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Abstract

Before engaging in a group venture agents may seek
commitments from other members in the group and,
based on the level of participation (i.e. the number
of actually committed participants), decide whether it
is worth joining the venture. Alternatively, agents can
delegate this costly process to a (beneficent or non-
costly) third-party, who helps seek commitments from
the agents. Using methods from Evolutionary Game
Theory, this paper shows that, in the context of Pub-
lic Goods Game, much higher levels of cooperation
can be achieved through such centralized commitment
management. It provides a more efficient mechanism
for dealing with commitment free-riders, those who are
not willing to bear the cost of arranging commitments
whilst enjoying the benefits provided by the paying
commitment proposers. We show also that the participa-
tion level plays a crucial role in the decision of whether
an agreement should be formed; namely, it needs to
be more strict in the centralized system for the agree-
ment to be formed; however, once it is done right, it is
much more beneficial in terms of the level of coopera-
tion as well as the attainable social welfare. In short, our
analysis provides important insights for the design of
multi-agent systems that rely on commitments to moni-
tor agents’ cooperative behavior.

Introduction
Before embarking on a group venture agents may seek com-
mitments from others in the group and estimate how inter-
ested they are in contributing to the group effort, as that
allows them to judge whether it is worthwhile to start the
initiative or whether it is beneficial to join. Arranging such
prior commitments, for instance in the form of enforceable
contracts or pledges (Nesse 2001), deposit-refund schemes
(Cherry and McEvoy 2013; Sasaki et al. 2015), or even emo-
tional or reputation-based commitment devices (Frank 1988;
Nesse 2001), enforces others to cooperate, as it requires
them to reveal their preferences or intentions (Sterelny 2012;
Han, Pereira, and Santos 2012a). Commitments have been
widely studied in multi-agent and autonomous agent sys-
tems, in order to ensure high levels of cooperation among
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agents (Wooldridge and Jennings 1999; Castelfranchi and
Falcone 2010; Winikoff 2007). They have also been utilized
for ensuring good behaviors in various computerised appli-
cations such as electric vehicle charging (Stein et al. 2012)
and peer-to-peer sharing networks (Rzadca et al. 2015).

Using methods from Evolutionary Game Theory (EGT)
(Hofbauer and Sigmund 1998), this paper compares two
different approaches to arranging commitment: personal-
ized vs. centralized commitments. Existing game theoretical
models of prior commitments have focused on the first ap-
proach, in which the agents themselves, prior to an interac-
tion, pay the cost to arrange a reliable commitment with their
peers (Han, Pereira, and Santos 2012b; Han et al. 2013a;
Hasan and Raja 2013; Han et al. 2015a; Han 2016; Han,
Pereira, and Lenaerts 2016). Yet, instead of having (some)
agents taking the initiative of arranging the commitments,
one could assume that a central authority or institution is re-
sponsible for facilitating this costly process. The presence of
this institution may be to improve the level of cooperation in
the population or the social welfare (e.g. public transporta-
tion arranged by government, international agreements sup-
ported by the UN, crowdsourcing systems) (Ostrom 1990;
Nesse 2001; Cherry and McEvoy 2013). The institution may
actually profit directly from this joint activity by requesting
a fee from all committed players in order to provide the ser-
vice. It is at this point unclear which behaviors benefit (or
not) or how cooperation-levels change when moving from a
personal to a centralized commitment model. Yet the answer
to this question could be fundamental in the design of highly
distributed multi-agent systems.

Our analysis is carried out in the context of the Public
Goods Game (PGG), which allows us to directly compare
evolutionary outcomes of our centralized approach with the
personalized one described in (Han, Pereira, and Lenaerts
2016) for the PGG. The PGG can be described as follows: all
players can decide whether or not to contribute an amount c
to the public good (Sigmund 2010; Hauert et al. 2007) where
their accumulated contribution is multiplied by a constant
factor r > 1 before being equally distributed among all play-
ers. With r smaller than the group size (denoted by N ), non-
contributing free-riders gain more than contributors. Evolu-
tionary Game Theory models (Hofbauer and Sigmund 1998;
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Sigmund 2010) predict the demise of cooperation – fa-
mously known as ‘the tragedy of commons’ (Hardin 1968).
In the personalized commitment version of the PGG, agents
have, before playing the PGG, the option to propose to
other members in the group to commit to contribute, pay-
ing a personal cost, ε, to make it credible (Han, Pereira, and
Lenaerts 2016). If a sufficient number of members commit
(i.e. greater than a so-called participation level F ), the said
proposers will contribute to the PGG. Otherwise, they refuse
to do so. (For details see Model and Methods Section.)

