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Abstract

Adverse drug reaction (ADR) is a major burden for patients
and healthcare industry. It usually causes preventable hospi-
talizations and deaths, while associated with a huge amount
of cost. Traditional preclinical in vitro safety profiling and
clinical safety trials are restricted in terms of small scale, long
duration, huge financial costs and limited statistical signifi-
cance. The availability of large amounts of drug and ADR data
potentially allows ADR predictions during the drugs’ early
preclinical stage with data analytics methods to inform more
targeted clinical safety tests. Despite their initial success, exist-
ing methods have trade-offs among interpretability, predictive
power and efficiency. This urges us to explore methods that
could have all these strengths and provide practical solutions
for real world ADR predictions. We cast the ADR-drug rela-
tion structure into a three-layer hierarchical Bayesian model.
We interpret each ADR as a symbolic word and apply latent
Dirichlet allocation (LDA) to learn topics that may represent
certain biochemical mechanism that relates ADRs with drug
structures. Based on LDA, we designed an equivalent regu-
larization term to incorporate the hierarchical ADR domain
knowledge. Finally, we developed a mixed input model lever-
aging a fast collapsed Gibbs sampling method that the com-
plexity of each iteration of Gibbs sampling proportional only
to the number of positive ADRs. Experiments on real world
data show our models achieved higher prediction accuracy and
shorter running time than the state-of-the-art alternatives.

1 Introduction

An adverse drug reaction (ADR) is a harmful or unpleasant
reaction caused by taking a medication. ADRs become a huge
public health concern as they result in 100, 000 fatalities per
year and incur morbidity and mortality related cost ∼ $177
billion annually (Giacomini et al. 2007). Traditional ADR
detection strategies include preclinical in vitro safety profiling
and clinical drug safety trials, however, both are restricted in
terms of small scale, long duration, huge financial costs and
limited statistical significance (Whitebread et al. 2005).

Meanwhile, the availability of large amount of drug and
ADR data provides a unique opportunity to address the chal-
lenges with predictive modeling methods. Accurate predic-
tion of potential ADRs at the early stage of drug development
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cycle could recommend targeted safety tests and thus help re-
duce time and financial costs in drug safety trials. As a proof-
of-concept, (Bender, Scheiber, and Glick 2007) explored the
chemical space of drugs and established its correlation for
ADR prediction. (Scheiber, Jenkins, and Sukuru 2009) pre-
sented a global analysis that identified chemical substructures
associated with ADRs. However, given millions of marketed
drugs or experimental lead compounds and thousands of can-
didate ADRs, accurate prediction of ADRs at early stage still
remains a challenging task.

State-of-the-art The aforementioned challenges motivate
a series of works that apply data analytics methods to seek
co-occurring patterns between drugs and ADRs. From the
perspective of representation learning, CCA (Hotelling 1936)
was applied to identify projections of drug features and ADRs
that are maximally correlated (Liu et al. 2012). Kernel CCA
is also adopted in a similar fashion. (Pauwels, Stoven, and Ya-
manishi 2011) treated k-nearest neighbors (Altman 1992) re-
sults from different similarity measures as kernels and devel-
oped a sparse canonical correlation analysis (CCA) method
to predict high-dimensional ADR profiles of drug molecules
based on drug structures. While (Yamanishi, Pauwels, and
Kotera 2012) developed a multiple kernel regression method
that integrates drug and biological features to predict ADRs.
On the other hand, from the perspective of relational model-
ing, lasso (Tibshirani 1994) was a popular method for ADR
prediction. For example, (Caster 2007) built a multivariate
lasso framework to simultaneously treat all drugs as predic-
tors for the presence of the ADRs and showed good prediction
results. In addition, inductive matrix-completion methods
were also developed, but they often need to be combined
with drug-target interactions (Li et al. 2015) or other side
information.

