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Abstract

As the cornerstone of the modern portfolio theory,
Markowitz’s mean-variance optimization is a major model
adopted in portfolio management. However, the estimation
errors in its input parameters substantially deteriorate its per-
formance in practice. Specifically, loss could be huge when
the number of assets for investment is not much smaller than
the sample size of historical data. To hasten the applicabil-
ity of Markowitz’s portfolio optimization to large portfolios,
in this paper, we propose a new portfolio strategy via sub-
set resampling. Through resampling subsets of the original
large universe of assets, we construct the associated subset
portfolios with more accurately estimated parameters without
requiring additional data. By aggregating a number of con-
structed subset portfolios, we attain a well-diversified portfolio
of all assets. To investigate its performance, we first analyze
its corresponding efficient frontiers by simulation, provide
analysis on the hyperparameter selection, and then empirically
compare its out-of-sample performance with those of vari-
ous competing strategies on diversified datasets. Experimental
results corroborate that the proposed portfolio strategy has
marked superiority in extensive evaluation criteria.

1 Introduction

Portfolio selection has taken on increasing significance in
finance for managing a wide range of assets, such as mu-
tual funds, pension funds and university endowments (Brandt
2010). After more than half a century since the seminal work
by (Markowitz 1952), the mean-variance framework remains
prevalent and represents the most broadly chosen approach
in both industry and academia for portfolio selection (Kolm,
Tütüncü, and Fabozzi 2014). Its popularity has called for
research on complete comprehension and practical imple-
mentation. Briefly, the mean-variance framework formulates
the risk-return tradeoff of assets via the means and the co-
variance matrix of asset returns. It intuitively implies that
among available portfolios of assets that can achieve a return
target, investors should choose the portfolio with the lowest
volatility. However, the classical mean-variance portfolio of-
ten performs poorly out of sample, as its input parameters, the
first two moments of asset returns, are difficult to estimate ac-
curately (Best and Grauer 1991). Moreover, such a situation
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worsens when historical return data are limited. In particular,
realized loss could be unbounded when the number of assets
is larger than the sample size of data (Tu and Zhou 2011).
On the other hand, stationarity of the model parameters is
another main concern (Broadie 1993). Return data from thirty
years ago might have little bearing on returns this year, so
parameters are unlikely to be stationary over a long period of
time. While the estimation errors decrease when more data
are used, more data generally require a longer time horizon.
The dilemma between stationarity of parameters and estima-
tion errors exaggerates the challenges in dealing with large
portfolios.

One well-known attempt to overcome the estimation prob-
lem without demanding more data is the resampled efficient
portfolio proposed in (Michaud 1989). Specifically, the basic
concept of Michaud’s resampled efficient portfolio comprises
of generating resamples of asset returns by a parametric boot-
strap procedure, computing the mean-variance portfolio for
each resample, and finally averaging over the obtained port-
folios to account for the parameter uncertainty. It aims to
lessen the impact of estimation risk on portfolio weights
and to obtain a more balanced asset allocation, thereby im-
proving the portfolio performance (Michaud and Michaud
2008). However, due to its mixed and ambiguous testing
results, its effectiveness has been continually called into
question (Markowitz and Usmen 2003; Harvey et al. 2010;
Wolf 2013). Mostly, its generalization performance shows
limited or no improvement over Markowitz’s mean-variance
portfolio (Scherer 2002).

While the development of new resampling based portfo-
lio strategies has relatively stagnated since Michaud’s work
(Becker, Gürtler, and Hibbeln 2015), ensemble methods have
achieved remarkable success in advancing performance of
existing algorithms and meanwhile enriching the method-
ology on its own (Dietterich 2000; Zhou 2012). As the re-
sampled efficient portfolio could be viewed as an application
of the bootstrap aggregating algorithm (Bagging) in order
to enhance stability and mitigate variance (Breiman 1996),
exploring new ensemble methods and leveraging them into
portfolio selection problems deserves a fresh attempt.