Earlier work has shown that in the personalized approach,
although it can lead to high levels of cooperation, full co-
operation (i.e. all agents in the population always cooper-
ate) is hardly reached, for both pair-wise and group inter-
actions (Han, Pereira, and Santos 2012b; Han et al. 2013a;
Han, Pereira, and Lenaerts 2016). The main reason is that
commitment proposers are always dominated by different
kinds of commitment free-riders, who do not have to pay
the cost of arranging commitments while enjoying all the
benefits provided by a commitment system.

This issue may be resolved if the commitment arrange-
ment process is handled by a central authority that plays the
role of proposers and enforces that all accepting agents share
the setup cost. In that case it is not the (system) agents that
have to carry the burden (of taking the initiative), simply re-
moving the free-riding behavior mentioned earlier. The cen-
tral authority will, based on the participation level (F ), de-
cide whether an agreement is formed and can go forward.
Based on the outcome of this decision, the players in the
PGG group will then decide how to play: cooperate (C) or
defect (D). We will show, by closely monitoring this partic-
ipation level, in so far it depends on the benefit-to-cost ratio
of the PGG and the commitment parameters, that the central-
ized commitment approach can lead to significant improve-
ment for cooperation.

Related Work

The problem of explaining the evolution of cooperation has
been actively addressed in different fields of research, in-
cluding Biology, Economics, Artificial Intelligence (AI) and
Multi-agent Systems (MAS) (Nowak 2006; Sigmund 2010;
Hofmann, Chakraborty, and Sycara 2011; Ranjbar-Sahraei
et al. 2014; Airiau, Sen, and Villatoro 2014; Han, Pereira,
and Lenaerts 2016). Among other mechanisms, such as reci-
procity and costly punishment (see surveys in (Nowak 2006;
Sigmund 2010)), prior- or pre- commitments have been
shown to provide an important pathway for the evolution of
cooperation, even in one-shot interactions, both by means
of theoretical analysis (Han, Pereira, and Santos 2012b;
Han et al. 2013b; Hasan and Raja 2013; Sasaki et al. 2015;
Martinez-Vaquero et al. 2015; Han 2016; Han and Lenaerts
2016) and of behavioral experiments (Ostrom 1990; Cherry
and McEvoy 2013). However, this literature, especially the
theoretical one, has focused on the analysis of personalized
commitments only. To the best of our knowledge, this paper
provides the first dynamic or EGT analysis of the central-
ized commitment approach; interestingly, we show that this
approach can lead to even higher levels of cooperation than
what is achieved with the personalized one. Moreover, since

prior works have shown that personalized commitments can
better promote cooperation than costly punishment—a ma-
jor pathway to evolution of cooperation for a wide range of
game configurations, even in one-shot interactions (Han et
al. 2013a; Han 2016; Han and Lenaerts 2016)—we now ex-
pect centralized commitments to even better promote coop-
eration compared to punishment.

Closely related to our model is the study of evolution-
ary mechanism design, analyzing how to efficiently inter-
fere in an evolving dynamical system so as to influence it
to achieve some desired behavior (Phelps, McBurney, and
Parsons 2010; Han et al. 2015b). The interference is typ-
ically carried out (by an external decision maker) through
observing system agents’ behavior, thus rewarding the good
and/or punishing the bad; with the goal being to minimize
the interference cost while assuring a high level of good
behavior. Our approach also involves an external decision
maker, but differently from these works, we do not require
a budget needed to reward or punish (indeed, the deci-
sion maker can even benefit from its role). In this sense,
our model is related to the work on mechanism design
without money, see e.g. (Procaccia and Tennenholtz 2009;
Serafino and Ventre 2016), providing a potential approach
to interfering in an evolving system without a budget.