Challenges Despite their initial success, each of existing
data analytics method requires some trade-offs among per-
formance, interpretability and efficiency. For example, the
canonical variates in CCA or sparse CCA do not have partic-
ular meaning other than linear transformation. It may also be
sensitive to noise or collinearity in the data (McCune 1997).
In our case, the drug features are highly correlated, thus we
observed poor generalization power and results in poor pre-
diction performance on target drugs. Nonlinear CCA or other
kernel based methods further lack interpretability since it is
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difficult to explain the meaning of a nonlinear combination
of the entire set of variables. Lasso, though has better pre-
diction quality, would require an external loop to iterate on
each response variable dimension, and need to determine the
penalty factor for each dimension in learning.

Our Approach To address the arising challenges, we no-
ticed that topic models such as LDA (Blei, Ng, and Jordan
2003), though originally developed to characterize semantic
relations, could be transferred to model the symbolic rela-
tions between drugs and ADRs. For a LDA-like model, we
constructed its “drug document” as a mixture of “ADR top-
ics”, where a topic consists of a set of words (ADR terms)
that frequently occur together across the drug documents.
We considered drug structures as features to correlate struc-
tural information to drug topics for ADR prediction. Further,
we provided a variation of the base model to add an equiv-
alent regularization penalty that could incorporate domain
knowledge to enhance interpretability. Finally, we proposed a
mixed input (drug features and ADR terms) model that fully
leverages the fast collapsed Gibbs sampling method to speed
up the learning and still preserves high accuracy. Our main
contributions are:

• We developed three LDA-like models that achieved higher
accuracy than the state-of-the-art alternatives. Their perfor-
mance demonstrated that LDA could successfully uncover
the probabilistic patterns among ADR topics, and showed
the applicability of this three-level hierarchical Bayesian
approach. In general, Bayesian approach avoids overfitting
the data, and is especially useful on small datasets.

• The LDA-like models could generate interpretable results
such that each topic is explained as a probability distri-
bution over ADRs, while each drug document can be un-
derstood as a mixture of topics. Each topic may represent
certain biochemical mechanism that relates ADRs with
drug structures. The regularized version further enhanced
the interpretability with domain knowledge incorporated.

• Empirical results from real world data showed that the
mixed input model runs significantly faster, with the com-
plexity of each iteration of Gibbs sampling proportional
to the number of positive ADRs instead of total candidate
ADRs (Porteous et al. 2008). It manages to achieve top
accuracy, and hence is a substantial contribution towards
scalable ADR prediction.

The rest of the paper is organized as follows. In section
2, we talk about the building blocks of our models. Then we
introduce the developed models in Section 3, and evaluate it
with real world data in Section 4. We also discuss results in
Section 4.4. Last, we conclude our work and highlight future
directions in Section 5.

2 Background

Drug structure features and LDA methods are the two major
building blocks of this work. Therefore, in this section, we
briefly introduce why we choose them and how we use them
in this work.

2.1 Drug Structure Features

Drug structure features (i.e. chemical fingerprints) are struc-
tural descriptors of drugs. In our study, we generate drug
structure features with the extended-connectivity fingerprints
with diameter 6 (ECFP6) (Rogers and Hahn 2010), a tech-
nique developed specifically for structure-activity modeling,
by using “rcdk” package (Guha 2007). The features are
hashed binary vectors of 1,024-bit length, of which each
bit encodes the presence or absence of a substructure in a
drug molecule, allowing better representation in structural
similarity. We use drug structure features to correlate target
drug to training drugs and thus to infer the ADR topics for
the target drug.

2.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan 2003)
is a probabilistic topic modeling method that aims at finding
concise descriptions for a data collection. Originally pro-
posed in the context of text document modeling, LDA dis-
covers latent semantic topics in large collections of text data.
Each discovered topic is characterized by its own particular
distribution over words. Each document is then characterized
as a random mixture of topics indicating the proportion of
time the document spends on each topic. This random mix-
ture of topics is essentially the “concise descriptions”. LDA
not only expresses the semantic content of a document in a
concise manner, but also gives us an interpretable approach
for describing documents quantitatively via how similar the
corresponding topic mixtures are.

