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Abstract

This paper studies a criteria-based mechanism for nurtur-
ing and enhancing agents’ group-benefiting individual efforts
whenever the agents are self-interested. The idea is that only
those agents that meet the criteria get to benefit from the
group effort, giving an incentive to contribute even when it is
otherwise individually irrational. Specifically, the paper pro-
vides a comprehensive equilibrium analysis of a threshold-
based criteria mechanism for the common cooperative infor-
mation gathering application, where the criteria is set such
that only those whose contribution to the group is above some
pre-specified threshold can benefit from the contributions of
others. The analysis results in a closed form solution for the
strategies to be used in equilibrium and facilitates the nu-
merical investigation of different model properties as well
as a comparison to the dual mechanism according to only
an agent whose contribution is below the specified thresh-
old gets to benefit from the contributions of others. One im-
portant contribution enabled through the analysis provided is
in showing that, counter-intuitively, for some settings the use
of the above-threshold criteria is outperformed by the use of
the below-threshold criteria as far as collective and individual
performance is concerned.

Introduction

Cooperation between agents is a highly desired goal in many
multi-agent systems (MAS). By working together and help-
ing each other, agents can better perform and meet their
goals, both collectively and individually (Stone et al. 2010;
Dutta and Sen 2003; Kraus, Shehory, and Taase 2003;
Rochlin, Sarne, and Mash 2014). As such, group based co-
operative behavior is studied in various domains and con-
texts such as solving complex optimization problems (Bar-
bulescu et al. 2010), military and rescue applications (Dias
and Sandholm 2004; Conitzer 2012), cognitive radio net-
works (Xie et al. 2010), e-business applications (Yamamoto
and Sycara 2001) and many more.

Common to many of the above mentioned domains is
that the agents contribute to the group through their indi-
vidual efforts and the collective result influences the welfare
of all of them. This situation, in which costs and resources
are basically born individually although benefits are societal,
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poses a dilemma for the agents—when being self-interested,
any agent contributes to the group effort only to the ex-
tent that it finds to be individually beneficial. Such ineffi-
ciencies in private giving preclude the group from achiev-
ing the collective (and consequently also the individual)
performance encapsulated in the fully cooperative solution
(de Jong and Tuyls 2011; Rochlin, Sarne, and Mash 2014;
A. van Wissen et al. 2012). The phenomenon is best il-
lustrated in social good allocation games (e.g., in the cen-
tipede game (Aumann 1998; McKelvey and Palfrey 1992;
Peled et al. 2013)) and in public goods games in general.
Common to these games is that, according to their equi-
librium, each agent individually should opt out as soon as
possible or invest the minimum allowed. For example, con-
sider the hypothetical case where the city council decides to
build a new country club and is willing to match whatever
amount of money the residents contribute for this purpose.
Assume there are N > 2 residents and the utility of each res-
ident is the total funds raised for the country club (including
the matching) divided by the number of residents using the
country club, minus the individual contribution made. In this
case, there is a single equilibrium according to which all res-
idents contribute zero, which is far (both in terms of social
welfare and individual utilities) from the fully cooperative
solution according to which all residents equally contribute
as much as possible.

One way of overcoming this problem is by setting criteria
for eligibility to the fruits of the cooperative effort. The idea
is to incentivize individuals to put in as much of an effort as
is needed to comply with the criteria set. Taking the above
country club example, assume that the city council decides
that only those who contribute above some threshold V will
be allowed to use the country club. With this new restriction,
the equilibrium is that each resident contributes exactly V . In
fact, the larger the value of V , the greater the social welfare
of the residents.

