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Abstract

Event sequence, asynchronously generated with random
timestamp, is ubiquitous among applications. The precise and
arbitrary timestamp can carry important clues about the un-
derlying dynamics, and has lent the event data fundamentally
different from the time-series whereby series is indexed with
fixed and equal time interval. One expressive mathematical
tool for modeling event is point process. The intensity func-
tions of many point processes involve two components: the
background and the effect by the history. Due to its inher-
ent spontaneousness, the background can be treated as a time
series while the other need to handle the history events. In
this paper, we model the background by a Recurrent Neural
Network (RNN) with its units aligned with time series in-
dexes while the history effect is modeled by another RNN
whose units are aligned with asynchronous events to cap-
ture the long-range dynamics. The whole model with event
type and timestamp prediction output layers can be trained
end-to-end. Our approach takes an RNN perspective to point
process, and models its background and history effect. For
utility, our method allows a black-box treatment for model-
ing the intensity which is often a pre-defined parametric form
in point processes. Meanwhile end-to-end training opens the
venue for reusing existing rich techniques in deep network for
point process modeling. We apply our model to the predictive
maintenance problem using a log dataset by more than 1000
ATMs from a global bank headquartered in North America.

Introduction
Event sequence is becoming increasingly available in a va-
riety of applications such as e-commerce transactions, so-
cial network activities, conflicts, and equipment failures etc.
The event data can carry rich information not only about the
event attribute (e.g. type, participator) but also the timestamp
{zi, ti}Ni=1 indicating when the event occurs. Being treated
as a random variable when the event is stochastically gen-
erated in an asynchronous manner, the timestamp makes the
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event sequence fundamentally different from the time series
(Montgomery, Jennings, and Kulahci 2015) with equal and
fixed time interval, whereby the time point only serves as
a role for index {yt}Tt=1. A major line of research (Aalen,
Borgan, and Gjessing 2008) has been devoted to study event
sequence, especially exploring the timestamp information
to model the underlying dynamics of the system, whereby
point process (Snyder and Miller 2012) has been a powerful
and compact framework in this direction.

Recently there are many machine learning based mod-
els for scalable point process modeling. We attribute the
progressions in this direction in part to the smart math-
ematical reformulations and optimization techniques e.g.
(Lewis and Mohler 2011; Zhou, Zha, and Song 2013b;
2013a), as well as novel parametric forms for the condi-
tional intensity function (Shen et al. 2014; Ertekin, Rudin,
and McCormick 2015; Xu et al. 2016) as carefully designed
by researchers’ prior knowledge to capture the character of
the dataset in study. However, one major limitation of the
parametric forms of point process is due to their special-
ized and restricted expression capability for arbitrary dis-
tributed event data which trends to be oversimplified or even
infeasible for capturing the problem complexity in real ap-
plications. Moreover, it runs at the risk of model underfitting
due to the misjudgement on model choice. Recent works e.g.
(Zhou, Zha, and Song 2013b) start to turn to non-parametric
form to fit the structure of a point process, but their method
is under the Hawkes process formulation,while this formu-
lation runs at the risk of model mis-choice.

In this paper, we view the conditional intensity of a point
process as a nonlinear mapping between the predicted tran-
sient occurrence intensity of events with different types, and
the model input information of event participators, event
profile and the system history. Such a nonlinear mapping is
expected to be complex and flexible enough to model vari-
ous characters of real event data for its application utility.

In fact, deep learning models, such as Convolutional Neu-
ral Networks (CNNs) (LeCun et al. 1998), Recurrent Neu-
ral Networks (RNNs) (Pascanu, Mikolov, and Bengio 2013)
have attracted wide attention in recent vision, speech and
language communities, and many of them has dominated the
competing results on perceptual benchmark tasks e.g. (Rus-
sakovsky et al. 2015). In particular, we turn to RNNs as a
natural way to encode such nonlinear and dynamic mapping,
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Figure 1: Time series and event sequence can be synergi-
cally modeled. The former can be used to timely capture the
recent window for the time-varying features, while the lat-
ter can capture the long-range dependency over time. Note
the dependency in an event sequence can be easily captured
by an event sequence LSTM with less than 5 steps, while it
takes too much more steps if using a time series with a fixed
time interval e.g. 7 days in the figure (Note many unit steps
in the top time series are omitted in the figure for clarity).

in an effort for modeling an end-to-end nonlinear intensity
mapping without any prior knowledge.