In recent years, LDA has been extended to be a general
topic discovering framework in numerous domains, including
object recognition (Cao and Li 2007), spam filtering (Biro et
al. 2009) and web mining (Mei et al. 2006). In the domain of
medical informatics, there has been a few previous work that
link LDA to semantic drug label mining (Bisgin et al. 2011;
Paul and Dredze 2012), however, there has never been such a
work that designs LDA based models to uncover the symbolic
relations underpinning drugs and ADRs.

3 Method

Now we are ready to introduce the three LDA-like models.
Our task here is to predict potential ADRs from thousands of
candidate ADRs for a target drug. Such a task is challenging
due to the huge amount of ADR terms as response. Some
ADRs would co-occur to a drug is due to the common under-
lying mechanism the ADRs share, which could be understood
as a “ADR topic”. Therefore, it is plausible to apply LDA
to achieve dimension reduction via considering each drug
as a document: a mixture of “ADR topics”, where a topic
consists of a set of ADR terms that frequently occur together
across the drug documents. To make predictions, we firstly
identify ADR topic distributions that characterize the target
drug, then we build a predictive model to relate drug structure
features to the ADR topic distributions. After that, we could
predict the ADRs associated with the drug through its topic
distribution. We adopt the following training and prediction
procedure. And we also list the notations used in the models
in Table 1.
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procedure THE TRAINING PROCEDURE
{Doc1, . . . , DocD} ← drug document
K ← number of ADR topics
train LDA({Doc1, . . . , DocD},K)
β ← ADR distribution of ADR topics
Θ ← ADR topic distribution
�X = {�xd} ← drug structure features
train θd ∼ �xd with lasso.

end procedure

procedure THE PREDICTION PROCEDURE
�x′
d ← drug structure features for target drug d′

predict topic distribution θd′ with lasso.
β ← ADR distribution of ADR topics
predict ADRs using β and θd′ with LDA

end procedure

3.1 The Base Model

The LDA concept mapping directly generates the base model.
The graphical structure is illustrated as in Figure 1 and its
generative process is described in the procedure.

Figure 1: The base model

Here we consider each drug as a document that defines a
probability distribution on topics, and each topic defines a
probability distribution on ADRs. The ADRs follow a multi-
nomial distribution with one probability vector per topic. The
conditional probability distribution for the ADR ω under
ADR topic k is given by Formula 1.

p(wn = ω|zn = k;β1:K) = βk(ω) (1)

In addition, the topics themselves follow a multinomial dis-
tribution Multinomial(θ), where θ is a Dirichlet variable.
The marginal distribution of ADR topic is given by Formula
2.

p(zn = k|θ) = θ(k). (2)

where the Dirichlet variable θ has a marginal density of the
form in Formula 3.

p(θ|α) = Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

θα1−1
1 · · · θαK−1

K (3)

Our objective is to estimate the parameters of the ADR
distribution per ADR topic as well as the topic distribution

Table 1: Mathematical Notation

Notation Description

D # of drugs
N # of candidate ADRs
K # of topics

wd,n
binary variable for
drug d has ADR n

�xd = {x1
d, · · · , xp

d} drug features for drug d

θd
ADR topic distri-
bution for drug d

zd,n topic assignment for wd,n

βk ADR distribution of topic k

α, η
Dirichlet/beta param-
eters of the Multino-

mial/Bernoulli distribution

procedure THE GENERATION PROCESS OF LDA FOR
DRUG DOCUMENT

d ← index of drug
D ← number of drugs in the corpus
for d ∈ [1, . . . ,D] do

draw a topic mixture θd such that p(θ|α) =
Dirichlet(α).

end for
n ← index of ADR
N ← number of candidate ADRs in the ADR corpus
for n ∈ [1, . . . ,N] do

draw a topic zn ∼ Multinomial(θ).
draw a word wn from p(wn|zn, β), a multinomial

conditioned on topic zn
end for

end procedure

per drug, with Formula 4 being the objective function.
�(θ1:D, β1:K ;α, η)

