements covered and the
number of positive (blue) elements uncovered.

At the heart of Peleg’s algorithm is an approximation al-
gorithm for the weighted set cover problem; in our exten-
sion, this standard weighted set cover problem is instead a
partial set cover problem. Slavı́k (1997) had already shown
that the greedy algorthm achieves the same approximation
ratio for such a variant of weighted set cover, so we are able
to easily complete the rest of the analysis after this mod-

1That is, ignoring logarithmic factors.

ification. The resulting algorithm increases the error by a

O(
√
nk log n+log 1/δ

ε ) factor, where again ε is the error rate
achieved by the best explanation that is true with probability
at least the target μ, and δ is the probability that we fail on
account of drawing an unrepresentative set of examples.

We also investigate the empirical advantage of this new al-
gorithm over the previous, “Tolerant Elimination” algorithm
considered by Juba. We consider two test domains. In the
first domain, there is a “planted” k-DNF rule that is used to
define the condition, subject to some independent random
noise. Thus, in this case, we have a good sense of what the
ideal error rate should be. We find that both algorithms per-
form well at this simple task. In the second domain, the con-
dition is actually defined by a (random) linear threshold rule.
We know that in general, such linear threshold rules cannot
be approximated well by a k-DNF, and so this domain exer-
cises the algorithms’ ability to tolerate errors that are due to
the actual condition being too complex for our formalism to
capture. We find that Tolerant Elimination completely fails
at this task, never achieving an error rate lower than the triv-
ial rule that is always satisfied, whereas our new algorithm
is able to identify rules that are satisfied with controllable
probabilities, that achieve substantially lower error rates.

The Partial Red-Blue Set Cover Problem

In this section, we introduce the Partial Red-Blue Set Cover
Problem, a natural variant of Red-Blue Set Cover. We will
show how an algorithm by Peleg (2007) for Red-Blue Set
Cover can be adapted to solve this new problem. In the fol-
lowing section, we will then explain how this problem can
be used to perform exception-tolerant abduction.

Statement of the Partial Red-Blue Set Cover
Problem

Consider a finite universe U comprised of two disjoint sets,
of red elements R and blue elements B. We let β denote the
number of blue elements. We suppose that we are given a
collection S of d sets S1, . . . Sd that are subsets of U .

For any sub-collection S ′ ⊆ S , let U(S ′) denote⋃
Si∈S′ Si, B(S ′) denote U(S ′) ∩ B and R(S ′) denote

U(S ′) ∩ R. The goal is to choose a S ′ ⊆ S that covers
at least μ fraction of all the elements of B while minimiz-
ing |R(S ′)|/|B(S ′)|, i.e., the number of red elements in S ′

relative to the number of blue elements.

An algorithm for Partial Red-Blue Set Cover

We begin by defining some more useful notation. Let
deg(ri,S) denote the number of sets in S that contain the
red element ri. Let Δ(S) = max{deg(ri,S) : ri ∈ R}.
Denote the result of deleting elements of R′ from Si by
φ(Si, R

′) = Si \ R′ and let φ(S, R′) = {φ(Si, R
′) :

Si ∈ S}. For any set Si ∈ S let r(Si) = |R({Si})| and
for every sub-collection S ′ ⊆ S , let r(S ′) = |R(S ′)|. Let
H(n) =

∑n
i=1

1
i be the nth harmonic number.

Peleg’s original algorithm used the standard greedy algo-
rithm for approximate weighted set cover as a subroutine.
Our main modification will be to replace this subroutine with
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a (modified) algorithm for approximate weighted partial set
cover; Slavı́k established that a greedy algorithm for partial
set cover achieves the same approximation ratio as for the
original problem. We modify his algorithm slightly to opti-
mize the ratio of the costs to number of elements covered
(Algorithm 1). Precisely:

Algorithm 1 Partial Greedy Algorithm
Input: finite set T = {T1, ..., Td}, costs {c1, ..., cd}, μ ∈
(0, 1]

Output: μ partial cover solution set T̃
Procedure:

1: Set T̃ = ∅

2: If r = μβ −
∣∣⋃

t∈T̃ Tt

∣∣ ≤ 0, then STOP and output T̃
3: Choose the first Ti ∈ T \ T̃ that minimizes ct/|Tt|, for

t ∈ T \ T̃ and Ti �= ∅.
4: Add Ti to T̃ , set Tt = Tt \ Ti, and return to step 2.

Theorem 1 Let T be a collection of sets T1 . . . , Td on a
universe V with corresponding weights ω(T1), . . . , ω(Td).
Suppose that there is a sub-collection T ∗ ⊆ T such that
T ∗ =

⋃
T∈T ∗ T contains at least μ|V | distinct elements

and
∑

T∈T ∗ ω(T ) = ω(T ∗). Then Algorithm 1 finds a sub-
collection T̃ such that

⋃
T∈T̃ T also contains at least μ|V |

elements and
∑

Tt∈T̃ ω(Tt)

|⋃Tt∈T̃ Tt| ≤ 3H(�μ|V |	) · ω(T ∗)
|T∗| .