Key idea and highlights Our model interprets the con-
ditional intensity function of a point process as a nonlinear
mapping, which is synergetically established by a compos-
ite neural network with two RNNs as its building blocks.
As illustrated in Fig.1, time series (top row) and event se-
quence (bottom row) are distinct to each other in that time
series is more suitable to carry the synchronously (i.e. in a
fixed pace) and regularly updated or constant profile fea-
tures, while the event sequence can compactly catch event
driven, more abrupt information, which can affect the condi-
tion intensity function over longer time period. More specif-
ically, the highlights of this paper are:

1) We first make an observation that many conditional in-
tensity functions can be viewed as an integration of two ef-
fects: i) spontaneous background component inherently af-
fected by the internal (time-varying) attributes of the indi-
vidual and the event type; ii) effects from history events.
Meanwhile, most information in real world can also be cov-
ered by continuously updated features like age, temperature,
and asynchronous event data such as clinical records, fail-
ures. This motivates us to devise a general approach.

2) Then we use an RNN whose units are aligned with
the time points of a time series as its units, and an RNN
whose units are aligned with events. The time series RNN
can timely track the spontaneous background while the event
sequence RNN is used to efficiently capture the long-range
dependency over history with arbitrary time intervals. This
allows to fit arbitrary dynamics of point process which other-
wise will be very difficult or often impossible to be specified
by a parameterized model under certain assumptions.

3) To our best knowledge, this is the first work to fully in-
terpret and instantiate the conditional intensity function with
fused time series and event sequence RNNs. This opens up
the room for connecting the neural network techniques to

traditional point process that emphasizes more on specific
model driven by domain knowledge. More importantly the
introduction of a full RNN treatment lessen the efforts for
the design of (semi-)parametric point process model and
its complex learning algorithms which often call for spe-
cial tricks that prohibiting the wide use for practitioners. In
contrast, neural networks and specifically RNN, is becoming
off-the-shelf tools and getting widely used recently.

4) Our model is simple, general and can be end-to-end
trained. We target to a predictive maintenance problem. The
data is from a global bank headquartered in North Amer-
ica, consisting decades of thousands of event logs for a large
number of Automated Teller Machines (ATMs). The state-
of-the-art performance on failure type and timestamp predic-
tion corroborates its suitability to real-world applications.

Related Work and Motivation
We view the related concepts and work in this section, which
is mainly focused on Recurrent Neural Networks (RNNs)
and their applications in time series and sequences data, re-
spectively. Then we give our point of view on existing point
process methods and their connection to RNNs. All these
observations indeed motivate the work of this paper.

Recurrent neural network The building blocks of our
model are the Recurrent Neural Networks (RNNs) (Elman
1990; Pascanu, Mikolov, and Bengio 2013) and its modern
variant Long Short-Term Memory (LSTM) units (Hochreiter
and Schmidhuber 1997; Graves 2013). RNNs are dynamical
systems whose next state and output depend on the present
network state and input, which are more general models than
the feed-forward networks. RNNs have long been explored
in perceptual applications for many decades, however it can
be very difficult to train RNNs to learn long-range dynamics
perhaps in part due to the vanishing and exploding gradi-
ents problem. LSTMs provide a solution by incorporating
memory units that allow the network to learn when to for-
get previous hidden states and when to update hidden states
given new information. Recently, RNNs and LSTMs have
been successfully applied in large-scale vision (Gregor et al.
2015), speech (Graves, rahman Mohamed, and Hinton 2014)
and language (Sutskever, Vinyals, and Le. 2014) problems.

RNNs for series data From application perspective, we
view RNNs works by two scenarios as particularly consid-
ered in this paper: i) RNNs for synchronized series with
evenly spaced interval e.g. time series or indexed sequence
with pure order information e.g. language; ii) asynchronous
sequence with random timestamp e.g. event data.

i) Synchronized series: RNNs have been a long time a
natural tool for standard time series modeling and predic-
tion (Connor, Martin, and Atlas 1994; Han et al. 2004;
Chandra and Zhang 2012; Chen, Chang, and Chang 2013),
whereby the indexed series data point is fed as input to an
(unfold) RNN. In a broader sense, video frames can also be
treated as time series and RNN are widely used in recent vi-
sual analytics works (Jain et al. 2016; Tripathi et al. 2016)
and so for speech (Graves, rahman Mohamed, and Hinton
2014). RNNs are also intensively adopted for sequence mod-
eling tasks (Chung et al. 2014; Bengio et al. 2015) when only
order information is considered.
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ii) Asynchronous event: In contrast, event sequence
with timestamp about their occurrence, which are asyn-
chronously and randomly distributed over the continuous
time space, is another typical input type for RNNs (Du et
al. 2016; Choi et al. 2016; Esteban et al. 2016) and (Che et
al. 2016) (despite its title for ’time series’). One key differ-
entiation against the first scenario is that the timestamp or
time duration between events (together with other features)
is taken as input to the RNNs. By doing so, (long-range)
event dependency can be effectively encoded.