The illuminating papers by (Ho 1998) and (Kleiner et al.
2014) have provided a pathway to applying new ensemble
methods into portfolio problems. The former presents the
random subspace method (RSM) in a classification context.
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Weak classifiers are constructed in random subspaces of the
data feature space. Those classifiers are subsequently com-
bined by simple majority voting in the final decision rule.
The latter proposes a method called Bag of Little Bootstraps
(BLB) for massive data to assess the quality of estimators.
BLB first randomly selects subsets of the data, and then per-
forms a bootstrap on each subset by constructing weighted
resamples of the subset. Such two methods respectively show
how subset resampling attacks the challenges embedded in
the two sides of a typical data matrix, i.e., the small sample
problem when data are high-dimensional and the big data
problem when data are massive.

Inspired by the aforementioned two subset resampling
based methods, to facilitate the applicability of Markowitz’s
portfolio optimization to large portfolios, in this paper, we
propose a new portfolio selection strategy via subset resam-
pling. In particular, we focus on the problem when the num-
ber of assets is large and the number of return data is critical.
We resample subsets of the whole portfolio so that the sizes
of data for estimating the corresponding covariance matri-
ces have been relatively increased. We then can construct
the associated subset optimal portfolios with more accurate
covariances. Finally, we attain a well-diversified portfolio of
all assets through aggregating a number of prolonged subset
optimal portfolios. We offer analysis on the hyperparameter
selection and conduct extensive empirical comparisons over
ten peer strategies on four representative real-world datasets.
The experimental results lucidly demonstrate the superiority
of the proposed portfolio strategy.

2 Background and Related Work
In this section, we review portfolio selection problems with
emphasis on the mean-variance portfolio, and then rehash
motivating ensemble methods in machine learning.

The mean-variance portfolio assumes that investment deci-
sions on getting a diversified portfolio mainly depend on the
means and the covariances of asset returns. In practice, in-
vestors need to estimate both input parameters and plug them
into an optimization routine to get estimated optimal portfolio
weights. However, as the estimation errors in parameters are
amplified by optimization and then propagate into the solu-
tion of the optimization, extreme portfolio weights and a lack
of diversification are commonly observed. This phenomenon
that has eventually ruined the out-of-sample performance of
Markowitz’s portfolio is coined as error maximization by
(Michaud 1989).

Tremendous efforts have been expended to handle the es-
timation risk on the parameter uncertainty. Among them, as
the return means are extremely difficult to estimate accurately
(Merton 1980), (Scherer 2011) emphasizes that without in-
corporating the expected return the yield minimum-variance
portfolio often performs better out of sample. (Jorin 1986)
suggests using the Bayes-Stein shrinkage estimator for the
return mean estimation. (Ledoit and Wolf 2004) propose a
robust and effective shrinkage estimator for the covariance
matrix estimation. (Fan, Zhang, and Yu 2012) and (Shen,
Wang, and Ma 2014) show superior portfolio performances
when various types of norm regularities are incorporated into
the mean-variance framework. (Kan and Zhou 2007) and (Tu

and Zhou 2011) propose three-fund and four-fund blending
portfolios to further improve the models based on the Bayes-
Stein shrinkage estimator, respectively. More comprehensive
reviews may be referred to (Brandt 2010).

Meanwhile, the impressive records of applying machine
learning algorithms into numerous regimes spark their ap-
plications and adoptions in finance. Specifically, over years
machine learning researchers have made significant contri-
butions in designing portfolio selection strategies from many
novel aspects. Among them, (Cover 1991) and (Blum and
Kalai 1999) propose and analyze the constant-rebalanced
portfolio with or without transaction costs. (Borodin, El-
Yaniv, and Gogan 2004) consider learning the best asset by
exploiting the market volatility and the statistical relation-
ship between assets. (Agarwal et al. 2006) use a Newton step
based method to compute the portfolio for the next iteration
in the universal portfolio context. (Li et al. 2012) focus on a
market timing portfolio of determining a passive or an aggres-
sive trading strategy. (Shen et al. 2015) and (Shen and Wang
2016) propose to employ the bandit learning framework to
attack portfolio problems. Illustration over a wide range of
portfolio strategies from machine learning may be found in
the survey by (Li and Hoi 2014).