Intuitively, when using a criteria-based mechanism for en-
hancing cooperation in MAS, the system designer should
aim for a criteria that rewards those who contribute the
most (or at least sufficiently) for the group effort. This way
there is a greater individual benefit for the agent in mak-
ing the extra effort in order to benefit also from the contri-
butions of the others (who in turn will also try harder, due
to the same considerations). Indeed, in many settings (in-
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cluding the country club example given above), establish-
ing a criteria aiming to benefit those who contribute less
than others (or less than some pre-specified performance
level) is always detrimental. In this paper, however, we man-
age to show that the reverse relationship can hold as well.
For this purpose we use a standard cooperative information
gathering model where agents can benefit from the infor-
mation gathered by others (Kephart and Greenwald 2002;
Rochlin, Sarne, and Mash 2014; Hazon et al. 2013). For
example, several buyers interested in the same product can
check prices and terms in different online and physical stores
and share their findings, HR personnel can interview candi-
dates in parallel and recruit the best candidate found and stu-
dents can jointly look for references for an assignment they
receive and eventually use the best source found by any of
them. The individual information gathering process is costly,
in the sense that the agent needs to consume some resources
in order to learn about the different opportunities, hence the
underlying conflict described above.

The contributions the paper makes are twofold: First, it
provides a comprehensive equilibrium analysis for the co-
operative information gathering model under an “above-
threshold” criteria (i.e., one that enables only agents who
contribute to the group a finding better than some pre-
specified threshold to become eligible for benefiting from
the findings of others). As part of the analysis of this case,
which is in itself a contribution to the study of cooperative
information gathering, we show that the strategies used by
the agents in equilibrium are different (in structure) than
those used under the dual “below-threshold” criteria and
provide a closed form solution for extracting the equilibrium
strategies. Second, we manage to show that (at times) ben-
efiting those who poorly contribute to the group (using the
below-threshold criteria) can be the dominating mechanism.
Furthermore, the paper manages to exemplify this also for
settings of homogeneous agents (i.e., with equal informa-
tion gathering capabilities), meaning that such dominance
of a below-threshold mechanism is not always the result of
differences between the capabilities of the different agents,
as one might expect.

The Cooperative Information Gathering

Model

We follow the cooperative information gathering model used
in our prior work (Rochlin, Sarne, and Mash 2014), which
can also be found in full or with some variations in other
prior literature (Hazon et al. 2013; Gatti 1999; Carlson and
McAfee 1984). The model considers a set K = {A1, ...,Ak}
of fully-rational self-interested agents, each engaged in gath-
ering information pertaining to the value (e.g., benefit) of
different opportunities to which it has access (with no over-
lap between the sets of opportunities available to different
agents). The uncertainty associated with the value of op-
portunities available to any agent Ai is modeled through a
probability distribution function (p.d.f.) fi(x). The process
is considered costly in the sense that revealing the value of
an opportunity incurs a fixed cost, denoted ci. The model
assumes that any agent Ai is constrained by the number of

opportunities it can access, denoted ni. The agent thus needs
to gather information, i.e., explore the value of some of the
opportunities and eventually pick one of the values revealed
(i.e., recall is permitted). This individual information gather-
ing process (hereafter denoted IGP) is standard and widely
found in literature (Kephart and Greenwald 2002; McMillan
and Rothschild 1994; Tang, Smith, and Montgomery 2010;
Waldeck 2008).

The model assumes that all opportunities accessible to an
agent are applicable to all other agents as well, hence the
agents can benefit from sharing their findings upon com-
pleting the IGP. The information sharing process (hereafter
denoted ISP) is assumed to be truthful in the sense that
agents always report their true findings. We also assume
that each agent Ai has some fall-back value vi

0, i.e., even if
it does not become acquainted with any opportunity value
(in case of not executing an individual IGP and not tak-
ing part in ISP) the agent can presumably benefit vi

0. In or-
der to induce effective information gathering by the indi-
vidual agents, the system designer can set a criteria such
that only those contributing findings that meet the criteria
become eligible for taking part in the ISP. While various
criteria may be applied, we deliberately limit ourselves to
threshold-based ones. The threshold-based criteria can be
either of type “above-threshold” (hereafter denoted AT) or
“below-threshold” (denoted BT). With both types a thresh-
old V IS is set for each agent Ai and the agent is allowed to
take part in the ISP only if it ends up with a value greater
than the threshold (in the case of AT) or below the threshold
(in the case of BT) after its individual IGP (and otherwise
denied). The model assumes that all agents are symmetric in
the sense that they are all a priori familiar with fi(x), ci, vi

0,
ni ∀i and the threshold V IS .