Point process Point process has been a principled frame-
work for modeling event data (Aalen, Borgan, and Gjessing
2008). The dynamics of the point process can be well cap-
tured by its conditional intensity function whose definition
is briefly reviewed here: for a short time window [t, t+ dt),
λ(t) represents the rate for the occurrence of a new event
conditioned on the history Ht = {zi, ti|ti < t}:

λ(t) = lim
Δt→0

E(N(t+Δt)−N(t)|Ht)

Δt
=

E(dN(t)|Ht)

dt

where E(dN(t)|Ht) is the expectation of the number of
events happened in the interval (t, t + dt] given the histori-
cal observations Ht. The conditional intensity function has
played a central role in point processes and many popular
processes vary on how it is parameterized.

1) Poisson process (Kingman 1992): the homogeneous
Poisson process has a very simple form for its intensity func-
tion: λ(t) = λ0. Poisson process and its time-varying gener-
alization are both assumed to be independent of the history.

2) Reinforced poisson processes (Pemantle 2007; Shen et
al. 2014): the model captures the ‘rich-get-richer’ mecha-
nism characterized by a compact intensity function, which
is recently used for popularity prediction (Shen et al. 2014).

3) Hawkes process (Hawkes 1971): Hawkes process has
received wide attention recently in social network analy-
sis (Zhou, Zha, and Song 2013a), viral diffusion(Yang and
Zha 2013) and criminology (Lewis et al. 2010) etc. It ex-
plicitly uses a triggering term to model the excitation effect
from history events and is originally motivated to analyze
the earthquake and its aftershocks(Ogata 1988).

4) Reactive point process (Ertekin, Rudin, and Mc-
Cormick 2015): it can be regarded as a generalization for the
Hawkes process by adding a self-inhibiting term to account
for the inhibiting effects from history events.

5) Self-correcting process (Isham and Westcott 1979): its
background part increases steadily, while it is decreased by
a constant e−α < 1 every time a new event appears.

We reformulate these intensity functions in their general
form in Table 1. It tries to separate the spontaneous back-
ground component and history event effect explicitly.

Predictive maintenance Predictive maintenance (Mob-
ley 2002) is a sound testbed for our model which refers to
a practice that involves equipment risk prediction to allow
for proactive scheduling of corrective maintenance. Such an
early identification of potential concerns helps deploy lim-
ited resources more cost effectively, reduce operations costs
and maximize equipment uptime (Grall et al. 2002). Pre-
dictive maintenance is adopted in a wide variety of applica-
tions such as fire inspection (Madaio et al. 2016), data cen-

Table 1: Conditional intensity functions of point processes.

Model Background History event effect

Poisson process μ(t) 0
Reinforced poisson process 0 γ(t)

∑
ti<t δ(ti < t)

Hawkes process μ(t)
∑

ti<t γ(t, ti)
Reactive point process μ(t)

∑
ti<t γ1(t, ti)−

∑
ti<t γ2(t, ti)

Self-correcting process 0 exp(μt−∑
ti<t γ(t, ti)

Note:δ(t) is Dirac function, γ(t, ti) is time-decaying kernel and
μ(t) can be constant or time-varying function.

ter (Sirbu and Babaoglu 2015) and electrical grid (Ertekin,
Rudin, and McCormick 2015) management. For its practical
importance in different scenarios and relative rich event data
for modeling, we target our model to a real-world dataset of
more than 1,000 automated teller machines (ATMs) from a
global bank headquartered in North America.