We sketch the proof of Theorem 1 in the appendix. Now,
we modify Peleg’s subroutine GREEDY RB to use Algo-
rithm 1 instead of the standard greedy algorithm, obtaining
Algorithm 2.

Algorithm 2 Greedy partial RB
Input: finite set S = {S1, ..., Sd}, μ ∈ (0, 1]

Output: μ partial cover solution S̃
Procedure:

1: Modify S into an instance T of the weighted set cover
problem as follows: (a) Take T = φ(S, R) (b) Assign
each set Ti = φ(Si, R) in T a weight ω(Ti) = r(Si)

2: Apply Algorithm 1 for weighted partial set cover to T
and generate a cover T̃

3: Get the corresponding collections as a set of solutions
S̃ = {Si : Ti ∈ T̃ }

Lemma 2 Algorithm Greedy partial RB yields an approxi-
mation ratio of Δ(S) · 3H(μβ)

We will use the following lemma from Peleg:
Lemma 3 (Peleg 2007, Lemma 3.1) For any collection S ′ ⊆
S and the corresponding instance T ′ = φ(S ′, R) of the
weighted set cover problem r(S ′) ≤ ω(T ′) ≤ Δ(S) · r(S ′)

The proof is now very similar to that of the analogous
lemma, Lemma 3.2 used by Peleg:
Proof of Lemma 2: Let any minimum-weight set cover
T ′ of T be given. Consider any optimal cover S∗ ⊆ S

that covers μβ blue elements and put T ∗ = φ(S∗, R).
Since, by Theorem 1, Algorithm 1 yields a 3H(μβ) ap-
proximation ratio for the weighted partial set cover prob-
lem, we then have that the solution returned by Algorithm 1
satisfies ω(T̃ ) ≤ 3H(μβ) · ω(T̃ ′). Lemma 3 then gives
r(S̃) ≤ ω(T̃ ). And, since T̃ ′ is an optimal partial cover
of T , ω(T̃ ′) ≤ ω(T̃ ∗). In summary, so far we have

r(S̃) ≤ ω(T̃ ) ≤ 3H(μβ) · ω(T̃ ′) ≤ 3H(μβ) · ω(T̃ ∗).

Now, Lemma 3 gives

3H(μβ) · ω(T̃ ∗) ≤ 3H(μβ) ·Δ(S) · r(S̃∗)

completing the proof.
We next modify the body of Peleg’s main algorithm,

LOW DEG in the natural way to obtain our final algorithm,
(1) replacing the use of GREEDY RB with Algorithm 2, (2)
checking that the family may possibly admit a sufficiently
large partial covering after computing SX , and (3) comput-
ing our notion of (relative) error rate rather than just the
number of red elements.

Algorithm 3 Low Deg Partial(X)
Input: finite set S = {S1, ..., Sd}, μ ∈ (0, 1], integer X
Output: μ partial cover solution S̃X and corresponding er-
ror rate ε̃
Procedure:

1: Discard sets in S that contain more than X red elements,
set SX ← {Si ∈ S : r(Si) ≤ X}.

2: If |B(SX)|
|B| < μβ, then return FAIL � SX is not feasible

3: Set Y =
√

d
H(�μβ�)

4: Identify the high degree red elements: RH ← {ri ∈ R :
deg(ri,SX) > Y }

5: Discard elements of RH in SX : SX,Y ← φ(SX , RX)

6: Apply Algorithm 2 to SX,Y and obtain a solution S̃X,Y

for it.
7: Add the dropped red elements back to obtain the corre-

sponding result S̃X .
8: For the set of blue elements B̃ and red elements R̃ re-

spectively covered by S̃X , calculate the error rate ε̃ =
˜|R|
˜|B|

and return it and S̃X .

Algorithm 4 Low Deg Partial 2
Input: finite set S = {S1, ..., Sd}, μ ∈ (0, 1]
Output: optimal choice of μ partial cover solution and cor-
responding error rate ε̂
Procedure:

1: For X=1 to |R| do:
2: Low Deg Partial(X)
3: Take the solution that yields the lowest error rate

Theorem 4 Algorithm 4 solves the Partial Red-Blue
Set Cover problem with an approximation ratio of
4
√
d ·H(μβ)
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The proof of Theorem 4 is virtually identical to the proof of
Theorem 3.5 of Peleg (and the proof Peleg’s Lemma 3.4),
with our Lemma 2 replacing Lemma 3.2, and 3H(μβ) re-
placing the original log β approximation ratio.

Using Partial Red-Blue Set Cover Algorithms

for Exception-Tolerant Abduction
We will now show that, given an appropriate number of ex-
amples, algorithms for the Partial Red-Blue Set Cover prob-
lem can be used to perform exception-tolerant abduction.
We first recall the PAC-learning formulation of abduction
proposed by Juba (2016).