On the other hand, ensemble methods in machine learn-
ing virtually share the same theme as portfolio selection:
namely, diversification (Derbeko, El-Yaniv, and Meir 2002;
Zhou 2012). The level of diversity of weak learners deter-
mines the generalization quality of the aggregated learner.
Similar to making investment decisions in assets, if we had
access to a learner with perfect generalization performance,
then there would be no necessity to appeal to ensemble tech-
niques (Dietterich 2000; Rokach 2010). Among ensemble
methods, bagging and the random subspace method are partic-
ularly efficacious in improving weak learners when training
sample sizes are small (Polikar 2006). Also, it is known in
machine learning that bagging is useless for learners having
a decreasing learning curve, i.e., that the generalization er-
ror of the base learner decreases with an increase in the
training sample size (Skurichina and Duin 2002). In ad-
dition, (Karoui and Purdom 2016) recently show that the
bootstrap method cannot improve the estimation accuracy
of the covariance matrix when the sample size is critical.
Thus, it is unsurprising to see the comments made by re-
searchers in finance on the ineffectiveness of Michaud’s
bagging based resampled efficient portfolio (Scherer 2002;
Harvey et al. 2010). In contrast, the random subspace method
is known to be instrumental in weak learners obtained on
small and critical training sample sizes when the learning
curve is decreasing. It bolsters the performance of learners
which suffer from the curse of dimensionality (Ho 1998;
Skurichina and Duin 2002). Hence, to overcome the error
maximization in portfolio selection due to a small training
sample size, we resort to investigating algorithms based on
subset resampling rather than bootstrapping.

3 Methodology
In this section, we first introduce the notations and finance
terms used in this paper. Then we describe the proposed
portfolio selection strategy via subset resampling. Finally we
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discuss the properties and behaviors of the new method in
constructing efficient frontiers by a simulation study.

Notation

In a frictionless, self-financing, discrete-time and finite hori-
zon investment environment, we denote a series of trading
periods as tk = kΔt, k = 0, . . . ,m, where Δt represents
one day, one week or one month, depending on the rebalance
interval. For simplicity, we use k for short as the index to
indicate the trading period at time tk hereafter. From time
tk−1 to tk the gross return vector of n risky assets accessible
to investors is Rk = (Rk,1, . . . , Rk,n)

�. The gross return
Rk,i for the i-th asset is computed as Rk,i = Sk,i/Sk−1,i,
where Sk,i and Sk−1,i represent the prices of the i-th asset at
time tk and tk−1, respectively. Let us respectively denote by
μk and Σk the vector of the means and the covariance matrix
of the n asset returns at time tk.

Denote ωk = (ωk,1, . . . , ωk,n)
� as the vector of the port-

folio weights reflecting the investment decision at time tk.
The i-th element of ωk specifies the invested percentage of
wealth in the i-th asset. The sum of the portfolio weights
equals one, i.e., ω�

k 1 = 1, where 1 stands for the n × 1
vector of ones. ωk,i > 0 means that investors take a long
position of the i-th asset. In contrast, ωk,i < 0 indicates a
short sale of the i-th asset, where investors liquidate the bor-
rowed i-th asset for investment in other assets. If the price of
the borrowed asset bounces back, investors, who need to buy
back and return the borrowed asset, will suffer from a loss.
The maximum loss for a long position is the total amount of
invested wealth and the maximum loss of a short sale position
could theoretically be infinite. Given a gross return Rk and
a portfolio weight ωk−1, the realized portfolio net return rk
from time tk−1 to tk is computed as rk = R�

k ωk−1 − 1.