Network Structure and End-to-End Learning

Taking a sequence {x}Tt=1 as input, the RNN generates the
hidden states {h}Tt=1 and outputs a sequence (Elman 1990;
Pascanu, Mikolov, and Bengio 2013). Specifically, we im-
plement our RNN with Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997; Graves 2013) for its
popularity and well-known capability for efficient long-
range dependency learning. In fact other RNN variant e.g.
Gated Recurrent Units (GRU) (Chung et al. 2014) can also
be alternative choice. We reiterate the formulation of LSTM:

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ),

ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot � tanh(ct)

where � denotes element-wise multiplication and the recur-
rent activation σ is the Logistic Sigmod function. The above
system can be reduced into an LSTM equation:

(ht, ct) = LSTM(xt, ht−1 + ct−1)

We consider two types of input: i) continuously and evenly
distributed time-series data e.g. temperature; ii) event data
whose occurrence time interval is random. The network is
comprised by two RNNs using evenly spaced time series
{yt}Tt=1 to model the background intensity of events occur-
rence and event sequence {zi, ti}Ni=1 to capture long-range
event dependency. As a result, we have:

(hy
t , c

y
t ) = LSTMy(yt, h

y
t−1 + c

y
t−1), (1)

(hz
t , czt ) = LSTMz(zt, hz

t−1 + czt−1), (2)

et = tanh(Wf [h
y
t , hz

t ] + bf ), (3)
Ut = softMax(WUet + bU ), (4)
ut = softMax(Wu[et,Ut] + bu) (5)
st = Wset + bs, (6)

where U and u denotes the main type and subtype of events
respectively. s is the timestamp associated with each event.
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Figure 2: Our network can be trained end-to-end. Time se-
ries and event sequence are fed into two RNNs (LSTM)
which are connected to an embedding mapping layer that
fuses the information from two LSTMs. Then three predic-
tion layers are used to output the predicted main type, sub-
type of events, and the associated timestamp. Cross-entropy
with the time penalty loss by Eq.7 and square loss are re-
spectively used for event type and timestamp prediction.

The total loss is the sum of the time prediction loss and the
cross-entropy loss for event type:

N∑
j=1

(
−W j

U log(U j
t )− wj

u log(uj
t)− log

(
f(sjt |hj

t−1)
))

(7)

where N is the number of training samples indexed by j,
and sjt is the timestamp for the coming event, while hj

t−1
is the history information. The underlying rationale for the
third term is that we not only encourage correct classification
of the coming event type, but also reinforce the correspond-
ing timestamp of the event shall be close to the ground truth.
We adopt a Gaussian penalty function with a fixed σ2 = 10:

f(sjt |hj
t−1) =

1√
2πσ

exp

(
−(sjt − s̃jt )

2

2σ2

)

The output s̃jt from the timestamp prediction layer is fed to
the classification loss layer to compute the above penalty
given the actual timestamp sjt for sample i.

Following the importance weighting methodology for
skewed data of model training (Rosenberg 2012), the weight
parameters W,w for both main-type and subtype are set as
the inverse of the sample number ratio in that type against
the total size of samples, in order to weight more on those
classes with fewer training samples. For the loss of indepen-
dent main-type or subtype prediction as shown in Fig.3(b),
we set the weight parameter w and W to zero respectively.

We adopt RMSprop gradients (Dauphin et al. 2015) which
have been shown to work well on training deep networks to
learn these parameters.

Table 2: Statistics of main/sub-type of event count per ATM,
and timestamp interval in days for all ATMs (in brackets).

data type total max min mean std

Ticket 2226(–) 10(137.04) 0(1.21) 2.09(31.70) 1.85(25.14)
Error 28434(–) 168(153.90) 0(0.10) 26.70(6.31) 18.38(9.74)

Tr
ai

ni
ng

se
t PRT 9204(–) 88(210.13) 0(0.10) 8.64(12.12) 11.37(21.41)

CNG 7767(–) 50(200.07) 0(0.10) 7.29(15.49) 6.59(23.87)
IDC 4082(–) 116(206.61) 0(0.10) 3.83(23.85) 5.84(30.71)
COMM 3371(–) 47(202.79) 0(0.10) 3.16(22.35) 3.90(29.36)
LMTP 2525(–) 81(207.93) 0(0.10) 2.37(22.86) 4.41(34.56)
MISC 1485(–) 32(204.41) 0(0.10) 1.39(24.27) 2.54(34.38)

Ticket 1164(–) 15(148.00) 0(0.13) 2.52(26.30) 2.41(25.22)
Error 11799(–) 104(193.75) 1(0.10) 25.59(6.47) 17.71(10.09)

Te
st

in
g

se
t PRT 4089(–) 60(205.48) 0(0.10) 8.86(11.45) 10.77(20.44)

CNG 3134(–) 66(196.93) 0(0.10) 6.79(15.90) 6.91(25.22)
IDC 1645(–) 35(205.75) 0(0.10) 3.57(25.15) 4.29(31.62)
COMM 1366(–) 53(205.17) 0(0.10) 2.96(22.88) 4.08(30.09)
LMTP 939(–) 20(186.87) 0(0.10) 2.04(26.63) 2.76(36.96)
MISC 626(–) 21(190.75) 0(0.10) 1.36(25.14) 2.59(34.91)

Experiments on Real-world Data

We use failure prediction for predictive ATMs maintenance
as a typical example of event based point process model-
ing. We have no prior knowledge on the dynamics of the
complex system and the task can involve arbitrarily work-
ing schedules and heterogeneous mix of conditions. It takes
much cost or even impractical to devise specialized models.