Learning of exception-tolerant k-DNF abduction

The formulation of learning exception-tolerant abduction
is as follows. Suppose there are n propositional attributes
x1, . . . , xn, and we are given a query to be explained, a
Boolean formula c that may use our n propositional at-
tributes as variables. We fix an alphabet A ⊆ {x1, . . . , xn}
of attributes we wish to allow in our explanations. For ex-
ample, A may only contain the attributes that take values
“before” the attributes used in the formula c describing the
event to be explained. We are also given as input m ex-
amples, x(1), . . . , x(m), drawn independently from a com-
mon, unknown distribution D over Boolean values for all
of the n attributes. We are given a target plausibility thresh-
old μ ∈ (0, 1), and an integer k for the complexity of our
solutions. Following Juba (2016), we will only seek to use
k-DNFs as explanations; it seems that this is essentially the
most expressive natural class of formulas for which this task
is tractable. Finally, we fix a tolerance γ ∈ (0, 1/3] indicat-
ing the amount of loss relative to the optimal plausibility we
are willing to accept. Let

ε∗ = min
k-DNF h on A:Pr[h(x)=1]≥μ

Pr[c(x) = 0|h(x) = 1]

be the optimal error rate achievable by a k-DNF using only
attributes in A that is satisfied at least a μ-fraction of the time
on D.

Our task is now to return a k-DNF h that uses only at-
tributes in A such that with probability 1 − δ over the draw
of x(1), . . . , x(m) from D,
1. Plausibility. Pr[h(x) = 1] ≥ (1− γ)μ and
2. Entailment. Pr[c(x) = 0|h(x) = 1] ≤ α(n, 1/ε∗, 1/δ)ε∗

where we say that α(n, 1/ε∗, 1/δ) is the approximation
ratio achieved by our algorithm.

Note that we are seeking to learn both the (approximate)
entailment relation between the various hypotheses and the
conclusion c and the degree of plausibility of the various hy-
potheses from the examples.

Our task is formally equivalent to finding a prediction rule
h for c that achieves a positive classification rate of (1−γ)μ
and precision 1 − αε∗, given that some other unknown rule
h∗ with a positive classification rate μ achieves precision
1− ε∗.2

2Our algorithm can be easily extended to achieving recall
(1 − γ)μ and precision 1 − αε∗ when a rule achieving recall μ
and precision 1 − ε∗ exists—one simply only creates a blue ele-
ment for the positive examples instead of all examples.

Analysis of Partial Red-Blue Set Cover Algorithms
for Learning Abduction

We will now prove our main theorem, stating that Algo-
rithm 4 can be used to perform exception-tolerant abduc-
tion with an approximation ratio of O(

√
nk logμm), where

m = Θ( 1
γ2με∗ (n

k + log 1
δ )) (in particular the factor of μ in

the approximation ratio cancels the factor of 1/μ in m).

Theorem 5 Suppose we are given m = Θ( 1
γ2με∗ (n

k +

log 1
δ )) examples. Then Algorithm 4 can be used to solve

the exception-tolerant abduction task in time polynomial in
m and nk with approximation ratio O(

√
nk logμm) =

O(
√

nk log n+log 1/δ
γε∗ ).

To prove this theorem, we will need to argue that the “em-
pirical” problem posed by a fixed training set provides a
good approximation to the quality of a k-DNF explanation
on the actual distribution of examples.

Lemma 6 For any c : {0, 1}n → {0, 1}, δ ∈ (0, 1), and
γ ∈ (0, 1/3], let x(1), . . . , x(m) be independently drawn
from a common distribution D over {0, 1}n for

m ≥ 3(1 + γ)

γ2(1− γ)με∗
(ln 2

(
2n

k

)
+ ln

4

δ
)

where ε∗ is the minimum (nonzero) Pr[c(x) = 0|h(x) = 1]
over k-DNFs h with Pr[h(x) = 1] ≥ μ for a given target μ.

Then with probability 1 − δ over the draw of
x(1), . . . , x(m), if a k-DNF h is true on a μ̂ fraction of
x(1), . . . , x(m) for μ̂ ≥ (1− γ)μ, we have

(1 + γ) Pr[h(x) = 1] ≥ μ̂ ≥ (1− γ) Pr[h(x) = 1].

If, furthermore Pr[c(x) = 0|h(x) = 1] ≥ ε∗ and c(x(j)) =
0 for a ε̂ fraction of {x(j) : h(x(j)) = 1}, we have

(1− 2γ) Pr[c(x) = 0|h(x) = 1] ≤ ε̂

≤ (1 + 3γ) Pr[c(x) = 0|h(x) = 1].