It is assumed that information gathering costs and oppor-
tunity values are additive and each agent Ai is interested in
maximizing its expected profit, denoted EBi. The profit of
an agent is therefore the best value obtained by the group
minus the costs accumulated individually along the agent’s
individual IGP.

The essence of the cooperative information gathering
is thus that individuals contribute through their individual
costly IGP and the collective result influences the welfare of
all of them. The model applies to various real-life settings
(e.g., see Table 1).

Beyond the wide applicability of the cooperative infor-
mation gathering model, we find several other reasons that
make it ideal for our purposes. First, in prior work we have
shown that the results achieved by self-interested agents un-
der this model are far from those that can be achieved when
the agents are fully cooperative and aim to maximize the ac-
cumulated expected profit (Rochlin, Sarne, and Mash 2014).
The reason is that each agent chooses to engage in IGP to the
extent it finds individually beneficial, given the IGPs carried
by others. Second, in other prior work we have demonstrated
that the agents’ individual expected profit can be improved
by setting various criteria for becoming eligible to take part
in the ISP rather than by enabling this to all agents as a de-
fault (Rochlin and Sarne 2015). Finally, the case of setting a
BT criteria was analyzed for this model in that work, which
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Application Individual goal Opportunity Value Cost Source of uncertainty
Product acquisition Minimize individual ex-

pense
A store selling the product Posted price Time spent; commu-

nication/transportation
expenses

Inter-store competition and sea-
sonal effects

Information Search
(student’s assignment)

Maximize individual util-
ity (grade minus individ-
ual effort)

Information source (e.g.,
online, textbook, library
resource)

Expected grade if this
source is used

Time spent Differences in coverage of the
topic, relevance, accuracy, level
of details

Choosing an oil-
drilling site

Maximize oil revenues
minus cost of exploratory
drills

Potential drilling sites Amount of oil found Time and resources spent in
the exploratory drills

Uncertainty regarding the
amount of oil in each drilling
site

R&D Maximize the cost of pro-
duction and R&D ex-
penses

Production technology Cost of produc-
tion with a specific
technology

R&D cost of specific tech-
nology

Uncertainty concerning imple-
mentation aspects of a desired
technology

Table 1: The mapping of different applications to the cooperative information sharing problem.

saves us the analysis of this variant when comparing the two.

Analysis

The main advantage of the AT method analyzed in this sec-
tion is that only those with a potentially substantial contri-
bution to the group get to benefit from the fruits of the joint
effort. A substantial contribution is not always the result of a
substantial effort (e.g., the agent could have run into a favor-
able value upon gathering information at the first opportu-
nity encountered). Still, in general, the more effort an agent
makes, the greater its chance of ending up with a potentially
substantial contribution to the group. In particular, an agent
that opts not to engage in IGP will end up with no benefit
whatsoever, as it will always be excluded from the ISP. This
creates a great incentive for agents to engage in a substan-
tial IGP and also coincides with social norms (e.g., see La
Fontaine’s “The Grasshopper and the Ants” fable or even in
Thessalonians 3:10: “If a man will not work, he shall not
eat”).

Best Response Strategy

We begin with the best-response individual IGP strategy of
an agent, given the IGP strategies used by the other agents
in the group. This is captured by Theorem 1.
Theorem 1. Given the information gathering strategy of the
other agents, agent Ai’s expected-profit-maximizing (here-
after denoted optimal) individual IGP strategy is to follow a
reservation value ri, where ri is either the solution to:1

ci =
∫ ∞

y=ri

fi(y)
∫ ∞

x=−∞
(max(y,x)−max(ri,x)) f̄i(x)dxdy

(1)

or:

ci=
∫ V IS

y=ri

(y− ri) fi(y)dy+
∫ ∞

y=V IS
fi(y)

∫ ∞

x=−∞
(max(y,x)−ri) f̄i(x)dxdy

(2)

where f̄i(x) is the probability distribution function of the
maximal value obtained by all other agents that take part

1In case Fi(v) = 0 for some value v > −∞, it is possible that
none of the equations yields a solution, in which case the optimal
reservation value to be used is ri = v.