Subset Resampling Portfolio

One common formulation of the classical long-short mean-
variance optimization can be written as

min
ω�

k 1=1
ω�

k Σkωk s.t. μ�
k ωk ≥ R̄k, (1)

where investors attempt to minimize the risk represented by
the total variance of the portfolio while achieving a return
target R̄k. In practice, both the covariance matrix Σk and
the means of returns μk are unknown, thereby requiring esti-
mates. In our study, we apply a subset resampling method to
reduce the impact of the estimation errors for large portfolios
with a short history of return data.

The subset resampling portfolio (SSR) presented in Algo-
rithm 1 is straightforward to implement. At time tτ , let us
assume the available historical asset returns are {Rk}τk=1

with τ ≈ n and the return target of investors is R̄τ . Instead
of taking bootstrap samples of the returns of all assets and
computing the estimated optimal portfolio weights for all
assets simultaneously as (Michaud and Michaud 2008), SSR
averages over multiple estimated optimal weights for small
portfolios. More formally, given a subset size b < n, SSR
uniformly at random samples s subsets of size b from the
original n assets. Denote by Ij ⊂ {1, . . . , n} the correspond-
ing index set with |Ij | = b for j = 1, . . . , s. Denote by

Algorithm 1 Subset Resampling Portfolio
1: Inputs: τ : number of periods for estimation; {Rk}τk=1:

historical return data; Rτ+1: one out of sample return; n:
number of assets; b: subset size; s: number of sampled
subsets; R̄τ : return target;

2: for j = 1→ s do
3: Randomly sample a set Ij of b indices from

{1, . . . , n} without replacement;
4: Select the associated return data as {Rj,b

k }τk=1;

5: Compute the sample covariance matrix as Σ̂
j,b

τ ;
6: Compute the sample means of returns as μ̂j,b

τ ;
7: Compute the optimal subset portfolio weights ω̂j,b

τ by
solving the mean-variance optimization (1) based on
the estimated parameters Σ̂

j,b

τ and μ̂j,b
τ ;

8: Construct the weights for the whole portfolio ω̂j
τ :

9: for i = 1→ n do
10: ω̂j

τ,i = ω̂j,b
τ,iI{i ∈ Ij};

11: Aggregate the constructed portfolio weights based on s
resamples as ω̂τ = s−1

∑s
j=1 ω̂

j
τ ;

12: Compute the realized out-of-sample portfolio net return
r̂τ+1 = R�

τ+1ω̂τ − 1;
13: Outputs: The vector of portfolio weights ω̂τ and the

realized out-of-sample portfolio return r̂τ+1.

{Rj,b
k }τk=1 the associated return data for subset j. First, for

each subset, SSR calculates the associated b× b sample co-
variance matrix as Σ̂

j,b

τ and the b×1 sample means of returns
as μ̂j,b

τ . Second, SSR computes the optimal subset portfo-
lio weights ω̂j,b

τ by solving the mean-variance optimization
(1) based on the estimated mean μ̂j,b

τ and covariance matrix

Σ̂
j,b

τ . Third, SSR averages over portfolio weights from all
the subsets to generate the weights for the whole portfolio
as ω̂τ = s−1

∑s
j=1 ω̂

j
τ , where ω̂j

τ = (ω̂j
τ,1, . . . , ω̂

j
τ,n)

� is
the prolonged n × 1 vector with ω̂j

τ,i = ω̂j,b
τ,iI{i ∈ Ij} for

i = 1, . . . , n, and the symbol I(·) stands for an indicator
function. Accordingly, the realized out-of-sample portfolio
net return r̂τ+1 from time tτ to tτ+1 is r̂τ+1 = R�

τ+1ω̂τ −1.

Discussions

SSR partially sacrifices diversification benefits to alleviate
the estimation risk on the parameter uncertainty. The pivotal
hyperparameters that determine its performance character-
istics are the subset size b and the number of subsets s. To
enjoy the advantages in mitigating the estimation errors, we
need to choose b < min(n, τ). However, a tradeoff exists
when we determine b. The smaller the subset size is, the more
accurate the estimation of the b× b sample covariance matrix
would be, yet the more diversification benefits would be lost,
and vice versa. On the other hand, another tradeoff between
computational costs and diversification benefits exists when
we determine the number of subsets s. In principle, a large
number of subsets would surely be preferred. However, that
could increase the computational burden to be infeasible.
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While general results for the optimal hyperparameters are un-
available as they would heavily rely on the underlying return
dynamics of assets, our following study offers some insights
and suggestions.