So in short, for every k-DNF h, one of three cases hold:
either h is satisfied on too few examples to be considered
(fewer than (1 − γ)μ), or h has error better than our target
optimum ε∗ (over those h′ satisfied with probability at least
μ), or else we have good estimates of the error made by h at
justifying c.

This lemma is a straightforward consequence of the (mul-
tiplicative) Chernoff bound:

Theorem 7 (Multiplicative Chernoff bound) Let
X1, . . . , Xm be independent random variables taking
values in [0, 1], such that E[ 1m

∑
i Xi] = p. Then for

γ ∈ [0, 1],

Pr

[
1

m

∑
i

Xi > (1 + γ)p

]
≤ e−mpγ2/3

and Pr

[
1

m

∑
i

Xi < (1− γ)p

]
≤ e−mpγ2/2
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Proof of Lemma 6: Let any c and k-DNF h be given. We
will use the Chernoff bound to bound the probability that
the sample substantially misrepresents either the probability
that h is satisfied or the probability of h failing to entail c.

First, we observe that h(x(1)), . . . , h(x(m)) indeed take
values in [0, 1]. We will let p(h) denote E[h(x(j))] =
Pr[h(x) = 1]. A first application of the Chernoff bound
guarantees that for this h,

Pr[μ̂ > (1 + γ)p(h)] ≤ e−mp(h)γ2/3 and

Pr[μ̂ < (1− γ)p(h)] ≤ e−mp(h)γ2/2.

We also note that there are 2(
2n
k ) k-DNFs. Thus we find by

a union bound over all of the k-DNF that the probability of
these bounds failing is 2·2(

2n
k )·e−mp(h)γ2/3. So in particular,

with probability 1− δ/2, any h with p(h) < 1−γ
1+γμ has μ̂ <

(1− γ)μ, and otherwise, μ̂ is a suitable estimate of p(h).
Likewise, the indicator functions I[h(x(j)) = 1 ∧

c(x(j)) = 0] also take values in [0, 1] and we will let ε(h)
denote

E[I[h(x(j)) = 1∧c(x(j)) = 0]] = Pr[h(x) = 1∧c(x) = 0].

We also note that ε̂ = 1
μ̂

∑m
j=1 I[h(x

(j)) = 1∧c(x(j)) = 0].
So, a second application of the Chernoff bound guarantees
that h also satisfies

Pr[μ̂ε̂ > (1 + γ)ε(h)] ≤ e−mε(h)γ2/3 and

Pr[μ̂ε̂ < (1− γ)ε(h)] ≤ e−mε(h)γ2/2.

Now, we note that for h with p(h) > 1−γ
1+γμ, either

Pr[c(x) = 0|h(x) = 1] ≤ ε∗ or else ε(h) ≥ 1−γ
1+γμε

∗ Thus,
by another union bound over these two inequalities and all
suitable k-DNFs, the probability of any of these bounds fail-
ing is at most 2 · 2(

2n
k ) · e−m 1−γ

1+γ με∗γ2/3. Thus, now, for the
claimed m, with probability 1− δ all of these bounds simul-
taneously hold, and we additionally get

1− γ

1 + γ

ε(h)

p(h)
≤ ε̂ ≤ 1 + γ

1− γ

ε(h)

p(h)
.

Of course, ε(h)/p(h) = Prx∈D[c(x) = 0|h(x) = 1] and
1+γ
1−γ ≤ 1 + 3γ since γ < 1/3.

We are now ready to prove our main theorem.
Proof of Theorem 5: We produce the following instance
of Partial Red-Blue Set Cover: we create a blue element for
each example x(1), . . . , x(m), create a red element for each
example x(j) such that c(x(j)) = 0, and create a set for each
term of size k using attributes in A containing each blue
element such that the corresponding x(j) satisfies that term.
Let ε̂∗ be the smallest fraction of red elements covered by
any family of these sets that covers at least (1 − γ/2)μm
blue elements (i.e., examples). Note that there are m blue
elements and

(
2|A|
k

)
sets.

Theorem 4 then establishes that Algorithm 4 run on this
instance with parameter (1− γ/2)μ returns a set S of terms
of size k using attributes in A such that:

1. μ̂m ≥ (1− γ/2)μm elements are satisfied by some term
in S.

2. The number of x(j) such that c(x(j)) = 0 that are satis-

fied by any term in S is at most 4
√(

2|A|
k

)
H(μm)ε̂∗μ̂m.