=
K∑

k=1

log p(βk|η) +
D∑

d=1

log p(θd, wd|α, β1:K) (4)

Here the density function p(βk|η) for βk is of the form as
in Formula 5.

p(βk|η) = Γ(
∑N

n=1 ηn)∏N
n=1 Γ(ηn)

βη1−1
k1 · · ·βηN−1

kN (5)

While the marginal distribution of drug d is as Formula 6.
p(θd, wd|α, β1:K) = p(θd|α)·

N∏
n=1

⎛
⎝∑

zd,n

p(zd,n|θd)p(wd,n|zd,n, β1:K)

⎞
⎠ (6)

Given the formulation above, from existing drug and ADR
relations, we train a LDA model to generate ADR topics,
where the topic distribution for drug d is denoted as θd. In
prediction, we predict θd for a target drug d′ given drug
structure features �x′

d = {x′1
d , · · · , x′p

d }, and then generate
the distribution of ADRs with θd′ .
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Figure 2: The regularized model

3.2 Regularization to Incorporate Domain
Knowledge

To incorporate domain knowledge, such as the available hi-
erarchical ADR ontology systems (e.g. ADReCS (Cai et al.
2015), and WHO-ART(WHO-ART 2015)), we extend the
base LDA-like model with a hierarchical penalty term. These
ontology systems are multi-level ADR hierarchy trees, where
concepts described by higher level nodes (par(·)) are the
abstract versions of their child nodes. To faithfully reflect
such knowledge, we introduce a hierarchical penalty term
that gives out a penalty when two ADR terms have the same
topic but different ADR parents.

Here we denote w as ADR terms, z as the ADR-to-topic
assignment. We also set superscript h to indicate the hierarchy
layer from bottom layer coded “1” to top layer coded “T”,
and let γh be penalty coefficient. Our objective is to minimize
the following penalized negative log-likelihood function as
in Formula 7.
− �(θ1:D, β1:K ;α, η)+ (7)

T∑
h=2

⎛
⎝γh

∑
d

∑
n,n′

1
par(h)(w

(1)
d,n)!=par(h)(w

(1)

d,n′ )
1
z
(1)
d,n=z

(1)

d,n′

⎞
⎠

Dummy Document However, the objective is not easy to
optimize. Thus we introduce an equivalent way to incorporate
the hierarchy penalty by including dummy documents for
each parent ADR node in the training process. The dummy
document represents a parent ADR node consisting of all its
child ADRs at the bottom layer. The existence of dummy
documents will enforce higher probability of assigning child
ADRs into the same group. The penalty weight can be equiv-
alently tuned by adjusting number of dummy documents or
word counts in the LDA model. A simple verification has
been performed to train LDA only on dummy documents and
we observed that ADRs under lower hierarchy are grouped
into one topic, while only parent node at a higher hierarchy
consists more than one topic. The graphical structure of the
regularized model is illustrated as in Figure 2.

Mathematically, the objective of the regularized model
can be re-formulated as follows. Denote {D + 1, . . . , D′}
as dummy documents, we want to minimize the following
penalized negative log-likelihood function.

− �ext(θ1:D′ , β1:K ;α, η) = −�(θ1:D, β1:K ;α, η)−

γ

D′∑
d=D+1

log p(θd, wd|α, β1:K) (8)

For non-hierarchical information, we can still add penalty
terms like Laplacian matrices to induce certain ADRs to be
grouped together.

3.3 Mixed Input Model

In real life, biomedical data such as drug and ADR data are
high dimensional. Certain method (e.g. lasso) that requires
training and prediction on each ADR will require an external
loop to iterate over ADR dimension to determine hyperparam-
eters. It will take a long time to complete even on a medium
size dataset. To alleviate it, we further modify the base LDA
with mixed inputs. Instead of learning the hidden topics sep-
arately, we treat both ADRs and drug structure features as
words for a drug document so that each learned topic will
potentially contain a subset of both ADRs and drug features.
Figure 3 illustrates the graphical structure of the mixed input
design.

