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Abstract

Determining mortality risk is important for critical decisions
in Intensive Care Units (ICU). The need for machine learn-
ing models that provide accurate patient-specific prediction
of mortality is well recognized. We present a new algorithm
for ICU mortality prediction that is designed to address the
problem of imbalance, which occurs, in the context of binary
classification, when one of the two classes is significantly
under–represented in the data. We take a fundamentally new
approach in exploiting the class imbalance through a feature
transformation such that the transformed features are easier
to classify. Hypothesis testing is used for classification with
a test statistic that follows the distribution of the difference
of two χ2 random variables, for which there are no analytic
expressions and we derive an accurate approximation. Exper-
iments on a benchmark dataset of 4000 ICU patients show
that our algorithm surpasses the best competing methods for
mortality prediction.

Introduction

An Intensive Care Unit (ICU) has the most critically ill pa-
tients who are continuously monitored to check for disease
progression and potential complications. As the need for
ICUs have grown worldwide (Halpern et al. 2013), more
ICUs have been created but the availability of resources,
both clinical staff and monitoring equipment, remain lim-
ited due to many practical constraints. ICU costs have risen
amounting to nearly 13% of hospital costs and 5% of the
total healthcare cost (Halpern and Pastores 2010).

Continuous monitoring of ICU patients generates a wealth
of clinical data presenting opportunities to build predictive
models for decision support. The importance of predicting
mortality (risk of death) in effective delivery of ICU care
is well recognized (Power and Harrison 2014). Identifying
high–risk patients can not only aid critical decisions during
ICU stay such as interrupting treatments or providing Do–
Not–Resuscitate orders but also enable triage, making ICU
resources available to other patients in need.

The PhysioNet ICU Mortality Challenge 2012 (Silva et
al. 2012) was hosted to encourage the development of new
algorithms for ICU mortality prediction. In the challenge
itself, the benefits of machine learning algorithms became
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evident; later algorithmic development on the benchmark
dataset has led to up to 170% improvement over traditional
risk scoring systems that are used in ICUs today (Johnson
et al. 2016). Several aspects of mining clinical data have
been examined in these algorithms such as data preprocess-
ing, feature selection, imputation of missing values and the
design of new classifiers.

In this paper, we design an algorithm for predicting ICU
mortality that addresses the problem of class imbalance.
A dataset is called imbalanced if it contains significantly
more samples from one class (the majority class) than the
other class (the minority class). Classification on imbal-
anced datasets is an important problem in clinial data min-
ing (Reddy and Aggarwal 2015). In many datasets, we also
find that the sampling distributions of the (training) features
overlap significantly, that exacerbates the problem of learn-
ing from imbalanced data (Denil and Trappenberg 2010).

Our new algorithm for supervised binary classification ad-
dresses both the problems of imbalance and overlap in a
unique manner. It involves transforming Gaussian random
variables into χ2 random variables where the degree of free-
dom depends on the mean, variance as well as the class size
in the training data. The algorithm exploits the class im-
balance in a dataset to achieve a transformation of the fea-
tures such that the transformed features are well separated.
The more the class imbalance, the better the separation we
achieve – transforming a disadvantage into an opportunity.

The classification problem is posed as a statistical hypoth-
esis testing problem which involves the distribution of the
difference of two χ2 random variables. However, there is no
easily computable analytic expression for the density (PDF)
or distribution (CDF) of a linear combination of χ2–random
variables. Approximations exist that can be used in our al-
gorithm and this itself yields better classification accuracy
than state–of–the–art methods. Furthermore, we derive new
approximations (given in appendix, due to lack of space) to
the density and distribution of the difference of two χ2 vari-
ables. These approximations not only improve the classifica-
tion accuracy further but also possess desirable properties –
they are easier to compute, are invertible and are more accu-
rate over a larger range of the random variable – no previous
approximation has all these three properties.

To summarize our contributions in this paper,

• We design a new binary classifier consisting of (1) A
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skewness-based transformation of input features that ex-
ploits the class imbalance to achieve better separation
(2) Statistical hypothesis tests to obtain the final classi-
fication, where the test statistic is a difference between
the transformed test feature and skewness measures from
training data. We prove that for Gaussian inputs, this test
statistic asymptotically follows the distribution of the dif-
ference of two independent χ2 variables (with no known
analytic expression).