Consider any k-DNF h∗ with Pr[h∗(x) = 1] ≥ μ that
achieves Pr[c(x) = 0|h∗(x) = 0] = ε∗. Lemma 6 now
guarantees that if we use γ/2 as our tolerance parameter,
h∗ is satisfied on at least (1− γ/2)μ examples, and at most
(1+3γ/2)ε∗ examples that satisfy h∗ also have c(x(j)) = 0.
Therefore, ε̂∗ ≤ (1 + 3γ/2)ε∗, and Algorithm 4 must find a
family of sets corresponding to a k-DNF h such that at most

a 4(1+3γ/2)
√(

2|A|
k

)
H(μm)ε∗ fraction of examples satisfy

h but not c.
Now, since Algorithm 4 must return a k-DNF h that sat-

isfies at least (1 − γ/2)μm examples, Lemma 6 also guar-
antees that actually with probability 1 − δ, Pr[h(x) = 1] ≥
(1 − γ/2)2μ ≥ (1 − γ)μ and, using the fact that γ ≤ 1/3

and the standard bounds H(x) ≤ 1+lnx and
(
n
k

)
≤

(
ne
k

)k
,

where e is the base of the natural logarithm,

Pr[c(x) = 0|h(x) = 1] ≤ (2 + 3γ)
2

√(
2|A|
k

)
H(μm)ε∗

≤ 9

√(
2en

k

)k

(1 + lnμm)ε∗.

We can further bound this expression by using that
m = Θ

(
1

γ2με∗ (
(
2n
k

)
+ log 1

δ )
)

. We thus find that it is

O(
√
nk log n+log 1/δ

γε∗ ε∗) as claimed. We find furthermore by
inspection that the algorithm indeed runs in time polynomial
in m and nk since all of the parameters – the number of red
and blue elements, the number of sets, and the degree of each
element – can be bounded by such polynomials.

A toy example

To better understand the algorithm, we now consider an ex-
ample. Suppose that we have the following set of examples:

Event # Wet Clothes Raining Sleep Well Inside
1 yes yes no no
2 no no yes no
3 yes yes yes no
4 no yes yes yes
5 no yes yes yes
6 yes yes no no
7 no no yes yes
Suppose that we want to propose a reason that clothes be-

come wet. We can translate this small data set into a Partial
Red-Blue Set Cover problem as shown in Figure 1.

In particular, suppose that we are in Algorithm 4, with
error tolerance X = 2 and μ = 6/7. Then in Algorithm
3, first in Step 3.1, we will discard sets in S that contains
more than X = 2 red elements. Thus we obtain SX =
{‘raining’, ‘not raining’, ‘not sleep well’, ‘not inside’},
as illustrated in Figure 2. Notice that this removes the
connection between red elements and discarded collections.
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Figure 1: Red-Blue Set Cover instance for the condition ‘wet
clothes’ in our example data set. We draw an edge joining
a set and an element if the set contains that element. Ev-
ery example has a blue element, and the examples where
‘wet clothes’ = no have a red element.

Figure 2: The Red-Blue Set Cover instance after the sets
containing more than X = 2 red elements are discarded.
Note that the red element #2 is contained in 2 > Y = 1.5212
sets, and will also be discarded.

Next, in Step 3.2, we check if the whole set SX contains
enough blue elements for our objective value μ. This SX

indeed contain enough blue elements. The “degree bound”
Y calculated in Step 3.3 is Y = 1.5212. For Step 3.4, we
will identify the “high degree” red elements and create
another set SX,Y that does’t have these high degree red
elements. For this example, red element #2 is considered to
be a high degree red element. Intuitively, we drop these high
degree elements because we consider it likely that we will
end up including these points sooner or later, so we don’t
want to penalize sets for containing them. We only want to
“charge” a set for the “unusual” (low degree) red elements
it contains. Finally we run the greedy algorithm on SX,Y to
obtain a solution S̃X,Y . We then add back the dropped red
elements. The result, S̃X might be {‘not inside’, ‘raining’},
corresponding to the 1-DNF ‘not inside’ ∨ ‘raining’. It
covers blue elements {1, 2, 3, 4, 5, 6}, i.e., it is satisfied on
the corresponding examples, and its error rate is 0.5.

Empirical Evaluation

So far, we have proposed a new algorithm for exception-
tolerant abduction and proved a better worst-case approx-
imation guarantee for this algorithm than was known for
the Tolerant Elimination algorithm proposed for this task by
Juba (2016). Although such worst-case guarantees are desir-
able, they do not rule out the possibility that Tolerant Elim-
ination might still obtain results as good as or better than
our new algorithm on various actual distributions. So, we
have investigated the performance of the two algorithms on
a couple simple synthetic domains.

The first domain is an example of an “ideal” situation for
our algorithms: here, the target condition c is generated by a
hidden k-DNF that has been corrupted by some independent
random noise. Ideally, the algorithms should obtain a hy-
pothesis that is satisfied with approximately the same proba-
bility (less the noise) that the hidden rule would be satisfied,
and with an error rate that is approximately the noise rate.
The second domain is an example of the challenging situa-
tion that we hope our algorithms can cope with. The target
condition c is generated by a random linear threshold func-
tion, i.e., a random (centered) halfspace of the Boolean cube.
k-DNF formulas cannot approximate such rules well,3 so we
can only hope to obtain a low error rate by choosing a hy-
pothesis that is satisfied relatively rarely. That is, this is a
domain in which the “errors” are highly regular, but the rule
we wish to explain is simply too complex for the represen-
tations we use. It therefore tests the capacity for our algo-
rithms to propose a reasonable hypothesis under relatively
unfavorable circumstances.