Figure 3: The mixed input model

The mixed input model adopts a generative approach and
hence significantly speeds up learning with a proper training
method. (Porteous et al. 2008) proposed a fast collapsed
Gibbs sampling method with the complexity of each iteration
of Gibbs sampling proportional to the number of positive
ADRs instead of total candidate ADRs. The learning process
for the mixed input model effectively partitions ADRs and
drug features into separate groups. The partitioning could be
interpreted as each group represents certain mechanism that
could separate the cause (features) and effect (ADRs) out
from other mechanisms.

Specifically, we revise the objective function for the mixed
input model as follows. Denote the number of ADRs as
N and the number of features as p, the revised marginal
distribution of drug d will be as in Formula 9.

p(θd, w̃d|α, β1:K) = p(θd|α)·
N+p∏
n=1

⎛
⎝∑

zd,n

p(zd,n|θd)p(w̃d,n|zd,n, β1:K)

⎞
⎠ (9)

where w̃d = [wd, �xd]. To make prediction for a target drug
d′, we still need to determine the topic distribution θd′ based
on the drug structure features �xd′ and observed drug corpus.
What we do is to set wd′ = 0 and co-train it with the corpus,
then make inference based on θd′ .
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3.4 Inference in the Model via Gibbs Sampling

For parameter estimation, we adopt the fast collapsed Gibbs
sampling algorithm. The objective is to evaluate the posterior
distribution p(z|w). From the posterior distribution, we can
compute the statistics such as θd and βk. We calculate the
posterior distribution p(z|w) using the Bayes rule.

p(z|w) = p(w, z)∑
z p(w, z)

,

where the joint distribution p(w, z) = p(w|z)p(z) could be
obtained by integrating out β and θ separately from p(w|z)
and p(z). Here the posterior p(w|z) is obtained from Dirich-
let prior p(β|η) and multinomial likelihood p(w|z, β) such
that:

p(w|z) =
(
Γ(Nη)

Γ(η)N

)K K∏
k=1

∏
w Γ(n

(w)
k + η)

Γ(n
(·)
k +Nη)

(10)

where n
(w)
k refers to the number of times ADR(word) w has

been assigned to a ADR topic k. Likewise, p(z) is given
by Dirichlet prior p(θ|α) and multinomial likelihood p(z|θ)
such that:

p(z) =

(
Γ(Kα)

Γ(α)K

)D D∏
d=1

∏
k Γ(n

(d)
k + η)

Γ(n
(d)
· +Kη)

(11)

where n
(d)
k refers to the number of times a word from docu-

ment d has been assigned to topic k.
In addition, for the task of prediction, the predictive proba-

bility is given by the following formula.

p(wd,n) =
∑
k

p(wd,n|zd,n = k)p(zd,n = k)

=
∑
k

(βk(wd,n) + η)(θd(k) + α)

4 Experiment

4.1 Data Sources

We used ADReCS database (Cai et al. 2015) in evaluation.
The drug-ADR information of ADReCS was mainly ex-
tracted from the drug labels in the DailyMed1, a website
managed by the U.S. National Library of Medicine (NLM)
to provide comprehensive information about marketed drugs.
ADReCS adopted a four level ADR hierarchy tree with the
System Organ Class, the High level Group Term, the High
Level Term and the Preferred Term. As the hierarchy goes
to higher level, the ADR terms become more abstract and
generic in describing medical concept. We preprocessed the
data to filter out ADR with fewer than 17 associations (due
to R lasso package cannot handle the case of too few positive
samples. 17 happens to be minimum number not incur error
during cross-validation loops). We did the similar preprocess-
ing on drug data. In the experiment, we have 996 ADRs and
1000 drugs, each with a 1024-dimension feature vector.