Problem and real data description

In maintenance support services, when a device fails, the
equipment owner raises a maintenance service ticket and
technician will be assigned to repair the failure. In fact, the
history log and relevant profile information about the equip-
ment can be indicative signals for the coming failures.

The studied dataset is comprised of the event logs in-
volving error reporting and failure tickets, which is origi-
nally collected from a large number of ATMs owned by an
anonymous global bank headquartered in North America.
The bank is also a customer of the technical support service
department of a Fortune 500 IT company.

ATM models The training data consists of 1085 ATMs
and testing data has 469 ATMs, in total 1557 Wincor ATMs
that cover 5 ATM machine models: ProCash 2100 RL (980,
430), 1500 RL (19, 5), 2100 FL (53, 21), 1500 FL (26, 10),
and 2250XE RL (7, 3). The numbers in the bracket indicate
the number of machines for training and testing.

Event type There are two main types ‘ticket’ and ‘error’
from Sep. 2014 to Mar. 2015. Statistics is presented in Table
2. Moreover ‘error’ is divided into 6 subtypes regarding in
which component the error occurs: 1) printer (PRT), 2) cash
dispenser module (CNG), 3) internet data center (IDC), 4)
communication part (COMM), 5) printer monitor (LMTP),
6) miscellaneous e.g. hip card module, usb (MISC).

Features The input features for the two RNNs are: 1)
Time series RNN: For each sub-window of length 7 days,
for the time series RNN, we extract features including: i)
the inventory information: ATM models, age, location, etc;
ii) Event statistics, including tickets events from mainte-
nance records, and errors from system log. Their occurrence
frequencies are used as features. The concatenation of the
above two categories of features serves as the features for
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each sub-window i.e. time series point. 2) Event sequence
RNN: event type and the time interval between two events.

Model setting We use a single layer LSTM of size 32
with Sigmoid gate activations and tanh activation for hidden
representation. The embedding layer is fully connected and
it uses tanh activation and outputs a 16 dimensional vector.
One-hot or embedding can be used for event type representa-
tion. For a large number of types, embedding representation
is compact and efficient. For time series RNN, we set the
length of each sub-window (i.e. the evenly spaced time in-
terval) to be 7 days and the number of sub-window to be 5.
In this way, our observation length is 35 days for time series.
For event-dependency, the length of event sequence can be
arbitrarily long. Here we take it by 7.

We also test degraded versions of our model as follows:
1) Time series RNN: the input is event sequence (the

right half in the yellow part of Fig.2) is removed. Note this
design is in spirit similar to many LSTM models (Jain et al.
2016; Tripathi et al. 2016) used for video analytics, whereby
the frame sequence can be treated as time series as the input
to LSTMs. 2) Event (sequence) RNN: the RNN whose in-
put is time series (the left half in the yellow part of Fig.2) is
removed; 3) Intensity RNN: two RNN are fused as shown
in Fig.2. For the above three methods, the output layer is di-
rectly the fine-grained subtype of events with no hierarchical
structure as shown in the top left part of Fig.2) in dark green.
We also term three ‘hierarchical’ versions whose two hier-
archical prediction layers in Fig.2 are used: 4) Time series
hRNN, 5) Event (sequence) hRNN, 6) Intensity hRNN.

In addition, we compare three major peer methods. For
Logistic model, the input are the concatenation of feature
vectors for all active time series RNN sub-windows (set to 5
in this paper). For RMTPP and Hawkes process, we train the
model on the event sequences with associated information.
In fact, RMTPP will further process the event data into the
similar input information to our event RNN.

1) Logistic model: we use Logistic regression for event
timestamp prediction and use another independent Logistic
classification model for event type prediction.

2) Recurrent Marked Temporal Point Processes
(RMTPP): (Du et al. 2016) uses neural network to model
the event dependency flexibly. The method can only sample
transient time series features when an event happens and use
partially parametric form for the base intensity.