In Figure 1, we investigate the empirical performance char-
acteristics of SSR with respect to the two hyperparameters
in constructing efficient frontiers by simulation. Briefly, an
efficient frontier plots the best risk-return tradeoff curve that a
set of assets could possibly achieve by following one particu-
lar strategy. An efficient frontier dominates another when the
former lies on the upper left of the latter. Following (Broadie
1993), three types of efficient frontiers are illustrated and
compared: estimated, true and actual efficient frontiers. An
estimated efficient frontier represents in-sample performance
of a portfolio strategy, an actual efficient frontier shows out-
of-sample performance, and a true efficient frontier stands
for the best performance that could be achieved. See the long
version of this work for details.

First, Figures 1(a), 1(e) and 1(i) show that the estimated
efficient frontiers always become more overoptimistic as the
subset size b increases, and the efficient frontiers directly
computed by sample moments are more volatile. Second,
Figures 1(b), 1(f) and 1(j) demonstrate that the actual effi-
cient frontiers have a typical U-shape performance due to
the tradeoff between diversification benefits and estimation
errors, and the results from the subset size b = n0.8, which is
conceptually about 5 data points per asset, are fairly stable.
Third, Figures 1(c), 1(d), 1(g), 1(h), 1(k) and 1(l) illustrate
that both the estimated and the actual efficient frontiers are
less sensitive to the number of subsets s, and the effects
from the subset size b is more important than the number
of subsets s. In sum, the study suggests that users of SSR
should focus on testing its performance by tuning the subset
size b and choose a large number of subsets s to increase
the diversification benefits. Besides cross-validation types of
hyperparameter tuning, we suggest two possible guidelines
of electing b: Users could start with b that gives no fewer
than 5 data points per asset and combine this rule with the
classical result that 30 assets often form a well-diversified
portfolio.

4 Experiments

In this section, we fist introduce the tested datasets, the com-
peting portfolios and the evaluation metrics. Then we conduct
comparison studies and report the experimental results.

Data

In our experiments, we intentionally choose diversified and
large datasets to fairly evaluate our new strategy.

Fama and French datasets: In the finance community,
the Fama and French datasets have been widely recognized
as high-quality and standard evaluation protocols (Fama and
French 1992). Based on various types of financial segments
of the U.S. stock market, the datasets contain carefully con-
structed portfolios from historical data. In general, they have
an extensive coverage of assets classes and span a long pe-
riod. In our experiments, the FF100 dataset includes monthly
returns of 100 assets over forty years.

Table 1: Summary of the testing datasets
# Dataset Frequency Time Period m n

1. FF100 Monthly 07/01/1963 - 12/31/2004 498 100
2. ETF139 Weekly 01/01/2008 - 10/30/2012 252 139
3. EQ181 Weekly 01/01/2008 - 10/30/2012 252 181
4. SP434 Daily 09/05/2001 - 08/09/2013 2999 434

Real-world market datasets: Three real-world datasets
are used in our experiments: ETF139, EQ181 and SP434.
Specifically, ETF139 contains 139 exchange-traded funds
(ETF). Due to the advantages of having clear tax and fee
structures, high liquidity and diversity, ETFs have become
popularized among investors. EQ181 is constructed from the
individual equities from the large-cap segment of the pool
of the Russell Top 200 Index. We exclude those stocks with
missing historical data from the start of our testing periods
and finally receive a total of 181 assets. Likewise, for the
SP434 dataset, we filter the daily return data of the 500 firms
listed in the S&P 500 Index and retain 434 assets.