Figure 1: A schematic illustration of the optimal IGP strat-
egy under AT.

in the ISP. Given the best value obtained so far, v, agent Ai
should resume its IGP if v < ri or terminate the IGP other-
wise. The reservation value ri thus serves as a threshold for
deciding on resuming or terminating the IGP.

The detailed proof is provided in the full version of the
paper that is downloadable from the corresponding author’s
web-site. Its flow is based on first proving the reservation-
value nature of the optimal strategy. Then, using an inductive
proof, we show that the reservation value used by each agent
remains stationary along its IGP and that it is captured by
either (1) or (2).

The difference between Equations 1 and 2 is in the re-
lationship between ri and the threshold V IS (see Figure 1).
Equation 1 corresponds to the case where ri ≥ V IS. Here,
the agent will keep on gathering information on opportu-
nities until either exhausting the set of ni opportunities it
can gather information on, or reaching a value that warrants
taking part in the ISP. Equation (2) corresponds to the case
where ri < V IS. Here, it is possible that the agent will ter-
minate its IGP (without exhausting all available opportuni-
ties) even if the best value found so far does not enable it to
take part in the ISP. Note that this single-reservation-value
strategy structure is very different from the structure of the
strategy known to be the best response when using a BT cri-
teria (see the detailed analysis of this case in Rochlin and
Sarne (2015)). For the latter mechanism it has been shown
that the optimal IGP is based on two reservation values ri( j)
and rresume

i (see Figure 2). Given the best value obtained
so far, v, agent Ai should resume its IGP if v < ri( j) or
V IS < v ≤ rresume

i and otherwise terminate (and proceed to
ISP if v ≤ V IS). Intuitively, the reservation value rresume

i is
used to determine if the IGP should be resumed in cases
where a favorable value v > V IS has been found and now
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Figure 2: A schematic illustration of the optimal IGP strat-
egy under BT criteria (taken from (Rochlin and Sarne
2015)).

the agent is “on its own”. The reservation value ri( j) (which
changes according to the number of opportunities remaining
to the agent for gathering information) is used to determine
if the IGP should be resumed when v ≤ V IS, i.e., when the
agent can still potentially take part in the ISP. Resuming the
IGP in the latter case can lead to better values, however at
the same time can also lead to exclusion from the ISP, in
which case the agent will end up on its own. The best re-
sponse strategy of AT is thus different from the one used
under BT both in the sense that it uses a single reservation
value and that the reservation value used is stationary (i.e.,
does not depend on the state of the IGP).

Equilibrium

Solving the 2k possible equation sets (where each set is of
k equations, each capturing the reservation value of a dif-
ferent agent, either according to (1) or (2)), will provide a
set of pure equilibria of the form {ri|1 ≤ i ≤ k} if any ex-
ist. A mixed equilibrium is also possible in this case, yet
since the optimal IGP strategy, once engaged, was proven to
be deterministic in Theorem 1, a randomization is possible
only in the agent’s decision whether to engage in IGP or not.
Thus, a mixed equilibrium for our problem is of the form:
{(pi,ri)|1 ≤ i ≤ k}, where pi is the probability that agent
Ai will initiate its individual IGP (0 ≤ pi ≤ 1) and ri is the
reservation value to be used by the agent.

Now that the individual strategy in equilibrium has been
defined in its complete form (i.e., including the probabilistic
aspect), we can formulate f̄i(x) (the probability distribution
function of the maximal value obtained along the IGP of all
other agents that will take part in the ISP). For this purpose
we make use of the probability that the maximum value that
will be found by all the agents that take part in the ISP, ex-
cept Ai, will be smaller than or equal to x, denoted F̄i(x).
The calculation of F̄i(x) makes use of the probability that
the maximum value obtained along the IGP of an agent Ai,
is less than (or equal to) x, denoted F return

i (x), calculated ac-
cording to:

F return
i (x) =

{
Fi(x)ni x ≤ ri

Fi(ri)
ni + 1−Fi(ri)

ni

1−Fi(ri)
(Fi(x)−Fi(ri)) x > ri

In a case where x ≤ ri, the value of all ni opportunities must
result in a value below x. When x > ri there are two pos-
sible scenarios. The first is where all ni opportunities result
in a value below the reservation value ri, i.e., with a Fi(ri)

ni

probability. The second, is where the information gathering
terminates right after revealing value y at the lth opportu-
nity such that ri < y < x (otherwise, if y < ri the informa-

tion gathering should resume) and all the former l − 1 val-
ues obtained are smaller than ri (otherwise the lth opportu-
nity is not reached). The probability of the latter case occur-
ring (summing over all values of l ≤ ni) can be calculated
using the geometric series ∑ni

l=1(Fi(x)− Fi(r j))Fi(ri)
l−1 =

1−Fi(ri)
ni

1−Fi(ri)
(Fi(x)−Fi(ri)).

Thus, we can now formulate the probability that the con-
tribution of agent Ai to the other agents in the group that are
taking part in the ISP is less than (or equal to) x, denoted
F return′

i (x):

Freturn′
i (x) =

{
Freturn

i (V IS) x ≤V IS

Freturn
i (x) V IS < x

The case where x ≤ V IS corresponds to all scenarios where
agent Ai completed its IGP with a maximum value lower
than the threshold V IS set to it (and therefore it does not take
part in the ISP and consequently its contribution to those
participating in the ISP is 0, which is lower than x), i.e.,
with probability Freturn

i (V IS). The second case simply cor-
responds to all cases where agent Ai completed its IGP with
a maximum value lower than x.

Using F return′
i (x), we can calculate the function F̄i(x),

which is the probability that the value agent Ai will gain from
taking part in the ISP is less than (or equal to) x:

F̄i(x) = ∏
A j∈K∧ j �=i

(p j ·F return′
j (x)+(1− p j))

The probability distribution function f̄i(x) is the first deriva-
tive of F̄i(x). Similarly, the probability distribution function
f return
i (x) is the first derivative of F return

i (x).
These enable us to calculate the expected profit of agent

Ai when the other agents use the set of strategies {(pi,ri)|1≤
i ≤ k∧ i �= j}. If agent Ai chooses to engage in IGP and finds
a value greater than V IS, then its expected profit, denoted
EBi(IGP), is given by:

EBi(IGP) =
∫ V IS

y=vi
0

y · f return
i (y)dy

+
∫ ∞

y=V IS
f return
i (y)

∫ ∞

x=vi
0

max(y,x) · f̄i(x)dxdy− ci
1−Fi(ri)

ni

1−Fi(ri)

where the first term on the right hand side corresponds to
the case of failing to qualify for the ISP. The second term
is the expected maximum between the best value found by
the agent itself and the best value contributed by all oth-
ers, corresponding to the case of qualifying for the ISP. The
last term represents the expected cost incurred throughout
the IGP carried out by Ai, calculated based on the expected
number of values gathered (which is a geometric random
variable bounded by ni, with a 1−Fi(ri) success probabil-
ity).

When the agent opts not to gather information at all, it
does not participate in the ISP and therefore its expected
profit, denoted EBi(¬IGP), is simply vi

0, i.e., EBi(¬IGP) =
vi

0.
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Methods Comparison

The main difference between the AT and BT criteria is that,
once an agent is engaged in IGP, the first criteria is pushing it
to deepen its information gathering such that it will meet the
criteria and benefit from the findings of others. With the BT
criteria, agents that engage in IGP may actually lose from
extending their information gathering as they may run into
a value that will disqualify them from taking part in the ISP.
On the other hand, with the AT criteria, the incentive to con-
tinue gathering information once meeting the criteria drops
significantly, whereas with BT once an agent finds a value
greater than the disqualifying threshold it has a great incen-
tive to keep gathering information as it is “on its own”.

Another important difference between the AT and BT cri-
teria is that the first creates a very strong incentive for each
agent to engage in IGP from the outset. In the BT, agents that
do not engage in IGP necessarily benefit from the findings
of others. The main implication is thus a plethora of mixed
equilibria in which some of the agents do not engage in IGP,
hoping to benefit from the findings of others. With the AT
criteria, the typical equilibrium is based on pure strategies.
In fact, it is enough that each agent will find the myopic
profit from gathering information on a single opportunity to
be positive to guarantee that all resulting equilibria will be
based on pure strategies.