3) Hawkes Process: To enable multi-type event predic-
tion, we use a Multi-dimensional Hawkes process. Similar
to (Zhou, Zha, and Song 2013a), we also add a sparsity reg-
ularization term on the mutual infection matrix but the low-
rank assumption is removed as we only have 6 subtypes.

Evaluation metrics We use several popular prediction
metrics for performance evaluation. For the coming event
type prediction, we adopt Precision, Recall, F1 Score and
Confusion matrix over 2 main types (‘error’, ‘ticket’) as well
as Confusion matrix over 6 subtypes under ‘error’. Note all
these metrics are computed for each type, and then are av-
eraged over all types. For event time prediction, we use the
Mean Absolute Error (MAE) which measures the absolute
difference between the predicted time point and the actual
one. These settings are similar to (Du et al. 2016).

Figure 3: Hierarchical layer and Flat independent layer.

Table 3: Ablation test of our method and peer methods i.e.
multi-dimensional Hawkes process, recurrent Hawkes pro-
cess and Logistic classification (for type) and regression (for
event timestamp). Numbers are averaged over types.

model main-type subtype hierarchical output
main-type subtype

Time series RNN 0.673 0.554 0.582 0.590

pr
ec

is
io

n Event sequence RNN 0.671 0.570 0.623 0.614
Intensity RNN 0.714 0.620 0.642 0.664
Hawkes process 0.457 0.387 — —-
Logistic prediction 0.883 0.385 — —
RMTPP 0.581 0.574 — —

Time series RNN 0.853 0.522 0.738 0.608
Event sequence RNN 0.821 0.543 0.770 0.621

re
ca

ll Intensity RNN 0.905 0.614 0.805 0.661
Hawkes process 0.493 0.394 — —
Logistic prediction 0.795 0.273 — —
RMTPP 0.691 0.583 — —

Time series RNN 0.707 0.533 0.571 0.605

F1
sc

or
e Event sequence RNN 0.703 0.555 0.651 0.610

Intensity RNN 0.765 0.616 0.662 0.663
Hawkes process 0.473 0.386 — —
Logistic prediction 0.832 0.269 — —
RMTPP 0.584 0.572 — —

M
A

E
(i

n
da

ys
) Time series RNN 4.37 4.48 4.26 4.41

Event sequence RNN 4.24 4.42 4.21 4.37
Intensity RNN 4.13 4.20 4.02 4.13
Hawkes process 5.26 5.46 — —
Logistic prediction 4.52 4.61 — —
RMTPP 4.28 4.32 — —

Time series RNN 0.768 0.547 0.572 0.603

F1
Sc

or
e+ Event sequence RNN 0.705 0.597 0.639 0.646

Intensity RNN 0.825 0.661 0.684 0.708
Hawkes process 0.467 0.451 — —
Logistic prediction 0.846 0.286 — —
RMTPP 0.584 0.619 — —

Time series RNN 4.21 3.78 4.05 3.97
Event sequence RNN 4.16 3.84 4.12 4.01

M
A

E
+ Intensity RNN 4.12 3.57 4.21 4.11

Hawkes process 5.42 3.93 — —
Logistic prediction 4.5 4.24 — —
RMTPP 4.26 3.99 — —

To evaluate the type and timestamp prediction jointly, we
devise two more strict metrics. For type prediction, we nar-
row down to test the samples whose timestamp prediction
error MAE< 3 days and we compute the new F1 score+.
For timestamp, we recompute the new MAE+ only for the
samples whose coming event is correctly predicted.

Platform The code is based on Theano running on a
Linux server with 32G memory, 2 CPUs with 6 cores for
each: Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60GHz. We
also use 4 GPU:GeForce GTX TITAN X for acculturation.
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(a) Intensity hRNN (b) Time series hRNN (c) Event hRNN

(d) Intensity RNN (e) Time series RNN (f) Event RNN

(g) Hawkes process (h) Logistic (i) RMTPP

(j) i-hRNN (k) t-hRNN (l) e-hRNN (m) i-RNN (n) t-RNN

(o) e-RNN (p) Hawkes (q) Logistic (r) RMTPP

Figure 4: Confusion matrixes for sub/main type. Three
methods in top and middle row use the hierarchical and flat
structure as in Fig.3 respectively. Zoom in for better view.

Results and discussion

All evaluations are performed on the testing dataset distinc-
tive to training set whose statistics are shown in Table 2.