Table 1 summarizes these two types of benchmarks. They
implicitly underline different perspectives in performance
assessment. On the one hand, FF100 and SP434 highlight the
long-term performance due to their long period of time spans
and limited selection bias. On the other hand, ETF139 and
EQ181 reflect the vicissitude market environment after the
recent financial crisis starting from 2007. The four datasets
have diverse trading frequencies: monthly, weekly and daily.
Thus, through empirical evaluations on those datasets, we
can thoroughly understand the performance of each strategy.

Competing Portfolio Strategies

To comprehensively assess the proposed strategy, we con-
sider ten state-of-the-art competing portfolios: (a) Equally-
weighted portfolio (EW): EW is a naive yet robust strategy.
It has been shown outperforming 14 sophisticated models
across seven real-world datasets as well as one simulated
dataset at monthly frequency of 2000 years (DeMiguel, Gar-
lappi, and Uppal 2009). Thus, EW is suggested to serve as
the first touchstone in portfolio research. (b) Value-weighted
portfolio (VW): VW forms a market mimicking passive
portfolio. Most active mutual fund managers have the dif-
ficulty in outperforming passive benchmarks such as mar-
ket indcies even before netting out fees (Fama and French
2010). (c) Minimum-variance portfolio (MV): MV based
on sample moments has been shown outperforming the clas-
sical mean-variance portfolio in different markets and time
spans (Scherer 2011). (d) Resampled efficient portfolio by
(Michaud 1989) (RES): Since its inception, RES remains
the most quoted portfolio strategy based on resampling. (e)
Two-fund portfolio by (Tu and Zhou 2011) (TZT): TZT
infuses the classical mean-variance and the EW portfolios to
achieve both estimation error mitigation and wealth growth.
(f) Three-fund portfolio by (Kan and Zhou 2007) (KZT):
KZT encompasses the risk-free asset, the mean-variance and
MV portfolios as to cancel out estimation errors in the mean-
variance portfolio by incorporating the MV portfolio. (g)
Four-fund portfolio by (Tu and Zhou 2011) (TZF): TZF
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(a) Estimated, s = 1000 (b) Actual, s = 1000 (c) Estimated, b = n0.4 (d) Actual, b = n0.4

(e) Estimated, s = 2000 (f) Actual, s = 2000 (g) Estimated, b = n0.6 (h) Actual, b = n0.6

(i) Estimated, s = 4000 (j) Actual, s = 4000 (k) Estimated, b = n0.8 (l) Actual, b = n0.8

Figure 1: SSR efficient frontiers based on different hyperparameters in a simulation study. The whole dataset SP434 with n = 434
assets is used to estimate the means and the covariance matrix as inputs for simulation. See Table 1 for more information about
SP434. By assuming the asset return follows a corresponding multivariate normal distribution, τ = 500 return data for training
are then synthesized by simulation.

is formed by mixing the KZT and the EW portfolios. Their
study shows that it performs comparably with EW in some
special cases and better in general. (h) Two-fund portfolio
by (Kan, Wang, and Zhou 2016) (KWZ): KWZ is an up-
dated version of TZT particularly for portfolios only with
risky assets. It is targeting at outperforming EW. (i) Covari-
ance shrinkage estimator based portfolio by (Ledoit and
Wolf 2004) (SKC): SKC hinges on a popular and robust
shrinkage estimator for the covariance matrix estimation that
works well even when the training sample size is critical.
(j) On-line passive aggressive mean reversion portfolio
by (Li et al. 2012) (PAMR): PAMR from machine learn-
ing researchers has been shown robustly outperforming 12
portfolio strategies on six datasets.