1https://dailymed.nlm.nih.gov/

Table 2: Performance Comparison

Model AUROC (± SD) PR-AUC (± SD)

lasso 0.830 ± 0.063 0.420 ± 0.188
CCA 0.659 ± 0.119 0.245 ± 0.176

LDA (basic) 0.836 ± 0.055 0.452 ± 0.190
LDA (reg-
ularized) 0.840 ± 0.055 0.453 ± 0.188

LDA (mixed
input) 0.838 ± 0.054 0.445 ± 0.184

Table 3: Comparison of Running Time

Model Running Time (hours)

lasso 10.0 ∼ 12.0
CCA 1.0 ∼ 1.2

LDA (basic) 7.8 ∼ 8.0
LDA (regularized) 7.8 ∼ 8.0
LDA (mixed input) 0.4 ∼ 0.5

4.2 Evaluation Method

We performed 20-fold cross validation to evaluate our models
against baseline methods including lasso and CCA. Specif-
ically, in each iteration, 95% of the training drug was used
to construct the models and the remaining 5% of the drug
was used for performance testing. We also tune the number
of topics K from 20 to 140 with 20 per increment, and select
one that gives the best performance. In all cases, we have
K = 100. The measures we use include area under the re-
ceiver operating characteristic curve (ROC-AUC or AUROC)
and area under the precision recall curve (PR-AUC).

4.3 Results

We processed the data using Python package “pandas (McK-
inney 2015)”, as well as evaluated the algorithms using R
packages “glmnet (Friedman, Hastie, and Tibshirani 2010)”,
“cca (González et al. 2008)”, and “lda (Chang 2015)”, re-
spectively. Table 2, Figure 4 and 5 compare the validation
ROC-AUC (AUROC) and PR-AUC, while in Table 3 we
also compare the algorithm running time. The results show
that on average, our models significantly outperform baseline
in ROC-AUC and PR-AUC. Among them, the regularized
model that incorporate domain knowledge and the mixed in-
put model are among top performers. The mixed input model
also has advantage in fast running time. Lasso, though has
decent prediction performance, runs almost half day. There-
fore, from empirical results, it is easy to see our models,
especially the mixed input one has substantial improvement
in all perspectives.

4.4 Case Study

We also use case study to demonstrate the performance and
interpretability of the models. Taking Meloxicam, a non-
steroidal anti-inflammatory drug (NSAID) as an example.
Our models outperform baselines (see Figure 6 and 7) and
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Figure 5: PR AUC across all drugs.

correctly predict most of its major known ADRs. Figure 8
shows the selected topics and ADRs with top likelihood. The
true positive, false positive and false negative predictions are
shaded with different patterns, the ADR terms are listed with
their ADReCS hierarchical indexes, and the dotted boxes
group ADRs together according to the hierarchy in ADReCS.
The selected ADR topics could be mapped to ADR hierarchy
in the ADReCS ontology database. For example, gastroin-
testinal signs and symptoms is a mixture of nausea, vomiting
and abdominal pain.

From the false positive predictions, we discover that diar-
rhea, although not labeled as one ADR of Meloxicam, has
been predicted as a potential one due to being a sibling of
many ADRs of Meloxicam. Since many known ADRs in gas-
trointestinal disorders are close related to it, it is reasonable
to believe that diaherra could be of the ADRs of Meloxicam.
In addition, real world evidence from online forums such as
(WedMD 2016) and (Peoplespharmacy 2016) also indicate
that patients took Meloxicam suffered from severe diarrhea.

One example of false negative prediction is Mydriasis, i.e.
dilation of the pupil of the eye. Our algorithm did not pre-
dict this as an ADR of Meloxicam. First of all, the condition
is quite rare. Secondly, there could be confounding factors
such that the ADR could be caused by a often co-prescribed
drug. Or as a NSAID, Moxicam could be a medication for pa-
tients undergone ocular surgeries, in which case, the surgeries
themselves could be confounding factors.

These analysis suggest that incorporating of real-world
evidence could be a direction to improve the medical ontology
system and bring the drug safety studies into a better iteration.
Moreover, the identification of drug-ADR relation sometimes
is misled by confounding factors, while in the future we could
adding causal inference to distinguish causation of an ADR
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Figure 7: PR AUC for Meloxicam

from a correlation between drugs and ADRs, thus to remove
confounding factors.