• We derive new approximations for the PDF, CDF and
quantiles of the difference of two χ2 variables that are
more accurate than previous approximations (given in ap-
pendix, due to lack of space); when used in our algorithm
the approximation further improves predictive accuracy.

• We analyze our algorithm’s performance on synthetic data
with controlled overlap and imbalance and demonstrate
improvement over state-of-the-art methods for ICU mor-
tality prediction on a benchmark dataset of 4000 patients.

Related Work

Mortality Prediction. Several scoring systems for assessing
mortality risk in ICUs have been designed such as APACHE
(Zimmerman et al. 2006), SAPS (Le Gall, Lemeshow, and
Saulnier 1993), and MPM (Lemeshow et al. 1993). They
have been developed to assess how care procedures, med-
ications and other clinical factors affect mortality in ICUs.
They are mainly adjusted risk models and are not calibrated
for patient specific predictions.

In 2012, PhysioNet hosted an ICU Mortality Prediction
challenge to encourage the development of new machine
learning techniques that can provide patient–specific mor-
tality risk (Silva et al. 2012). Machine learning algorithms
designed by the challenge winners surpassed the prediction
accuracy of the SAPS risk scoring system that is commonly
used in ICUs today. Johnson et al. (2014) revisited the prob-
lem and through novel data preprocessing techniques further
improved the performance of the algorithms.

Design of predictive models using clinical data continues
to remain an active research area. Recent literature has ex-
amined several new directions in the context of ICU mor-
tality prediction such as computational phenotyping through
deep learning (Che et al. 2015) and clinical notes analysis
(Ghassemi et al. 2015).
Imbalance and Overlap. The class imbalance problem has
been studied extensively – He and Garcia (He and Garcia
2009) and Sun et al. (Sun, Wong, and Kamel 2009) pro-
vide excellent reviews. Three broad classes of techniques
designed for imbalanced–data classification are sampling–
based preprocessing techniques, cost–sensitive learning and
kernel–based methods. In sampling techniques, the train-
ing data is re-sampled, in various ways, to minimize the
class imbalance before training the classifier. These include
SMOTE (Chawla et al. 2002), where the minority class is in-
flated by adding synthetic samples that are similar to the data
in the feature space, and under–sampling (over-sampling)
the majority (minority) class to reduce the imbalance during
training. In algorithmic techniques, such as cost–sensitive

learning, costs of misclassification or sample weights associ-
ated with each class are adjusted in the algorithm itself, e.g.
(Breiman, Chen, and Liaw 2004). Several variants of pop-
ular classification methods like SVM and ensembles have
been proposed to address class imbalance (Akbani, Kwek,
and Japkowicz 2004; Galar et al. 2012). Denil and Trappen-
berg (Denil and Trappenberg 2010; 2011) present a system-
atic analysis of the overlap problem and its interdependency
with class imbalance. Balancing strategies such as SMOTE
and undersampling of the majority class have also been used
for addressing overlap (Batista, Prati, and Monard 2005).

Our New Classifier

Training. Let A and B be two classes in the context of the
given binary classification problem where the training data
in class A has nA observations and training data in class
B has nB observations with nA >> nB . We denote the
training observations in class A as x = (x1, ...,xnA

) and
the training observations in class B as y = (y1, ...ynB

).
Let d be the dimension of each observation. We assume xi

follows a distribution with mean μA and variance ΣA and
yj follows a distribution with mean μB and variance ΣB for
each i and j. The maximum likelihood estimates (MLE) of
the parameters are:

μ̂A =
1

nA

nA∑
i=1

xi, μ̂B =
1

nB

nB∑
j=1

yj ,

Σ̂A =
1

nA

nA∑
i=1

(xi − μ̂A)(xi − μ̂A)
T ,

Σ̂B =
1

nB

nB∑
j=1

(yj − μ̂B)(yj − μ̂B)
T

For each class, from the training observations x and y, we
obtain (scalar) random variables U and V through a cubic-
quadratic transformation as given below:

U =

nA∑
i=1

nA∑
j=1

[
(xi − μ̂A)

T Σ̂−1
A (xj − μ̂A)

T
]3

,

V =

nB∑
i=1

nB∑
j=1

[
(yi − μ̂B)

T Σ̂−1
B (yj − μ̂B)

]3
(1)

Variables U and V are measures of skewness of the distri-
butions of x and y (Mardia 1970). For multivariate nor-
mal x and y, the distribution of 1

6nA
U and 1

6nB
V , asymp-

totically follow the χ2 distribution with degree of freedom
d(d+ 1)(d+ 2)/6 as shown in (Mardia 1970) 1:

U ∼ 6nAχ
2
d(d+1)(d+2)/6, V ∼ 6nBχ

2
d(d+1)(d+2)/6.