Averaged performance Table 3 shows the averaged per-
formance among various types of events. As shown in Fig.3,
we test two architectures of the event type prediction layer,
i.e. hierarchical predictor (Fig.3(a)) and flat independent
predictors (Fig.3(b)). The main type includes ‘ticket’ and
‘error’ and the subtype include ‘ticket’ and the other six sub-
types under ‘error’ as we describe earlier in the paper.

Confusion matrix The confusion matrix for the six sub-
types under ‘error’ event, as well as for the two main types
‘ticket’ and ‘error’ are shown in Fig.4 by various methods.

We make observations and analysis based on the results:
1) As shown in 3, for main-type, the flat architecture that

directly predicts the main types outperforms the hierarchical
one in different settings of the input RNN as well as varying
evaluation metrics. This can be explained that the loss func-

Figure 5: The evolving of point process modeling.

tion focuses on the main-type misclassification only. While
for the subtype prediction, the hierarchical layer performs
better since it fuses the output from the main-type predic-
tion layer and the embedding layer as shown in Fig.3(a).

2) No surprisingly, for both event type and timestamp pre-
diction, our main approach, i.e. intensity RNN that fuses
two RNNs outperforms its counterparts time series RNN and
event sequence RNN by a notable margin. While the event
RNN also often performs better than the time series coun-
terpart. This suggests at least in the studied dataset, history
event effects are important for the future event occurrence.

3) Our main method intensity RNN is almost always su-
perior against other methods except for the main-type pre-
diction task, whereby the Logistic classification model per-
forms better. However for more challenging tasks i.e. sub-
type prediction and event timestamp prediction, our method
significantly outperforms especially for subtype prediction
task. Interestingly, all point process based models obtain
better results on this task which suggests the point process
models are more promising compared with classical classi-
fication models. Indeed, our methodology provides an end-
to-end learning mechanism without any pre-assumption in
modeling point process. All these empirical results on real-
world tasks suggest the efficacy of our approach.

Conclusion

We use Fig.5 to conclude and further position our model in
the development of (implicit and explicite) modeling the in-
tensity function of point process. In fact, Hawkes process
uses a full explicit parametric model and RMTPP misses the
dense time series features to model time-varying base inten-
sity and assumes a partially parametric form for it. We make
a further step by a full implicit mapping model. Our model
(see Fig.2) is simple, general and can be learned end-to-end
with standard backpropagation and opens up new possibili-
ties for borrowing the advances in neural network learning
to the area of point process modeling and applications. The
representative study in this paper has clearly suggests its
high potential to real-world problems, even we have no do-
main knowledge on the problem at hand. This is in contrast
to existing point process models where an assumption about
the dynamics is often need to be specified beforehand.

References

Aalen, O.; Borgan, O.; and Gjessing, H. 2008. Survival and
event history analysis: a process point of view. Springer Science
& Business Media.
Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. 2015. Sched-
uled sampling for sequence prediction with recurrent neural net-
works. In NIPS.