Last but not least, it is noteworthy that commitments
have been studied extensively in AI and MAS literature
(Wooldridge and Jennings 1999; Castelfranchi and Falcone
2010; Winikoff 2007; Chopra and Singh 2009; Stein et al.
2012; Rzadca et al. 2015). Differently from our work, these
studies utilize commitments for the purpose of regulating in-
dividual and collective behaviors, formalizing different as-
pects of commitments (such as norms and conventions) in
a MAS. However, our results and approach provide novel
insights into the design of such computerized and MAS sys-
tems as these require commitments to ensure high levels
of cooperation or efficient collaboration within a group or
team of agents; for instance, instead of letting the agents
seek commitments from others by themselves, one should
arrange for a centralized party to handle that, closely moni-
toring an appropriate participation from team members.

Model and Methods

Personalized commitment model in PGG

The modelling approach of personalized commitment uti-
lized here follows the work in (Han, Pereira, and Lenaerts
2016). There, agents have, before playing the one-shot (i.e.
non-repeated) PGG, the option to propose other members in
the group to commit to contribute. To do so, the commitment
proposers (COM) must pay a personal cost, ε. If a sufficient
number of the members commit, i.e. greater than a given par-
ticipation level F (1 ≤ F ≤ N ), the agreement is formed
and then the PGG is played. Otherwise, the agreement is not
formed and the commitment proposers do not contribute to
the PGG. Those who committed but then do not contribute
have to compensate the contributing others at a personal
cost, δ. There are N possible participation levels, encoded in
terms of strategies, COMF where F ∈ {1, ..., N}. COMF

players are those that only contribute if there are at least
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F players in the whole group that agree to contribute (in-
cluding the COMF players themselves); otherwise, COMF

players do not contribute to the PGG.
Similarly to (Han, Pereira, and Lenaerts 2016), besides

COMF strategies (1 ≤ F ≤ N ), agents can adopt the fol-
lowing strategies: i) traditional unconditional contributors
(C, who always commit when being proposed a commitment
deal, contribute whenever the PGG is played, but do not pro-
pose commitment); ii) unconditional non-contributors (D,
who do not accept commitment, defect when the PGG is
played, and do not propose commitment); iii) fake com-
mitters (FAKE, who accept a commitment proposal yet do
not subsequently contribute whenever the PGG is actually
played) and iv) commitment free-riders (FREE, who defect
unless being proposed a commitment, which they then ac-
cept and cooperate subsequently in the PGG). Detailed pay-
off calculation for interaction among these strategies can be
found in (Han, Pereira, and Lenaerts 2016).

It has been shown that in this approach of personalizing
commitment, although it can lead to high levels of cooper-
ation, full cooperation is hardly reached (Han, Pereira, and
Santos 2012b; Han et al. 2013a; Han 2016; Han, Pereira,
and Lenaerts 2016). The main reason is that commitment
proposers (COMF ) are always dominated by pure coopera-
tors (C), who do not have to pay the cost of arranging com-
mitments while being able to maintain perfect cooperation
among themselves. That dominance leads to the unavoid-
able presence of defectors even when these defectors can be
effectively dealt with by the commitment proposers, since
cooperators themselves are strongly dominated by defective
strategies in the absence commitments (see already Fig. 1).
This issue can be avoided if the burden of proposing and ar-
ranging commitments is taken away just from the proposers
by having a centralized party to handle that. Then, all those
who accept to join a central proposal to commit have the
duty to share its cost. There is no longer a distinction be-
tween who is a proposer or not, as we shall see next.

Centralized commitment model in PGG

Agents receive a request to commit to contribute to a one-
shot PGG by a centralized authority, who wants to ensure
high levels of cooperation in the population of agents (see
again some examples in Introduction). They can then decide
whether or not to accept to join the commitment. If there are
enough participants in the commitment, i.e. the number of
committed players are at least F (1 ≤ F ≤ N ), the central
authority decides then that the agreement is formed. Other-
wise, the agents just play the regular one-shot PGG. In the
former case, the committed players (agree to) equally share
a cost ε 1 but then those who defect payment if the PGG goes

1For a clear comparison, it is assumed here that the costs of ar-
ranging or managing a commitment (ε) are the same in both mod-
els. For better or worse, this may vary depending on the efficiency
of the authority in place to help monitor the commitment (more
discussion in Future Work). However, our later analysis shows that
the centralized model permits a much higher cost than the person-
alized one wherein the corresponding system leads to high levels
of cooperation.

through have to pay a fine δ 2.
A strategy is defined by three decisions: i) she accepts