Proposition 1. If
∫ ∞

y=v0
i
(y − v0

i ) fi(y) > ci ∀i, the result-
ing equilibrium is based on pure strategies only, where all
agents engage in IGP.

Proof. Given that its profit from gathering information on
one opportunity is positive, the agent will necessarily en-
gage in IGP (which, if used according to Theorem 1, will
result in at least the same profit as gathering information on
only one opportunity), regardless of the strategies used by
the others, as otherwise its exclusion from the ISP will pre-
vent any profit whatsoever. The same holds true for all other
agents.

Neither of the above inherent differences between AT and
BT imply any dominance relationship between the two. In
fact, as we found in many of the examples we analyzed, with
some settings the dominance relationship changes simply by
changing the value of one of the parameters which define the
specific setting. Still, the fact that with the AT criteria one
is likely to expect pure equilibria suggests several advan-
tages. For example, a pure equilibrium, is likely to result in
a low variance in the expected profit of the different agents
(as the number of agents engaging in information gathering
is constant), compared to the case of an equilibrium based
on mixed strategies.

Finally, we note that the AT criteria enables a closed form
solution—the equilibrium strategies can be extracted using
a set of equations, whereas with BT the solution is com-
plicated by the need to compute the set of reservation val-
ues based on all possible states (v, j) (corresponding to the
best value found and the number of remaining opportunities)
which is potentially infinite, hence it requires numerical ap-
proximation.

Numerical Illustration

Figure 3 depicts the individual expected profit of the agents
as a function of different parameters of the model, when
using: (a) the equilibrium solution for the AT criteria; (b)
the equilibrium solution for the BT criteria (according to
(Rochlin and Sarne 2015)); and (c) the equilibrium solu-
tion when no criteria is applied and the agents always take
part in the ISP (equivalent to setting an infinite BT cri-
teria). The setting used considers the agents to be homo-
geneous in terms of their information gathering environ-
ment, i.e., sharing the same probability distribution function
f (y) ((i.e., f1(y) = .. = fk(y) = f (y))), constrained to the
same number of opportunities n they gather information on
(i.e., n1 = .. = nk = n), sharing the same information gath-
ering cost c (i.e., c1 = .. = ck = c) and having the same
fall-back value (i.e., v1

0 = .. = vk
0 = v0). Such a setting is

quite common in real-life (Rochlin, Sarne, and Mash 2014;
Hajaj, Hazon, and Sarne 2015), especially when the infor-
mation pertaining to different opportunities can be found on-
line, hence the effort associated with the information gath-
ering is quite standard (e.g., time spent navigating through
a web-site). Specifically, in this example we use f (y) = 1
for any 0 ≤ y ≤ 1 and f (y) = 0 otherwise, and a fall-back
value v0 = 0. The other setting parameters used are: n = 5
and k = 5 (for graph (a)); n = 5 and c = 0.2 (for graph (b));
and k = 3 and c = 0.2 (for graph (c)). The threshold used
with each method is the one that maximizes the expected
profit of the agents (and hence also maximizes the social
welfare). We note that the patterns observed in the expected
profit as a function of the different parameters (a decrease
due to an increase in the information gathering cost, an in-
crease due to an increase in the number of agents and due
to the number of opportunities each agent can gather infor-
mation on) are not general—we have other numerical set-
tings that exemplify different relationships. Still, the figure
reliably represents a general pattern we have observed in nu-
merous settings that we have randomly generated: the extent
of improvement achieved with the BT criteria is somehow
limited and in many settings the optimal threshold is set to
a relatively large value such that it has no influence on the
individual IGPs compared to the case of allowing all agents
take part in the ISP. The AT criteria, on the other hand, man-
ages to affect the IGPs in all settings, and the extent of influ-
ence it achieves actually increases as the problem becomes
“richer” (e.g., when the number of agents and/or number
of opportunities increase). When the information gathering
cost is zero, the performance with all three mechanisms is
identical as the agents can only benefit from gathering more
information.