1602



Chandra, R., and Zhang, M. 2012. Cooperative coevolution of el-
man recurrent neural networks for chaotic time series prediction.
Neurocomputing 86:116–123.
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y. 2016.
Recurrent neural networks for multivariate time series with miss-
ing values. In arXiv:1606.01865.
Chen, P. A.; Chang, L. C.; and Chang, F. J. 2013. Reinforced
recurrent neural networks for multi-step-ahead flood forecasts.
Journal of Hydrology 497:71–79.
Choi, E.; Bahadori, M. T.; Schuetz, A.; Stewart, W. F.; and Sun,
J. 2016. Doctor ai: Predicting clinical events via recurrent neural
networks. In arXiv:1511.05942v10.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empir-
ical evaluation of gated recurrent neural networks on sequence
modeling. In arXiv:1412.3555.
Connor, J. T.; Martin, R. D.; and Atlas, L. E. 1994. Recurrent
neural networks and robust time series prediction. IEEE Trans-
actions on Neural Networks 5(2):240–254.
Dauphin, Y. N.; de Vries, H.; Chung, J.; and Bengio, Y. 2015.
Rmsprop and equilibrated adaptive learning rates for non-convex
optimization. In arXiv:1502.04390.
Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-Rodriguez,
M.; and Song, L. 2016. Recurrent marked temporal point pro-
cesses: Embedding event history to vectore. In KDD.
Elman, J. L. 1990. Finding structure in time. Cognitive Science
14:179–211.
Ertekin, S.; Rudin, C.; and McCormick, T. H. 2015. Reactive
point processes: A new approach to predicting power failures in
underground electrical systems. The Annals of Applied Statistics
9(1):122–144.
Esteban, C.; Staeck, O.; Yang, Y.; and Tresp, V. 2016. Predict-
ing clinical events by combining static and dynamic information
using recurrent neural networks. In arXiv:1602.02685.
Grall, A.; Dieulle, L.; Berenguer, C.; and Roussignol, M. 2002.
Continuous-time predictive-maintenance scheduling for a deteri-
orating system. IEEE transactions on Reliability 51(2):141–150.
Graves, A.; rahman Mohamed, A.; and Hinton, G. 2014. Towards
end-to-end speech recognition with recurrent neural networks. In
ICML.
Graves, A. 2013. Generating sequences with recurrent neural
networks. In arXiv:1308.0850.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; and Wierstra,
D. 2015. Draw: A recurrent neural network for image generation.
In ICML.
Han, M.; Xi, J.; Xu, S.; and Yin, F.-L. 2004. Prediction of chaotic
time series based on the recurrent predictor neural network. IEEE
Transactions on Signal Processing 52(12):3409–3416.
Hawkes, A. G. 1971. Spectra of some self-exciting and mutually
exciting point processes. Biometrika.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation 9(8):1735–1780.
Isham, V., and Westcott, M. 1979. A self-correcting pint process.
Advances in Applied Probability 37:629–646.
Jain, A.; Singh, A.; Koppula, H. S.; Soh, S.; and Saxena, A.
2016. Recurrent neural networks for driver activity anticipation
via sensory-fusion architecture. In ICRA.
Kingman, J. F. C. 1992. Poisson processes. volume 3. Oxford
university press.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86(11):2278–2324.
Lewis, E., and Mohler, E. 2011. A nonparametric em algo-
rithm for multiscale hawkes processes. Journal of Nonparamet-
ric Statistics.
Lewis, E.; Mohler, G.; Brantingham, P. J.; and Bertozzi, A. 2010.
Self-exciting point process models of insurgency in iraq. UCLA
CAM Reports 10 38.
Madaio, M.; Chen, S.; Haimson, O.; Zhang, W.; Cheng, X.; and
Hinds-Aldrich, M. 2016. Firebird: Predicting fire risk and prior-
itizing fire inspections in atlanta. In KDD.
Mobley, R. K. 2002. An introduction to predictive maintenance.
Butterworth-Heinemann.
Montgomery, D. C.; Jennings, C. L.; and Kulahci, M. 2015. In-
troduction to time series analysis and forecasting. John Wiley &
Sons.
Ogata, Y. 1988. Statistical models for earthquake occurrences
and residual analysis for point processes. J. Amer. Statist. Assoc.
83(401):9–27.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the difficulty
of training recurrent neural networks. In ICML.
Pemantle, R. 2007. A survey of random processes with rein-
forcement. Probability Survey 4(0):1–79.
Rosenberg, A. 2012. Classifying skewed data: Importance
weighting to optimize average recall. In INTERSPEECH, 2242–
2245.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision
115(3):211–252.
Shen, H.; Wang, D.; Song, C.; and Barabási, A. 2014. Mod-
eling and predicting popularity dynamics via reinforced poisson
processes. In AAAI.
Sirbu, A., and Babaoglu, O. 2015. A holistic approach to log
data analysis in high-performance computing systems: The case
of ibm blue gene/q. Euro-Par 2015: Parallel Processing Work-
shopss 631–643.
Snyder, D. L., and Miller, M. I. 2012. Random point processes
in time and space. Springer Science & Business Media.
Sutskever, I.; Vinyals, O.; and Le., Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.
Tripathi, S.; Lipton, Z. C.; Belongie, S.; and Nguyen, T. 2016.
Context matters: Refining object detection in video with recur-
rent neural networks. In BMVC.
Xu, H.; Wu, W.; Nemati, S.; and Zha, H. 2016. Patient flow pre-
diction via discriminative learning of mutually-correcting pro-
cesses. IEEE transactions on Knowledge and Data Engineering.
Yang, S.-h., and Zha, H. 2013. Mixture of mutually exciting
processes for viral diffusion. In ICML.
Zhou, K.; Zha, H.; and Song, L. 2013a. Learning social infectiv-
ity in sparse low-rank networks using multi-dimensional hawkes
processe. In AISTATS.
Zhou, K.; Zha, H.; and Song, L. 2013b. Learning triggering
kernels for multi-dimensional hawkes processes. In ICML.

1603