To illustrate the transformation, we generate nA = 100
unidimensional observations from the Gaussian N (4, 1) and
nB = 25 unidimensional observations from the Gaussian
N (6, 1). Figure 1 plots the histograms from this data and
also shows the distributions of the transformed variables U

1This result and theorem 1 below holds for sample sizes ≥ 30, from Central
Limit Theorem. Larger size will improve the rate of convergence.
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Figure 1: (left) Histogram and fitted densities of simulated
Gaussian data, illustrating two overlapping classes, (right)
Distributions of random variables U and V obtained through
the cubic-quadratic transformations in equation 1.

and V (using equation 1). Notice the overlap in the Gaus-
sians and the distributions of U and V which are well sep-
arated. The probability densities are not exact, but calcu-
lated from the frequency distribution of the simulated values.
Our transformation is similar, in aim but not in technique,
to the well–known Linear discriminant analysis (LDA) and
Quadratic discriminant analysis (QDA).

Since nA and nB are different, the means of U and V that
depend on the values of nA and nB are well separated. Thus
we exploit the imbalance in the data, to achieve a transfor-
mation that separates the distributions of U and V . The sepa-
ration in the distributions is proportional to the difference in
the class sizes (assuming moderately large class sizes ≥ 30):
the more the difference, the better separation we achieve.
The separation is also influenced by the differences in the
means and variances of the distributions of x and y.

We are using the skewness measures of the sampling
distributions and not the true distributions. The latter for
Gaussian distribution is perfectly symmetric (zero skew-
ness) whereas the former need not be perfectly symmetric.
Since the transformations use class sizes (nA, nB), the trans-
formed variables follow different χ2 distributions.
Prediction. Given a test sample Z, we use the same cubic-
quadratic transformations to obtain variables Z1, Z2 using
parameter estimates from class A and B respectively.

Z1 =
1

6

[
(Z − μ̂A)

T Σ̂−1
A (Z − μ̂A)

]3
,

Z2 =
1

6

[
(Z − μ̂B)

T Σ̂−1
B (Z − μ̂B)

]3

We pose the classification problem as two hypothesis tests.
1. Null hypothesis (H10): Z1 and 1

6nA
U are from the

same distribution versus Alternate hypothesis (H11): Z1 and
1

6nA
U are from different distributions.

2. Null hypothesis (H20): Z2 and 1
6nB

V are from the
same distribution versus Alternate hypothesis (H21): Z2 and
1

6nB
V are from different distributions.

For hypothesis testing, we need to compute the p–value
for the observed value (t) of a test statistic (T ). The ob-
served value (t) in our algorithm is Z1 − 1

6nA
U for case 1

and Z2− 1
6nB

V for case 2 (also see algorithm 1) and the test
statistic (T ) is a difference of two independent χ2 variables.
The p–value is the probability, under the null hypothesis, of

sampling a test statistic at least as extreme as that which was
observed, i.e., P (T > t), for positive t. We reject the null
hypothesis if the p-value is less than the significance level
threshold α. The significance level is the probability of Type
I error, i.e. rejection of null hypothesis when it is true. By
using a low value of α (≤ 0.05) we can accept the null hy-
pothesis with high confidence at p-values greater than α.

Note that for our classifier, H10 =⇒ Z ∈ A,H11 =⇒
Z �∈ A. Similarly, H20 =⇒ Z ∈ B,H21 =⇒ Z �∈ B.
Prediction proceeds in the following manner:

• If the p–value in the first test is large (> α), then the null
hypothesis H10 is accepted, assign label A to Z and stop.

• If the p–value in the first test is small (< α), then the null
hypothesis H10 is rejected. Since accepting the alterna-
tive hypothesis H11, that only implies that Z /∈ A does
not give us full confidence in assigning label B to Z, we
proceed to the second test. If the p–value of the second test
is large (> α), then the null hypothesis H20 is accepted.
Assign label B to Z and stop.