(A) or not (N) the agreement; ii) cooperates (C) or defects
(D) if the agreement is formed; iii) cooperates (C) or de-
fects (D) if it is not formed. Note that playing A assumes
also implicitly that one is prepared to pay a share of the
cost of setting up the agreement. There are eight such strate-
gies in total. For a clear comparison with the personalized
model, we will focus here on five, i.e. two accepting strate-
gies, ACD and ADD, and three strategies that will not ac-
cept the authority’s proposal to commit, i.e. NCD, NDD and
NDC. The three remaining strategies ACC, ADC and NCC
can be omitted as they are each dominated by at least one
of the former strategies—because in the absence of a com-
mitment, playing D is the dominant option (i.e., ACC, ADC
and NCC are dominated by ACD, ADD and NCD, respec-
tively). Comparing these strategies to those discussed in the
personalized model, one can say that COM and ACD, FAKE
and ADD and D and NDD are clearly equivalent strategies.
NCD and FREE are slightly different in the sense that FREE
still accepts a proposal to commit. Since in this centralized
commitment model it is assumed that accepting also implies
paying a part of the cost, the NCD is closest to the FREE
strategy as it is also willing to cooperate but not prepared
to pay the cost. The biggest difference with the personalized
model is that the ACC strategy (which corresponds to the C
strategy in the personalized model) is no longer viable here.
It is replaced by the closest non-dominated NDC strategy.

We denote ΠA,B(k) and ΠB,A(k) as the payoffs of strat-
egy A and B, respectively, in a group with k A-strategists
and (N − k) B-strategists. We have

• ΠACD,ADD(k) = rk
N

c − c − ε
N

∀1 ≤ k ≤ N ;

ΠADD,ACD(k) = rk
N

c − ε
N

− δ ∀0 ≤ k ≤ N − 1;

• ΠACD,NCD(k) = rc − c − ε
k

if k ≥ F and 0 otherwise;
ΠNCD,ACD(k) = rc − c if k ≥ F and 0 otherwise;

• ΠACD,NDD(k) = rk
N

c − c − ε
k

if k ≥ F and 0 otherwise;

ΠNDD,ACD(k) = rk
N

cif k ≥ F and 0 otherwise;

• ΠACD,NDC(k) = rk
N

c − c − ε
k

if k ≥ F and r(N−k)
N

c otherwise;

ΠNDC,ACD(k) = rk
N

c if k ≥ F and r(N−k)
N

c − c otherwise;

• ΠADD,NCD(k) =
r(N−k)

N
c − ε

k
− δ if k ≥ F and 0 otherwise;

ΠNCD,ADD(k) =
r(N−k)

N
c − c if k ≥ F and 0 otherwise;

• ΠADD,NDD(k) = − ε
k

− δ if k ≥ F and 0 otherwise; ΠNDD,ADD(k) = 0

• ΠADD,NDC(k) = − ε
k

− δ if k ≥ F and r(N−k)
N

c otherwise;

ΠNDC,ADD(k) = 0 if k ≥ F and r(N−k)
N

c − c otherwise;

• ΠNCD,NDD(k) = 0; ΠND,NC(k) = 0;

• ΠNCD,NDC(k) =
r(N−k)

N
c; ΠNDC,NC(k) =

r(N−k)
N

c − c;

• ΠNDD,NDC(k) =
r(N−k)

N
c; ΠNDC,ND(k) =

r(N−k)
N

c − c.

2It is worth noting that in the centralized model the amount δ
is not transferred as a compensation to the committed players as
in the personalized model. This is to simplify the deployment of
the centralized commitment mechanism (as compensation might
be more difficult through the third party than direct personal trans-
action), while, our results show that this clear disadvantage of the
centralized model still allows it to outperform the personalized one.
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Population Setup and Evolutionary Dynamics

Analytical and numerical results obtained here use EGT
methods for finite populations (Imhof, Fudenberg, and
Nowak 2005; Sigmund 2010), exactly as in our previ-
ous work (Han, Pereira, and Lenaerts 2016). Below, we
briefly recall its details, whose full description can be found
in Methods section of (Han, Pereira, and Lenaerts 2016).
Here evolutionary dynamics is shaped by social learning
(Hofbauer and Sigmund 1998; Sigmund 2010), whereby
the more successful agents tend to be imitated more of-
ten by others. Moreover, the pairwise comparison rule is
used to model social learning, where an agent A with fit-
ness fA adopts the strategy of another agent B with fitness
fB with probability (Traulsen, Nowak, and Pacheco 2006):(
1 + e−β(fB−fA)

)−1
. The parameter β represents the ‘in-

tensity of selection’, i.e., how strongly the agents base their
decision to imitate on the fitness difference (fB − fA). For
β = 0, we obtain the limit of neutral drift, while for large β,
imitation becomes increasingly deterministic.