While in Figure 3 the AT criteria dominate BT, this is not
always the case. The following two examples illustrate that
(somehow counter-intuitively) BT can, at times, dominate
AT. Each example captures different types of dynamics that
lead to the phenomena. The first example uses once again
an homogeneous setting, this time however with two agents
(k = 2), three available opportunities to each agent (n = 3),
an information gathering cost of c = 0.1, and a uniform dis-
tribution of values (defined over the interval (0,1) as before).
One important motivation for using an homogeneous set-
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Figure 3: Expected profit of different criteria as a function of the: (a) information gathering cost c; (b) number of agents k; and
(c) number of opportunities n. See the main text for the details of the settings used.

tings for this example is that the result according to which
BT sometimes performs better than AT becomes even more
counter-intuitive—with heterogeneous agents one may ex-
plain such phenomena by the inherent differences between
the agents’ individual information gathering competence.
Meaning that with BT one can potentially influence some
of the less competent agents to avoid the IGP and still ben-
efit from the findings of others, leading to both better so-
cial and individual benefits. In this example there is only
one equilibrium for each criteria. With BT the equilibrium is
based on mixed strategies such that p1 = p2 = 0.96. The in-
dividual expected profit in this case is EB1 = EB2 = 0.611.
With AT, the equilibrium is based on pure strategies, such
that both agents engage in information gathering (with r1 =
r2 = 0.221). The individual expected profit in this case is
EB1 = EB2 = 0.59. While with the AT criteria both agents
are forced to engage in IGP, in the absence of criterion each
agent has an incentive to terminate its IGP after gathering
information on one opportunity, due to the relatively high in-
formation gathering cost and the recognition that all agents
are engaged in IGP. Therefore, in order to push the agents to
extend their IGP, the optimal threshold is set to V IS = 0.22
and consequently there is an increase in the expected IGP
extent. Alas, the increase in the ISP threshold also has a
downside in the sense that when the number of opportunities
available is limited, the agents may frequently fail to com-
ply with the criteria set, even if gathering information on all
the opportunities available. With BT, the optimal threshold
is relatively high (V IS = 0.993) and the information sharing
is taken to the greatest extent.

The second example considers an heterogeneous setting
with four agents (k = 4). There is only one opportunity each
agent can explore. The difference between the agents is in
their underlying distribution function of values: while three
of the agents use a uniform distribution function defined
over the interval (0,1), the fourth uses a uniform distribu-
tion function defined over (1,2). The information gathering
cost of all agents is similar: c1 = c2 = c3 = c4 = 0.2, and
so is the fall-back value: v1

0 = v2
0 = v3

0 = v4
0 = 0. In this case

both optimal criteria result in a single equilibrium based on
pure strategies where with BT only the fourth agent engages
in IGP and with AT all agents engage in IGP. The individual
expected profit when using BT is EB1 = EB2 = EB3 = 1.5
and EB4 = 1.3, resulting in an average expected profit of
1.45. With AT the expected individual profit is EB1 =EB2 =
EB3 =EB4 = 1.3 and so is the average expected profit. Here,

the fact that with the AT criteria all agents are forced to en-
gage in IGP actually serves them badly because the resulting
cooperative IGP is highly inefficient. The fully cooperative
strategy in this case is to have only one of the agents engage
in IGP and have the other benefit from the finding and this is
exactly the solution achieved with the BT criteria in this set-
ting. The difference between the two examples is therefore
that while in the first the benefit in BT is due to the effective-
ness of the IGP carried out, in the second the benefit results
from the lack of information sharing under AT.

Related Work

Cooperation and coordination is a prevalent theme in multi-
agent literature (Kraus 1997). Various mechanisms have
been proposed over the years for nurturing and improv-
ing cooperation between agents, mostly in settings where
the agents are fully cooperative or adhere to the same goal
(Rosenfeld et al. 2008; Stone et al. 2010; Gunn and Ander-
son 2013; Dutta, Jennings, and Moreau 2005). Yet when the
agents are fully cooperative, there is no need for solutions
of the type discussed in this paper, as the agents will fol-
low any plan that maximizes the social welfare (or any other
goal externally set for the group) anyhow. Some works have
considered cooperation between self-interested agents that
can potentially have conflicting goals (Conitzer 2012; Xie
et al. 2010; Wooldridge et al. 2013), in particular aiming at
designing norms to guide and constrain agent behavior in or-
der to facilitate cooperation (Haynes, Miles, and Luck 2013;
Testerink, Dastani, and Meyer 2013; Hexmoor, Venkata, and
Hayes 2006). Other work that considers cooperation be-
tween self-interested agents can be found in coalition for-
mation literature (Shehory and Kraus 1998), yet the focus
there is mostly on the way coalitions are formed and the di-
vision of coalition payoffs, rather than ways of enhancing
beneficial individual efforts for the benefit of the coalition.