• If the p–value in the first test is small (the null hypothe-
sis H10 is rejected) and the p–value of the second test is
also small leading to rejection of the null hypothesis H20

then the tests imply Z �∈ A and Z �∈ B thereby yielding
insufficient confidence in either decision (empirically this
occurs in ∼ 5% of the cases). In this case class labels are
assigned based on a distance–based rule using the mean
squared deviation of Z from x and y:

If
1

nA

nA∑

i=1

(Z − xi)
2
<

1

nB

nB∑

j=1

(Z − yj)
2
, Z ∈ A else Z ∈ B.

Computing p–values. To obtain the p–value, we first need
the distribution of our test statistic (T ). Let Z3 denote
the component–wise cube of the test sample vector. Let
̂V arA(Z

3) denote the MLE of the variance of Z3 based
on observations of class A. Assuming that ̂V arA(Z

3) =
O(n−1

A ) in probability, theorem 1 states that that our test
statistic, Z1 − 1

6nA
U , is asymptotically a difference of two

independent χ2 variables (proof in appendix). An equiva-
lent statement holds for Z2 − 1

6nB
V . The assumption on

̂V arA(Z
3) is to ensure that the skewness of the distribution

of Z is very low which holds for Gaussian–like distributions.

Theorem 1 If ̂V arA(Z
3) = O(n−1

A ) in probability, then
Z1 − 1

6nA
U asymptotically (as nA → ∞) follows the distri-

bution of χ1−χ2 where both χ1 and χ2 are independent χ2

distributions, with degree of freedom d̃ and d(d+1)(d+2)/6

respectively. d̃ = d(d+2)(d+4)/6 for d even and d̃ = 2d2

for d odd.

Theorem 1 gives us the distribution of our test statistic but
no closed form for the CDF is known, although approxima-
tions exist (Press 1966). We derive new approximations for
the PDF, CDF and quantiles of the difference of two χ2 vari-
ables (derivations shown in appendix). Using this approxi-
mation to compute p–values in our algorithm improves clas-
sification accuracy further. The CDF approximations used
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in our algorithm are strictly necessary when the dimension-
ality, d ≤ 7. For d > 7, we find that an ensemble–based
approach that uses our algorithm on low-dimensional sub-
sets of the data works well in practice (details in appendix).
Algorithm 1 shows all the steps in training and prediction.

Algorithm 1 CHISQ Classification Algorithm
TRAINING

– Estimate sample means and covariances of classes A and B from
the training data:

μ̂A =
1

nA

nA∑

i=1

xi, μ̂B =
1

nB

nB∑

j=1

yj

Σ̂A =
1

nA

nA∑
i=1

(xi − μ̂A)(xi − μ̂A)
T ,

Σ̂B =
1

nB

nB∑
j=1

(yj − μ̂B)(yj − μ̂B)
T .

– Compute U0 and V0:

U0 =
1

6nA

nA∑
i=1

nA∑
j=1

[
(xi − μ̂A)

T Σ̂−1
A (xj − μ̂A)

]3
,

V0 =
1

6nB

nB∑
i=1

nB∑
j=1

[
(yi − μ̂B)

T Σ̂−1
B (yj − μ̂B)

]3

PREDICTION (Given test sample Z, significance level α)
– Obtain Z1 and Z2:

Z1 =
1

6

[
(Z − μ̂A)

T Σ̂−1
A (Z − μ̂A)

]3
,

Z2 =
1

6

[
(Z − μ̂B)

T Σ̂−1
B (Z − μ̂B)

]3
.

Denote by T the test statistic (difference of two independent χ2

random variables) whose CDF is evaluated using Press’ or our
NEW approximation.

– Compute p-value, p = P (T > Z1 − U0) where Z1 − U0 is
positive . If Z1 − U0 is negative, the p-value is given by p =
P (T ≤ Z1 − U0). If p > α assign Z to class A and stop. Else
go to the next step.

– Compute p-value, p = P (T > Z2 − V0) where Z2 − V0 is
positive . If Z2 − V0 is negative, the p-value is given by p =
P (T ≤ Z2 − V0). If p > α assign Z to class B and stop. Else
go to the next step.

– If 1
nA

∑nA
i=1(Z−xi)

2 < 1
nB

∑nB
j=1(Z−yj)

2 assign Z to class
A. Else assign Z to class B.

Computational Complexity. During training, computing
U0 and V0 takes O(d3 + n2

Ad
2) time which dominates the

time complexity. The complexity for prediction is O(d3)
from the CDF approximation used in computing p–values.