Next, with some mutation probability, an agent switches
randomly to a different strategy without imitating another
agent. For a small mutation limit, the behavioral dynam-
ics can be described by a Markov Chain, where each state
corresponds to a monomorphic population (i.e. consisting of
agents all with the same strategy), whereas the state transi-
tion probabilities are given by the fixation probability of a
single mutant, see calculation below. The resulting Markov
Chain has a stationary distribution that characterizes the av-
erage time the population spends in each of these monomor-
phic end states (e.g. see Fig. 1).

In finite populations, the groups engaging in PGG are
given by multivariate hypergeometric sampling. We denote

H(k,N,m,Z) =

(
m

k

)(
Z −m

N − k

)
/

(
Z

N

)
.

Hence, in a population of x i-strategists and (Z − x) j-
strategists, the average payoffs to i− and j− strategists are:

Pij(x) =

N−1∑
k=0

H(k,N − 1, x− 1, Z − 1) Πij(k + 1),

Pji(x) =

N−1∑
k=0

H(k,N − 1, x, Z − 1) Πji(k).

The probability to change the number k of agents using strat-
egy i by ±1 in each time step can be written as

T±(k) =
Z − k

Z

k

Z

[
1 + e∓β[Pij(k)−Pji(k)]

]−1

. (1)

The fixation probability of a single mutant with a strategy i
in a population of (N − 1) agents using j is given by

ρj,i =

⎛
⎝1 +

Z−1∑
i=1

i∏
j=1

T−(j)
T+(j)

⎞
⎠
−1

. (2)

In the limit of neutral selection (i.e. β = 0), ρB,A equals the
inverse of population size, ρN = 1/Z.

59. ΡN

3.1 ΡN

3.2 ΡN

2.5 ΡN

2.2 ΡN

10. ΡN

10. ΡN

10. ΡN

NDC

ACD

NCD

NDD

ADD

b. Centralised commitment 
(F = 4)

97%

1%

2%0%

0%

9.7 ΡN

10. ΡN

10. ΡN

10. ΡN

22. ΡN

2.2 ΡN

98. ΡN

COM

C

FREE

D

FAKE

a. Personalised commitment 
(F = 4)

42%

13%

7%

36%

2%

Figure 1: Stationary distribution and fixation probabilities
for the (a) personalized commitment and (b) centralized
commitment models. For clarity only the transitions that are
stronger than neutral are shown. In the former case (panel
a), note the cyclic pattern from C to defective strategies to
COM and back. COM is most abundant in the population
but defection is still present at high frequency. In the latter
case (panel b), ACD is risk-dominant against all other four
strategies, thereby reaching almost full cooperation in the
population (97%). Parameters: N = 5, Z = 100, r = 3,
δ = 4, ε = 0.5, β = 0.25, F = 4; ρN = 1/Z denotes the
neutral fixation probability.

Risk-dominance condition An important analytical crite-
ria to determine the viability of a given strategy is whether
it is risk-dominant with respect to other strategies (Nowak
2006; Gokhale and Traulsen 2010). Namely, one considers
which selection direction is more probable: an i mutant fix-
ating in a homogeneous population of agents playing j or
a j mutant fixating in a homogeneous population of agents
playing i. When the first is more likely than the latter, i is
said to be risk-dominant against j, which holds for any β
and in the limit of large Z when

N∑
k=1

Πij(k) ≥
N−1∑
k=0

Πji(k). (3)

Results
We start by providing analytical conditions for when ACD
can be a viable strategy, by being risk-dominant when play-
ing against other strategies. This analysis shows when the
centralized proposer has sufficient authority to induce co-
operative behavior. We then provide numerical simulation
results to support the analytical observations and beyond.

When will ACD strategists dominate the others?