Figure 8: Selected false positive and false negative ADR
predictions for drug Meloxicam.

5 Conclusion and Future Work

In this paper, we presented three LDA-based models for
ADR prediction. The approach learns a hidden topic layer
that may relate to biochemical mechanisms that link drug
structures to ADRs. Moreover, the mixed input model has
the best combination of prediction performance and training
efficiency. Experiments show that all models have better
prediction accuracy than baselines. Furthermore, we analyze
the positive and false negative predictions based on a sample
drug and the results point to some future directions including
1) improve medical ontology system with real world evidence,
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and 2) removing confounding factors with causal inference.
Both directions and the link between topics and biomedical
mechanisms will be studied in our future work.
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González, I.; Déjean, S.; Martin, P.; and Baccini, A. 2008.
Cca: An r package to extend canonical correlation analysis.
Journal of Statistical Software 23(1):1–14.
Guha, R. 2007. Chemical informatics functionality. R.
Journal of Statistical Software. 6:18.
Hotelling, H. 1936. Relations Between Two Sets of Variates.
Biometrika 28:321–377.
Li, R.; Dong, Y.; Kuang, Q.; and Wu, Y. 2015. Inductive ma-
trix completion for predicting adverse drug reactions integrat-
ing drug–target interactions. Chemometrics and Intelligent
Laboratory Systems 144.
Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.-w.;
Matheny, M. E.; and Xu, H. 2012. Large-scale prediction

of adverse drug reactions using chemical, biological, and
phenotypic properties of drugs. Journal of the American
Medical Informatics Association 19(e1):e28–e35.
McCune, B. 1997. Influence of noisy environmental data
on canonical correspondence analysis. Ecology 78(8):2617–
2623.
McKinney, W. 2015. pandas: a foundational python library
for data analysis and statistics.
Mei, Q.; Liu, C.; Su, C.; and Zhai, c. 2006. A probabilistic
approach to spatiotemporal theme pattern mining on weblogs.
In Proceedings of the 15th Int. World Wide Web Conference
(WWW’06).
Paul, M., and Dredze, M. 2012. Experimenting with drugs
(and topic models): Multi-dimensional exploration of recre-
ational drug discussions. AAAI Technical Report FS-12-05
Information Retrieval and Knowledge Discovery in Biomedi-
cal Text.
Pauwels, E.; Stoven, V.; and Yamanishi, Y. 2011. Predict-
ing drug side-effect profiles: a chemical fragment-based ap-
proach. BMC Bioinformatics 12(1):1–13.
Peoplespharmacy. 2016. http://www.peoplespharmacy.com
/2013/01/31/meloxicam-mobic-side-effects-complications/.
Porteous, I.; Newman, D.; Ihler, A.; Asuncion, A.; Smyth,
P.; and Welling, M. 2008. Fast collapsed gibbs sampling for
latent dirichlet allocation. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’08, 569–577.
Rogers, D., and Hahn, M. 2010. Extended-connectivity
fingerprints. J. Chem. Inf. Model. 50:742–754.
Scheiber, J.; Jenkins, J.; and Sukuru, S. 2009. Mapping ad-
verse drug reactions in chemical space. Journal of Medicinal
Chemistry 52:3103–7.
Tibshirani, R. 1994. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society, Series B
58:267–288.
WedMD. 2016. http://www.webmd.com/drugs/drugreview-
911-Meloxicam+Oral.aspx.
Whitebread, S.; Hamon, J.; Bojanic, D.; and Urban, L. 2005.
In vitro safety pharmacology profiling: an essential tool for
successful drug development. Drug Discovery Today 10(21).
WHO-ART. 2015. The WHO Adverse Reaction Terminology.
http://www.umc-products.com/graphics/28010.pdf.
Yamanishi, Y.; Pauwels, E.; and Kotera, M. 2012. Drug
side-effect prediction based on the integration of chemical
and biological spaces. Journal of Chemical Information and
Modeling 52(12):3284–3292.

1596