Experiments

Evaluation Metric. We use the Area Under the ROC Curve
(AUC) as our evaluation metric. For our algorithm, different
operating points on the curve can be obtained by varying the
level of significance, α, in hypothesis testing.
Baselines. As baselines we use 6 classifiers: Support Vec-

tor Machines (SVM), Random Forest (RF), Logistic Regres-
sion (LR), Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA) and AdaBoost. Additionally
we use the following preprocessing techniques all of which
are recommended techniques for handling imbalance and
overlap (Batista, Prati, and Monard 2005; Denil and Trap-
penberg 2011): undersampling (UNS) where the majority
class is sampled to equal the number of training samples in
both classes, SMOTE (Chawla et al. 2002) and cost-sensitive
learning (CSL). For CSL, we set the weight in inverse ratio
of the number of training samples, i.e., weight of a sample
from class C1 is nC2/nC1 where nC1 (nC2 ) is the number of
training samples in class C1 (C2). Our classifier with our new
approximation and with the approximation of Press are de-
noted by CHISQ-NEW and CHISQ-PRESS respectively.
Simulated Data. We study the effects of overlap, imbalance
and data distributions on classification. We study 4 cases of
overlap (O) measured by the common area between the two
classes, i.e. O = P (UC1

≥ κ) + P (UC2
≤ κ) where κ is

the intersection point of the distribution curves and UCj
is

the random variable having the same distribution of the j-th
class (j = 1, 2). See table 1.

O λ (Gaussian) k (Gamma) I
1 0.617 2 1.5 40:1
2 0.211 3.5 2 20:1
3 0.134 4 3 10:1
4 0.002 7 5 2:1

Table 1: Overlap (O) for different values of λ in the Gaus-
sian cluster and k for cluster with gamma distribution
Γ(k, θ)) and Imbalance Ratio (I) on simulated data. For each
value of O, the corresponding value of λ and k are in the
same row. Gaussian case in figures below. We simulate 16
datasets by taking all (4 x 4) combinations of O and I val-
ues.

We simulate data from two 3-dimensional Gaussian dis-
tributions: C1 ∼ N3(1, I3) and C2 ∼ N3(λ,Δ3) where I3
is the 3 × 3 identity matrix, λ is the mean of the second
cluster that controls the cluster overlap (O), and Δ3 is a
covariance matrix with 3 × 3 dimension having the (i, j)-
th component as 0.9|i−j|. We keep the size of C1 fixed at
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5000, and vary the size of C2 to create four different imbal-
ance ratios as shown in table 1. To evaluate the performance
when there is deviation from model assumptions, we also
simulate datasets with two clusters, each with one dimen-
sion, where C1 is from a Gaussian distribution with mean
λ (defined above) and variance 1 and C2 is from a Gamma
distribution, f(x | k, θ) = θ−k/Γ(k)e−x/θxk−1. We take
θ = 2 and vary k to create different overlaps as shown in
table 1. For each setting, we use 80% of the dataset, chosen
randomly, for training and the remaining as test set.

Figure 2 shows the AUC achieved by our classifier
(CHISQ) and Random Forest (RF), also applied with pre-
processing (RF-UNS, RF-CSL, RF-SMOTE) for the Gaus-
sian case (above) and non-Gaussian case (below). Results of
other classifiers are either comparable or worse than RF and
are not shown. There are four overlap settings (with differ-
ent background shades: darker shade for higher overlap) and
in each of them four imbalance ratios (increasing imbalance
leftwards) as described above.

In the case of Gaussian clusters, in the first 12 out of
16 settings, when there is low to high overlap, CHISQ-
NEW outperforms the baselines (and CHISQ-PRESS) in
all the imbalance settings. CHISQ-PRESS, that lags behind
CHISQ-NEW, outperforms the baselines in 8 out of these 12
settings. With zero overlap (in the last 4 settings), CHISQ
does not outperform the others, although the AUC remains
above 0.9. For the non-Gaussian case, the performance of all
the classifiers is lower, with a noticeable decreasing trend as
overlap increases (leftwards in the graph). The performance
of CHISQ (with -NEW better than -PRESS) remains higher
than all the baselines. With increasing overlap, CHISQ con-
sistently outperforms the baselines at all imbalance ratios.