To begin with, using Eq. 3, ACD is risk-dominant against
ADD if

N∑
k=1

(
rk

N
c− c− ε

N

)
≥

N−1∑
k=0

(
rk

N
c− ε

N
− δ

)
, (4)

which is simplified to

δ ≥ (N − r)c

N
. (5)

Now, ACD is risk-dominant against NCD if
N∑

k=F

(
rc− c− ε

k

)
≥

N−1∑
k=F

(rc− c) , (6)
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Figure 2: Frequency of each strategy as a function of β, for different F , in a population of five strategies for: (top row)
personalized commitment (bottom row) centralized commitment models. For the personalized commitment model (top
row), commitment proposers are most abundant when the intensity of selection β is small, even for small F , but when β is
large, pure defectors dominate the population, especially when F is small. However, even for the best scenarios, the level
of defection is still high (greater than 35%). To the contrary, in the centralized commitment model (bottom row), when F is
sufficiently large (≥ 3), ACD is most abundant, reaching 100% when β is sufficiently large. However, when F is small (F = 1
or 2), defection is most abundant even for small β. Parameters: N = 5, Z = 100, r = 3, δ = 4, ε = 0.5.

which is simplified to

(r − 1)c ≥ ε
N∑

k=F

1

k
. (7)

Furthermore, ACD is risk-dominant against NDD if

N∑
k=F

(
rk

N
c− c− ε

k

)
≥

N−1∑
k=F

(
rkc

N

)
, (8)

which is simplified to

(r + F −N − 1)c ≥ ε
N∑

k=F

1

k
. (9)

Since F ≤ N , this last condition entails the condition in Eq.
(7). Finally, ACD is risk-dominant against NDC if

N∑
k=F

(
rk

N
c− c− ε

k

)
+

F−1∑
k=1

(
r(N − k)

N
c

)
≥

N−1∑
k=F

(
rkc

N

)
+

F−1∑
k=0

(
r(N − k)

N
c− c

)
,

(10)

which is simplified to

(2F −N − 1)c ≥ ε
N∑

k=F

1

k
. (11)

In summary, for ACD to be risk-dominant against all the
other four strategies, the following inequalities need to be
satisfied

δ ≥ (N − r)c

N
, (12)

ε ≤ min{2F −N − 1, r + F −N − 1}
HF

× c

=
min{F, r}+ F −N − 1

HF
× c,

(13)

where HF =
∑N

k=F
1
k . The second condition implies that

for the risk-dominance of ACD, it is necessary that more
than half of the potential participants accept the agreement
(F ≥ N+1

2 ). Moreover, as r > 1 the right hand side of this
inequality is always positive when F = N (hence it can be
satisfied with sufficiently small ε). On the other hand, for
the first condition (Eq. 12) to hold it is sufficient that the
compensation when the agreement fails is bigger than the
cost of cooperation (δ ≥ c), as its right hand side is always
smaller than c.

Thus, for a suitable arrangement of the commitment, i.e.
sufficiently large F , small ε and large δ, these results show
that ACD is risk-dominant against all other strategies. De-
fectors who commit to contribute (i.e. ADD) have to pay a
fine when faking. Defectors who do not commit (i.e. NDD
and NDC) are less likely than ACD to belong to a group with
sufficient participation level so that an agreement is formed.

A centralized authority avoids cycles of
cooperation and defection

As can be observed in Fig.1, the results contrast with the
personalized commitment system, wherein the commitment
proposing strategy (COM) is always risk-dominated by C,
leading to cycles between cooperative and defective strate-
gies and thereby an unavoidable presence of defective strate-
gies. The Markov diagrams in the figure show that (for illus-
tration, we use F = 4) the personalized commitment model
(panel a), leads to a cyclic pattern from C to defective strate-
gies (i.e. D, FREE and FAKE) to COM and back. COM is
the most abundant in the population but defection is still
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F=4 F=2

δ

δ
1

0

ε ε
Figure 3: Frequency of COM (top row) and ACD (bottom
row) as a function of ε and δ, in a population of five strategies
for the personalized and centralized commitment models, re-
spectively (F = 2 for left and F = 4 for right columns).
Parameters: N = 5, Z = 100, r = 3, β = 0.25.

present at high frequency (the total frequency of D, FREE
and FAKE is 45%). To the contrary, in the centralized com-
mitment model (panel b), there are strong transitions from
all other four strategies towards ACD, leading to almost full
cooperation in the population (97%). It is noteworthy that
cooperation in the personalized commitment model does not
improve when moving from F = 4 to F = 5 (indeed, F = 4
is its best option). Yet a similar increase for the centralized
model leads to 100% cooperation in the population.