In the second domain, we also tested a simpler greedy
covering algorithm that orders the terms by their empiri-
cal error rates, and simply adds terms to the k-DNF until it
has covered the desired empirical fraction of the data. This
method is intended as a baseline. It does not feature the same
theoretical guarantees as our new algorithm.

Noisy planted k-DNF

Here, we first choose a k-DNF of a fixed size s(k) by select-
ing s(k) terms uniformly at random (with replacement) from
the terms of size k. s(k) was selected to be relatively large
while keeping the probability of the k-DNF being satisfied
around 99%, so that we can sample both satisfying and fal-
sifying assignments relatively easily: here, we take s(1) = 6
and s(2) = 16. Once this “planted” k-DNF ϕ is fixed, we
take the distribution D to generate a uniform satisfying as-
signment of ϕ with probability .15, and a uniform falsifying
assignment of ϕ with probability .85. We can sample from
D using simple rejection sampling: we draw a uniform ran-
dom example, and if it satisfies ϕ, we independently restart
(rejecting the example) with probability α(ϕ) so that we ob-
tain the desired ratio of satisfying and falsifying examples.
In our experiments, we used 100 attributes and generated 10

3This is not obvious, but O’Donnell and Wimmer obtain such
a result for the simple majority function (O’Donnell and Wimmer
2007), where our threshold functions are a random rotation, which
have similar “influences” and are similarly hard for k-DNFs to ap-
proximate. See O’Donnell (2014, Chapters 4–5) for more.
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Figure 3: Experiments with random linear threshold rules. We chose a random linear threshold centered in the Boolean cube that
selects approximately half of the points, so an error rate of 50% is trivial. We plot the mean and standard deviation of the error
rate for tolerant elimination. Both the new low degree partial cover algorithm and our naive greedy baseline obtain hypotheses
with significantly low error rates, whereas the original tolerant elimination algorithm cannot obtain a nontrivial error rate. The
new algorithm also obtains slightly lower error rates (covering closer to the target fraction) than the naive baseline.

formulas for each k. We then generated 50,000 examples for
each formula, a typical size training set.

For each example x, we independently chose whether to
put c(x) = ϕ(x) with 95% probability, or to put c(x) �=
ϕ(x) with 5% probability. That is, there is a noise rate of
5%. So, we know that the hidden ϕ agrees with c except on
a random ≈ 5% of examples. Therefore ϕ itself, at least, is a
k-DNF that (1) explains approximately a 0.95 ·0.15 fraction
of examples drawn from this distribution and (2) c only fails
to hold on 5% of the examples drawn from this distribution
on which ϕ is satisfied. We supplied these labeled examples
to each of the algorithms, and to estimate the error of the
hypothesis the algorithms produced, drew another data set
using the same planted ϕ of the same size and computed the
error on this new data set. We repeated this process 10 times
each with independently sampled ϕ, to get an estimate of
the distribution of error rates for these algorithms. We sup-
plied Tolerant Elimination the actual noise parameter of 5%
and we supplied the Low-Degree algorithm with the actual
fraction, 14.25%, of the data that we expect the planted k-
DNF to explain. The results (empirical mean and standard
deviation) were as shown below:

1-DNF error 2-DNF error
Tol. Elim. 5.985%± 0.341% 5.915%± 0.304%
Low Deg. 5.996%± 0.353% 5.847%± 0.371%
We see that both algorithms succeeded at this simple task,

matching the error rate of the planted k-DNF.

Random linear threshold rules

For this experiment, we first choose a random linear thresh-
old rule as follows: we first generate a weight vector θ in
which each coordinate is drawn independently from a cen-
tered binomial distribution with parameters (100, 1/2). (We
take this as an approximation of a scaling of a multivariate
Gaussian distribution with mean 0.) We take n = 100 at-
tributes except for our 3-DNF experiments, where we take

n = 20 attributes (on account of the exploding number of
terms of size 3). For each example x in {0, 1}n, we convert
x ∈ {0, 1} to y ∈ {−1, 1} (e.g., using yi = 2xi − 1); we
then put c(x) equal to [〈θ, y〉 ≥ 0], i.e., 1 if the inequal-
ity holds and 0 otherwise. We generated 10 different linear
threshold rules from this distribution, and generated 10,000
examples uniformly at random for 1-DNF and 2-DNF, and
6,000 examples for 3-DNF. We ran the algorithms on these
training sets, giving the low-degree and naive greedy (base-
line) algorithms μ = 10%, 30%, 50%, 70%, 90% and 100%,
and giving tolerant elimination a variety of different target
error rates; only ε = 16% for 2-DNF had any nontrivial ef-
fect. We then generated 7,500 additional uniform random
examples for 1-DNF and 2-DNF to serve as a test set, and
4,500 examples for 3-DNF. We evaluated the quality of the
hypothesis produced for each training set on these test sets;
the results of this evaluation appear in Figure 3.