Performance Metrics

Following (DeMiguel, Garlappi, and Uppal 2009), we employ
the “rolling-horizon” setting for the sequential out-of-sample
performance evaluation. From time tτ to tm−1, at each rebal-
ance time th for h = τ, . . . ,m − 1, we first use the return
data {Rk}hk=h−τ+1 to determine the portfolio weights ω̂h.
Second, we compute the realized out-of-sample net return
r̂h+1 for the subsequent trading period. Then, we evaluate the
out-of-sample characteristics of portfolios by four standard
metrics in finance (Brandt 2010): (i) Sharpe Ratio (SR): SR
is a common risk-adjusted return measure for a portfolio strat-

egy considering both return and risk. Simply, SR is calculated
as the portfolio return normalized by its standard deviation:
SR = r̃/σ̃ with r̃ as the mean of portfolio net returns and σ̃
as the standard deviation:

r̃ =
1

m− τ

m∑
k=τ+1

r̂k, σ̃ =

√√√√ 1

m− τ

m∑
k=τ+1

(r̃ − r̂k)2. (2)

To compare strategies based on different rebalancing frequen-
cies, we report the annualized Sharpe ratio as

√
HSR, where

the scaling factor H represents the number of rebalancing
times per year. In calculation, we use H = 12, 52 and 252
for monthly, weekly and daily rebalances, respectively. (ii)
Volatility (VO): VO is a broadly computed quantitative risk
measure in finance. Similar to SR, we report the annualized
volatility using the scaling factor H and the standard devia-
tions of returns σ̃ in equation (2). (iii) Turnover Rate (TO):
TO is a crucial metric to quantify the volume of rebalancing.
Due to the existence of market frictions such as transaction
costs and taxes, a high TO leads to extra trading costs and
could drastically degrade after-cost return performance. TO
is computed by

TO =
1

m− τ − 1

m−2∑
k=τ

||ω̂k+ − ω̂k+1||1, (3)

where ω̂k+ is the portfolio weight vector before rebalancing
at tk+1 and ‖·‖1 denotes l1-norm. Briefly, the above equation
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Table 2: Portfolio performance of strategies

Dataset Metrics SSR EW VW MV RES TZT KZT TZF KWZ SKC PAMR

FF100 SR 1.51 0.93 1.03 0.62 0.62 0.83 0.11 1.04 0.68 1.36 0.43
p-value 0.00 1.00 0.01 0.18 0.16 0.36 0.00 0.30 0.29 0.02 0.00
VO (%) 12.64 18.29 17.98 29.90 30.03 21.17 344.16 18.81 40.11 13.51 27.71
TO (%) 38.95 2.37 0.00 781.11 802.13 544.12 25245.53 232.76 126.60 55.75 133.81
MDD (%) 33.71 37.28 37.03 81.09 81.15 58.62 100 44.06 88.25 34.98 54.16

ETF139 SR 1.61 0.51 0.50 0.73 0.65 0.42 0.97 0.32 -0.27 1.13 0.86
p-value 0.10 1.00 0.55 0.83 0.83 0.82 0.14 0.51 0.19 0.49 0.21
VO (%) 2.09 21.20 21.06 3.82 3.89 21.78 56.46 18.60 22.57 2.67 36.85
TO (%) 25.54 1.08 0.00 801.99 825.08 403.91 10520.42 338.78 5762.82 20.21 153.38
MDD (%) 1.27 22.35 22.51 4.42 4.59 24.83 19.35 20.44 28.11 1.40 34.33

EQ181 SR 1.76 0.97 0.97 0.80 0.80 1.34 -0.24 1.00 1.96 1.48 0.30
p-value 0.57 1.00 0.84 0.90 0.86 0.41 0.41 0.87 0.43 0.76 0.21
VO (%) 7.79 15.43 15.29 23.72 23.87 17.45 45.50 15.07 45.57 8.87 22.86
TO (%) 15.70 1.85 0.00 552.75 568.96 140.72 1332.92 55.33 114.74 27.34 140.48
MDD (%) 3.07 9.19 9.17 9.97 10.43 10.21 22.18 8.45 16.81 6.62 18.7

SP434 SR 1.92 0.78 0.72 1.28 1.27 -0.10 0.40 0.82 0.46 1.27 1.14
p-value 0.00 1.00 0.52 0.23 0.23 0.08 0.41 0.70 0.46 0.23 0.26
VO (%) 6.98 20.16 18.26 13.18 13.18 61.12 564.66 17.14 138.27 7.78 61.12
TO (%) 6.56 1.50 0.00 131.73 144.76 3816.62 5911.32 57.59 17.21 24.9 130.39
MDD (%) 18.14 46.34 44.71 15.29 16.01 100 100 39.49 99.99 26.63 65.30