Group-based cooperation of self-interested agents can
also be found in social good allocation games (Aumann
1998; McKelvey and Palfrey 1992; Halonen-Akatwijuka
2012; Schmitz 2015). Here, the use of a threshold-based cri-
teria for increasing social welfare is common (Marks and
Croson 1999; Cadsby et al. 2008). Still, the threshold in
these works is usually defined over the overall production
of the group (i.e., only if the sum of individual contributions
is greater than the pre-specified threshold is the group’s task
is executed) rather than individually as in our case. More im-
portantly, a below-threshold criteria is not an option, as it is
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doomed to perform poorly in this domain.
The underlying cooperative information gathering model

that is used in this paper is rooted in economic search the-
ory where optimal stopping rules are studied for settings
where individuals need to gather information on an ap-
plicable opportunity when information gathering is costly
(Rochlin, Sarne, and Laifenfeld 2012; Grosfeld-Nir, Sarne,
and Spiegler 2009; Smith 2011; Lippman and McCall 1976;
Alkoby, Sarne, and Das 2015; Rochlin, Sarne, and Zuss-
man 2011). Within this framework, several cooperative in-
formation gathering models have been studied, primarily in
the context of fully cooperative agents that attempt to maxi-
mize the overall utility (Rochlin and Sarne 2013; Gatti 1999;
Manisterski, Sarne, and Kraus 2008; Burdett and Malueg
1981; Carlson and McAfee 1984; Rochlin et al. 2016). Cri-
teria setting in these models is therefore irrelevant. Coopera-
tive information gathering by self-interested agents has been
studied in several works (Rochlin, Sarne, and Mash 2014;
Hazon et al. 2013). These, however, do not suggest any
methods for improving the cooperative information gather-
ing in such settings. In our prior work (Rochlin and Sarne
2015) we have introduced a criteria-based mechanism for
the cooperative information gathering model focusing on a
BT criteria, to which we compare our AT criteria, yielding
the result that neither generally dominates the other (and the
somehow counter intuitive examples where enabling those
who contributed least to benefit from the fruits of coopera-
tion performs better than benefiting those who contributed
most).

Discussion and Conclusions
The results reported in this paper provide important evidence
for the benefit one may potentially gain from setting criteria
for agents to become eligible for benefiting from their coop-
eration with others. While the criteria prevents some of the
agents from benefiting from the cooperative effort (some-
times even without being their fault, as it is possible that an
agent will invest all its resources in attempting to comply
with the criteria and still fail), its positive effect, if properly
set, on individual efforts can have a much greater impact.

The proposed above-threshold cooperative information
gathering mechanism encapsulates many benefits compared
to the below-threshold one, as discussed throughout the pa-
per: It is more intuitive, it has a closed form solution, it
results in lower variance and it is considered to be the
most normative choice of the two. Another advantage of the
above-threshold mechanism is that it does not requires any
enforcement for agents’ reporting. With the below-threshold
mechanism agents have an incentive to report lower find-
ings, in order to be eligible to benefit from the findings of
others as part of the ISP. With the above-threshold mech-
anism an agent will always have an incentive to report the
finding that is most beneficial for the group.

The analysis provided demonstrates that the choice of the
criteria to be used should be made carefully, as sometimes
it is best to use a below-threshold criteria. This is somehow
counter-intuitive, for the reasons given throughout the paper.

In future work we plan to identify and analyze other
domains and applications in which better results can be

achieved by setting criteria to nurture group-beneficial be-
haviors through what might seem to be benefiting those of-
fering a somewhat lesser contribution than others.
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