Centralized commitment induces cooperation for di-
verse selection strengths, as long as participation is high
This risk-dominance property in the centralized commit-
ment model leads to even greater advantages as compared
to the personalized model when the payoff advantage ob-
tained from the game is important, i.e. when the intensity
of selection β increases (see the Eq. 1). In particular, Fig. 2
compares the two models for different F and varying inten-
sity of selection β. For the personalized commitment model
(top row), commitment proposers COM are most abundant
when β is small, even for small F , but when β is large,
pure defectors (D) dominate the population, especially when
F is small. However, even for the best scenarios for COM
(namely, F = 4 and intermediate β), the level of defection
is still high (greater than 35%). To the contrary, in the cen-
tralized commitment model (bottom row), when F is suffi-
ciently large (≥ 3), ACD is most abundant, reaching 100%
when β is sufficiently large. However, when F is small
(F ≤ 2), defection is most abundant even for small β. This is
in accordance with the analytical conditions, which indicate
that it must hold that F ≥ N+1

2 = 3 for ACD to be an evolu-
tionarily viable strategy (risk-dominant against others). This
implies that in the latter model, it needs to be more strict in
terms of the level of participation required from other play-
ers for the agreement to be formed; however, once it is done
right, it is much more beneficial in terms of the level of co-

operation and social welfare.
This interesting observation regarding COM and ACD is

robust for varying the parameters of a commitment system, ε
and δ, see Fig. 3 (for illustration we show for F = 2 and 4).
We compare the frequency COM and ACD in the two com-
mitment models, as they are ones that mainly generate co-
operation or social welfare in both models. For the personal-
ized commitment model (top row), COM is abundant when
ε is small enough and when δ is sufficiently high. For F ≥ 3,
the frequency of COM can be larger than 50% and can reach
approx. 80% (F = 4), but full cooperation is never reached.
Differently, in the centralized commitment model (bottom
row), when F is sufficiently large (≥ 3), whenever δ is suf-
ficiently large (δ ≥ c = 1), ACD is most abundant, reaching
even 100% for F = 4 or 5. Moreover, ACD dominates the
population (i.e. ≥ 50% frequency) for a much larger range
of ε than COM. However, when F is small (F = 1 or 2),
ACD performs worse than COM, having very low frequency
even for small ε. Again, the results show that commitment
needs to be more strict in terms of the participation level re-
quired from other players for the agreement to be formed in
the centralized model, but once it is assured, it guarantees
much higher levels of cooperation.

Conclusions and Future Work

The present paper describes a novel, centralized approach to
arranging prior commitments in group interactions, showing
that it outperforms the dominant model of personalized com-
mitments in the literature. By having a (beneficent or non-
costly) central authority or institution to help arrange com-
mitments from the group members instead of leaving them
to the initiative, it removes the commitment free-riding issue
that prevented the personalized approach to reach full coop-
eration (Han et al. 2013a; Han, Pereira, and Lenaerts 2016).
Unlike the personalized approach, a commitment-accepting
strategy (ACD) can be risk-dominant against all other strate-
gies in the population, leading to significantly higher levels
of cooperation for a wide range of parameters (note that a
population of ACD players maintain 100% cooperation). We
showed, both analytically and by numerical simulation, that
by requiring a sufficiently high level of participation from
group members (more than half of the group size), signifi-
cant levels of cooperation can be ensured.

As a future direction, we consider that a central institution
may come to incorporate other duties and roles that make it
more complex and onerous; for instance, those of marketing
the PGG until enough players are found, or of detecting and
preventing negative pool associations against the PGG, or
those of the police, courts, lawyers, prisons, and enacting
new laws. In these scenarios, other administration costs need
to be considered. Moreover, as an enforcement institution
can benefit from its role, there may be competition for it,
leading to possibility of natural selection among institutions.
As such, multi-level evolutionary dynamics will need to be
analysed, which we plan to explore in future work.

In short, our analysis suggests novel insights for the de-
sign of MAS and computerized systems in order to ensure
high levels of cooperation among agents in the systems.
Namely, that can be achieved by arranging for a central party
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to help agents arrange commitments instead of leaving them
to the task, and requiring that an agreement is formed and
enforced only when the agents’ participation level is suffi-
ciently high.
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