We make three observations about the results of this ex-
periment. First, the results illuminate a striking weakness of
the Tolerant Elimination algorithm. The algorithm is forced
to pick a threshold error rate that it uses to select whether
or not to include a term in its hypothesis. While this works
relatively well in the noisy k-DNF setting where the terms
with lower error rates are terms of the hidden k-DNF, it fails
badly here, forcing the k-DNF to pick many or few terms.
For example, the best we can do for 1-DNF is essentially
to use the literal corresponding to the largest weight com-
ponent of the linear threshold rule. (This is what both the
low-degree and naive greedy algorithms produce to explain
50% of the data.) But, there are many literals with essentially
similar weights, and each additional literal that is selected,
the hypothesis picks up half of the remaining possible ex-
amples. It is very difficult to discover an “ideal” setting for
the tolerance, and in our experiments the algorithm always
selected a hypothesis that was not substantially better than
the trivial hypothesis that is always satisfied—both achieved
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error rates of ≈ 50%.
The second observation is that by contrast, both our low-

degree partial cover algorithm and the naive greedy baseline
algorithm obtained significantly lower error rates. That is,
both algorithms were reliably able to successfully infer non-
trivial rules in this challenging domain. In general, we ob-
tained (as one would expect) a trade-off between the proba-
bility that the generated hypothesis was satisfied and its error
rate. Also, from k = 1 to k = 2, the error rate we obtain for
the same fraction decreases (but note that the data we used
for 3-DNF had far fewer attributes, and hence is inherently
easier to approximate and is not comparable to k = 1, 2).

Third and finally, the low-degree partial covering algo-
rithm generally had a consistent, small advantage over the
naive greedy baseline. Naturally, they performed essentially
identically at the lowest and highest coverage rates as one
would expect—at the lowest target coverage, both generally
chose the best single term, and there is only one error rate
for covering 100% of the data. Outside these extremes, recall
that both algorithms were given the same target fractions: for
the points at each threshold for the low-degree algorithm, the
points for the corresponding thresholds for the baseline al-
gorithm generally covered a larger fraction than necessary
(shifted to the right) and suffered slightly greater error rates
(shifted up). This matches our intuition that the low-degree
algorithm works by discounting the points that are shared by
many terms (that are likely to be chosen). Again, we stress
that the baseline method also does not feature the same ap-
proximation guarantee as the low-degree algorithm.

Conclusions and Open Problems

We have exhibited an algorithm for the exception-tolerant
variant of the learning abductive reasoning task introduced
by Juba (2016). This new algorithm both achieves a sub-
stantially better error guarantee and performs substantially
better on some challenging synthetic data tasks. A natural
question is how much scope remains to improve algorithms
for this task. This question is wide open.

As a point of comparison, consider the standard agnos-
tic supervised learning task in which our objective is merely
to minimize classification errors. The best known algorithm
for agnostic learning of k-DNF, due to Awasthi, Blum,
and Sheffet (2010) can achieve an approximation ratio of
nk/3+o(1). By contrast, we only know that agnostic learning
of k-DNF with additive error is intractable (an approxima-
tion ratio of ≈ 1). Even for agnostic learning of the much
richer class of halfspaces, we only know that the task is in-
tractable up to a ratio of 2log

1−λ n for λ > 0, which is still
sub-polynomial, that is, less than any n1/r (Daniely 2016).

Now, if we restrict the form of the hypothesis to a k-DNF,
it is likely that we can say much more; by contrast, the above
results hold for the improper variant of the problem in which
we do not restrict the form of the returned hypothesis. Again,
taking agnostic supervised learning of k-DNFs as a point of
comparison, Feldman (2006) was able to show that finding
a 1-DNF that obtains a 2

√
logn approximation ratio is in-

tractable. Even so, again, a gap remains between these sub-
polynomial approximation ratios for which we believe that

the problem is intractable, and for the polynomial approxi-
mation ratios for which we possess algorithms.
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Appendix: Analysis of Partial Set Cover

We now give an overview of the proof of Theorem 1,
the approximation guarantee achieved by Algorithm 1. We
stress that while our proof is an extension of Theorem 4
of Slavı́k (1997), our objective is different: we are seeking
to minimize the ratio of the cost to the size of the cover,
among all covers that include a μ-fraction of the universe.
Let A = {A1, . . . , A�} be a cover that attains this minimum
value and denote by cmin its cost,

∑
s ω(As). We thus have,

for our universe of size β,
∑�

s=1 |As| ≥ �μβ	. Let cgreedy
be the cost obtained by Algorithm 1, and suppose that the
cover returned includes k sets. Let r(i) be the number of el-
ements remaining to be covered after the ith iteration of the
algorithm, and let A(i)

s and T
(i)
j denote the sets As and Tj

after the ith iteration, i.e., after the elements from the sets
T1, . . . , Ti chosen by Algorithm 1 on all previous iterations
have been removed from them.