Figure 2: Performance (AUC) of algorithms CHISQ-NEW,
CHISQ-PRESS, and RF with preprocessing (-SMOTE, -
UNS, -CSL) over different overlaps and imbalance ratios
(Above) when both clusters are Gaussian (Above) when one
cluster is non-Gaussian (Below). There are 4 overlap set-
tings (darker shade for higher overlap) and in each of them
4 imbalance ratios (decreasing imbalance rightwards)

We conclude that though our algorithm is not the best in
the absence of overlap, it does well when there is high over-
lap even in the presence of high imbalance, the case where
other classifiers usually fail. The fact that CHISQ-PRESS,
which uses our algorithm but not the new approximation,
gives the next best result shows that the improvement is a
result of both our algorithm and the new approximation.

ICU Mortality Prediction
Dataset. We use the publicly available labeled dataset of
4000 patients from the Physionet 2012 challenge (Silva et
al. 2012) which is from the the MIMIC II ICU database
(Goldberger et al. 2000). This dataset, called Training Set
A in the challenge, is called ICU Mortality dataset in the
following. The data for each patient includes age, gender,
height, weight, ICU type and 37 time-stamped lab investiga-
tions and physiological signal measurements in the first 48
hours of ICU stay. All patients are 16 years or older and had
ICU stays of at least 48 hours. Among these, 534 die in the
ICU (minority class 1) and 3466 survive (majority class 2).
Preprocessing. We obtain a feature matrix for supervised
classification where each row has a single patient’s features
after variable elimination and feature extraction.

Among the available measurements, 19 of them are absent
in more than 35% of the patients; including these would re-
sult in a large number of missing values in the feature matrix
and so, these measurements are eliminated. We also do not
use any measurements that have binary or ordinal datatypes
(since our classifier assumes Gaussian inputs). We use the
mean values of the measurements averaged over the first 48
hours for each patient, as features. Missing values in the fea-
ture matrix are imputed with the column means (from the
training fold). Feature selection experiments show that us-
ing 6 measurements with the least missing values (< 2%)
gives us the best performance.

We briefly outline our feature selection experiments
(more details are in the appendix). We select 75% of the
data for training and the remaining as test set for these ex-
periments (first fold in the 4-fold CV). The 6 features with
the least number of missing values (< 2%) are the mean
values of Mean Arterial Pressure (MAP), heart rate, temper-
ature, sodium level, potassium level, and magnesium level.
With these features CHISQ-NEW achieves a classification
accuracy of 90%. The mean values of the remaining 11
continuous–valued features, when added incrementally, do
not improve the accuracy obtained by the 6 chosen fea-
tures. Addition of any of these features individually to the
chosen 6 features also does not improve the accuracy. Here
we have imputed missing values with column means. With
other techniques of missing value imputation or using miss-
ing value flags as in Johnson et al. (2014) also, we do not
observe any increase in accuracy over that achieved by our
chosen 6 features.

Other summary statistics such as standard deviation, min-
imum, maximum and last value in the first 48 hours of
patient’s ICU stay have been found useful in other stud-
ies. In particular, Johnson et al. (2014) use 198 such fea-
tures and with a Random Forest classifier obtain an AUC of
nearly 0.84. Use of these features in our classifier (using the
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Figure 3: Fitted densities of class 1 (‘dead’: dashed red line) and class 2 (‘alive’: solid black line) in each of the features used.
Left to Right: MAP, heart rate, temperature, magnesium, potassium and sodium level.

Algorithm Score

Johnson et al. (2012) 0.48
Citi and Barbieri (2012) 0.47
Vairavan et al. (2012) 0.52

CHISQ-PRESS 0.55
CHISQ-NEW 0.60

Table 2: Scores on ICU Mortality dataset (Training Set A)
by the top 3 challenge winners and our algorithm CHISQ
(-PRESS, using Press’ approximation and -NEW, using our
new approximation).

ensemble-based technique for high dimensions described in
appendix) does not improve our AUC. The seven most infor-
mative features for the Random Forest Classifier (ranked by
their Gini importance values) are cumulative sum of urine
output, mean, last, minimum and maximum values of BUN,
mean value of HCO3 and Age. When these seven features
are used with CHISQ-NEW classifier we obtain a classifi-
cation accuracy of 85% and the AUC remains lesser than
0.867, which is achieved by using our 6 selected features.

Figure 3 shows the fitted densities of the six selected vari-
ables that approximately follow Gaussian distribution. An
advantage of using only these measurements is that they are
part of routine clinical investigations in many patients.