Note: We use short sliding widows τ = 120, 150, 200 and 500 for the four datasets, respectively. SSR, MV, RES and SKC implement
the minimum-variance portfolio without return targets. For SSR, b = n0.7 and s = 15k. The p-values under the SR results quantify the
statistical significance of the difference in SR between two comparing portfolios. EW is the benchmark portfolio. As returns are hardly i.i.d., the
studentized circular block bootstrapping methodology in (Ledoit and Wolf 2008) is used to compute the p-values with 5000 bootstrap resamples
and a block with the size of 5.

generates an average absolute value of the rebalancing trades
across all the assets and over all the trading periods. (iv)
Maximum Drawdown (MDD): MDD is one of the topmost
risk measures for money management professionals, as large
drawdowns often lead to fund redemptions (Magdon-Ismail
and Atiya 2004). MDD is computed as the maximum drop of
the cumulative wealth over a tested time period:

MDD = max
k∈[τ,m]

(Mk −Wk), (4)

with the running maximum of the cumulative wealth Mk and
the cumulative wealth Wj at time tj obtained by

Mk = max
j∈[τ,k]

Wj with Wj =

j∏
l=τ+1

(1 + r̂l), (5)

where we assume investors start with one dollar.

Results

Table 2 presents the overall performance of the compared 11
portfolios across the four tested benchmarks. SSR apparently
outperforms the classical Markowitz’s type portfolio MV and
Michaud’s bagging based portfolio RES. Consistent with the
observations in (Becker, Gürtler, and Hibbeln 2015), MV and
RES have almost identical performance, and the bootstrap
resampling steps in Michaud’s portfolio seem futile. In most
of the cases, SSR has higher SRs, lower VOs and lower
MDDs than the challenging baselines EW and VW, the up-
to-date portfolio blending strategies TZT, KZT and TZF,
the market timing portfolio PAMR, as well as the shrinkage
estimator based portfolio SKC. In sum, SSR behaves as a
robust strategy with high return and low risk.

Notably, VW and EW are intrinsically designed as passive
strategies for low turnover rates. For example, VW mimics
the market trend in a passive way and requires no rebalancing,
resulting in zero TOs constantly. After excluding those two

passive strategies, as a moderately active trading strategy,
SSR achieves the lowest TOs among all the remaining nine
portfolio strategies. It has been recognized that high turnover
rates stem from the sensitivity of portfolio optimization solu-
tions to the estimation errors in input parameters (Best and
Grauer 1991). Hence, portfolios with high estimation risks
are sensitive to changes in the market and could have inflated
before-cost returns. For instance, although KWZ has a little
higher SR than SSR on EQ181, its TO is ten times larger
than that of SSR, which inevitably leads to huge trading costs.
This observation in turn indicates that in a multi-period trad-
ing setup the sacrificed diversification benefits in the subset
resampling step are compensated not only by diminished
estimation errors but also by low turnover rates. More experi-
mental results with analysis are included in the long version
of this work.

5 Conclusions and Discussions

In this paper, we develop a new portfolio selection strat-
egy via subset resampling to promote the applicability of
Markowitz’s portfolio optimization to a large pool of as-
sets. By sacrificing some diversification benefits, the new
strategy receives the compensation of largely ameliorated
estimation errors. We provide analysis on the hyperparameter
selection and offer extensive comparison studies with ten
representative portfolio strategies on four diversified datasets.
As the work extends the depth of the portfolio research via
ensemble methods, we believe that it represents an effort
in leveraging successfully applied machine learning algo-
rithms into long-lasting finance problems. Our future work
includes explicitly incorporating the consideration of mar-
ket frictions such as transaction costs and taxes into more
sophisticated ensemble learning algorithms (Rokach 2010;
Shen and Wang 2015).
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