Now, in iteration i+1, the greedy algorithm chooses some
set j for which cj/|T (i)

j | is minimized. Therefore,

ω(T
(i)
i+1)

|T (i)
i+1|

≤ ω(As)

|A(i)
s |

for s = 1, . . . , �, for which A(i)
s �= ∅.

More generally, for a given, arbitrary collection of sets S̃, we
can define a greedy ordering of the sets in S̃, analogous to
our greedy algorithm. We denote sets in the initial collection
by S

(0)
i (letting i = 1, . . . , |S̃|), and put S1 equal to some

first set minimizing the ratio ω(S)
|S| . Then, given inductively

that we have chosen the ordering up to j, we put each S
(j)
i =

S
(j−1)
i \ Sj , i.e., equal to the elements of S(0)

i that are still
uncovered by the partial collection up to j, and take Sj+1 to
be the first set minimizing the ratio ω(Sj+1)

|S(j)
j+1|

.

We observe that the final ratio achieved by the collection
S̃ is a weighted average of these ratios:∑

j ω(Sj)∣∣∣⋃j Sj

∣∣∣ =
∑
i

|S(i)
i+1|∣∣∣⋃j Sj

∣∣∣
ω(Si+1)

|S(i)
i+1|

where
∑

i

|S(i)
i+1|

|⋃j Sj| = 1. We also observe that for j < k,
ω(Si)

|S(j)
i |

< ω(Si)

|S(k)
i |

.

Lemma 8 There is an optimal cover in which only the final
set in any greedy ordering may contain more than μβ ele-
ments, and the collection of all prior sets covers fewer than
μβ elements.
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Proof: Consider any optimal cover and any greedy ordering
of this cover. Since for j < k, ω(Ai)

|A(j)
i |

< ω(Ai)

|A(k)
i |

, if a set is not

chosen before the first set by which μβ elements have been
covered, then its ratio will always be at least as large as that
of the set for the index at which the given cover contains
μβ elements, as well as all previous sets in the ordering.
Since the overall ratio achieved by the cover is an averaging
of these ratios, eliminating sets that appear in the ordering
after this point can only improve the ratio achieved by the
cover.

Now consider all fractions of the form ω(As)
ks

for s =

1, . . . , � and ks = 1, . . . , |As|. Note that there are at least
�μβ	 = r(0) such fractions. Suppose we arrange these frac-
tions into a nonincreasing sequence e1 ≥ e2 ≥ · · · ≥
er(0) ≥ · · · . Closely following Slavı́k, we then obtain the
following inequalities.

Lemma 9 (c.f. Lemma 1 of Slavı́k (1997)) For
i = 0, . . . , k − 1, ω(Ti+1)

|T (i)
j |

≤ er(i) .

Lemma 10 (c.f. Lemma 2 of Slavı́k (1997)) cgreedy ≤∑�−1
s=1 ω(As)H(|As|) + ω(A�)H(min{�μβ	, |A�|})
We now handle the special case in which every optimal

cover is dominated by a single, large set:

Lemma 11 If every optimal cover contains more than
3�μβ	 elements and is more than three times the size of
the greedy algorithm’s cover, then the greedy algorithm
achieves an approximation ratio of 3.

Proof: We observe that in the first case, by Lemma 8, the
optimal ratio is at least 2

3
ω(A�)

|A(0)
� |

since the final set contributes

at least 2/3 of the final ratio. Furthermore, since the greedy
algorithm’s cover contains at most 1/2 of A(0)

� , we know that
the ratios of the sets selected by the greedy algorithm are all
at most 2ω(A�)

|A(0)
� |

. Since, again, the greedy algorithm’s ratio is

a weighted average of these individual ratios, the final ratio
is also at most 2ω(A�)

|A(0)
� |

, and hence at most three times larger

than the optmal ratio.
Finally, we can prove Theorem 1

Proof of Theorem 1: Fix a smallest optimal cover.
Lemma 8 implies that |As| ≤ �μβ	 for all s = 1, . . . , �− 1.
This, and Lemma 10 establish that cgreedy ≤ H(�μβ	)cmin.
Now, if the optimal cover contains fewer than 3�μβ	 ele-
ments, since the greedy algorithm must return a cover with
at least �μβ	 elements, a ratio of 3H(�μβ	) is immediate
in this case. More generally, if the optimal cover contains at
most three times as many elements as the cover returned by
the greedy algorithm the ratio is again 3H(�μβ	). Finally,
Lemma 11 guarantees that if neither of these cases hold, we
still obtain a ratio of 3 ≤ 3H(�μβ	).
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