Results

Comparison with 2012 Challenge Winners. The evalua-
tion metric used in the challenge was a score defined as
the minimum of recall (R) and precision (P ): score =
min(R,P ), where R = TP/(TP + FN) and P =
TP/(TP + FP ); TP , FN and FP denote true positives,
false negatives and false positives respectively (positive de-
notes correct identification of mortality). Table 3 shows the
4-fold cross-validation (CV) scores reported by the top three
challenge winners on Training Set A. The mean score ob-
tained by our method with Press’ approximation, CHISQ-
PRESS gives a higher score which is further improved by
using our new approximation in CHISQ-NEW.
Comparison with other baselines. After the challenge
other algorithms were developed for ICU mortality pre-
diction and tested on this dataset. Johnson et al. (2014)
design new preprocessing techniques and demonstrate im-
provement over the challenge winners. To our knowledge
their method achieves the best reported AUC on this dataset.
A deep learning technique using prior-based regularization
was also evaluated on this dataset (Che et al. 2015). Both

Algorithm Mean AUC (SD)

Che et al. (2015) 0.82 (0.03)
CHISQ-PRESS 0.837 (0.061)

Johnson et al. (2014) 0.848 (0.012)
CHISQ-NEW 0.867 (0.031)

Algorithm Mean AUC (SD) Pre Mean AUC (SD)

SVM 0.568 (0.028) CSL 0.668 (0.017)
RF 0.644 (0.032) UNS 0.648 (0.029)
LR 0.597 (0.018) SMOTE 0.599 (0.015)

LDA 0.599 (0.015) UNS 0.601 (0.016)
QDA 0.66 (0.006) CSL 0.66 (0.006)

Adaboost 0.541 (0.057) SMOTE 0.569 (0.015)

Table 3: Results of 4-fold CV on ICU Mortality dataset
(Training Set A): our algorithm CHISQ (-PRESS, using
Press’ approximation and -NEW, using our new approxi-
mation). ABOVE: Mean AUC (Std Dev) comparison with
previous algorithms; BELOW: Mean AUC (Std Dev) ob-
tained by 6 baseline classifiers with no preprocessing (2nd
column) and with preprocessing (Pre) – best among the 3
techniques (CSL, UNS, SMOTE) shown for each classifier
(4th column).

these methods use many more features and are not restricted
to the 6 features we choose for our method. Table 3 shows
the AUC achieved by these methods over 4-fold cross val-
idation. Our algorithm with Press’ approximation, CHISQ-
PRESS achieves higher AUC than that of Che et al. (2015)
and CHISQ-NEW using our new approximation improves
the AUC further to outperform that of Johnson et al. (2014).

We also test the performance of 6 baseline classifiers us-
ing the same 6 features that we choose for our classifier.
The aim is to check the improvement with preprocessing
techniques like SMOTE, UNS or CSL designed for imbal-
ance. In table 3 we also report the AUC achieved by each
of the classifiers before and after preprocessing. We report
the highest AUC achieved among the 3 preprocessing tech-
niques for each classifier. None of these classifiers, with
or without the preprocessing, are able to achieve an AUC
higher than 0.68 which is much lesser than what CHISQ-
NEW achieves. Using additional summary statistics (like
standard deviation, minimum, maximum of each measure-
ment) as features with RF, SVM and LR improves the AUC
up to 0.84 (see Johnson et al. 2014) which also is lower than
the AUC of CHISQ-NEW.
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Conclusion

We present a new binary classification algorithm designed
to address the problem of imbalance that is common in clin-
ical datasets. Our algorithm exploits the class imbalance to
achieve a unique transformation of the features such that the
transformed features are well separated. The transformation
results in a difference of χ2 variables and using approxima-
tions for the CDF of the variables, hypothesis testing can be
used for classification. We derive new approximations that
further improve our algorithm’s classification accuracy.

We demonstrate the efficacy of our algorithm on simu-
lated datasets and a large benchmark ICU dataset. An ad-
vantage of our method is the use of only six measurements
from routine clinical investigations and can easily be ob-
tained from electronic medical records. In comparison other
methods or scoring systems use measurements (e.g. Glas-
gow Coma Scale or an indicator of mechanical ventilation)
that may not be available for all patients, may need manual
intervention, domain expertise or clinical notes analysis.
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