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Abstract

Matrix approximation (MA) is one of the most popular tech-
niques in today’s recommender systems. In most MA-based
recommender systems, the problem of risk minimization
should be defined, and how to achieve minimum expected
risk in model learning is one of the most critical problems to
recommendation accuracy. This paper addresses the expected
risk minimization problem, in which expected risk can be
bounded by the sum of optimization error and generalization
error. Based on the uniform stability theory, we propose an
expected risk minimized matrix approximation method (ER-
MMA), which is designed to achieve better tradeoff between
optimization error and generalization error in order to reduce
the expected risk of the learned MA models. Theoretical anal-
ysis shows that ERMMA can achieve lower expected risk
bound than existing MA methods. Experimental results on the
MovieLens and Netflix datasets demonstrate that ERMMA
outperforms six state-of-the-art MA-based recommendation
methods in both rating prediction problem and item ranking
problem.

Introduction

Matrix approximation (MA) is popular among existing tech-
niques for recommender systems mainly due to its high accu-
racy (Koren et al. 2009; Ekstrand, Riedl, and Konstan 2011).
In recommender systems, the observed data in user-item rat-
ing matrices are incomplete, and closed-form solutions can-
not be easily obtained as in fully observed matrices (Candès
and Plan 2010). Therefore, in existing MA methods (Pa-
terek 2007; Koren 2008; Salakhutdinov and Mnih 2008;
Yan et al. 2010; Li et al. 2010; Lee et al. 2013), risk functions,
typically empirical risks, should be first defined to measure
the goodness of MA models on training data. Then, itera-
tive learning methods, e.g., gradient descent-based methods,
are adopted to learn MA models with local/global minimum
empirical risks. The learned models can then be adopted to
predict user interests on unrated items.

A common issue of existing MA methods using gra-
dient descent-based learning is that the learned models
may perform well on observed examples but achieve worse
results on unobserved examples, i.e., low generalization
performance (Ng 2004; Hardt, Recht, and Singer 2015;
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Li et al. 2016). Recently, Li et al. (2016) proposed a stable ma-
trix approximation method to improve the generalization per-
formance of MA methods. However, low generalization error
cannot always guarantee good model performance, because
the expected risk, which measures the true risk of a model
on both observed and unobserved examples, does not always
decrease when generalization error decreases. As pointed out
by Hardt et al. (2015), expected risk can be decomposed into
three terms: (1) minimum empirical risk, (2) optimization
error (the discrepancy between empirical risk and minimum
empirical risk), and (3) generalization error (the discrepancy
between empirical risk and expected risk). Minimum empiri-
cal risk is fixed when the type of model is fixed. Therefore,
the goal of expected risk minimization is to reduce the sum
of optimization error and generalization error. Generally, we
cannot simultaneously reduce optimization error and general-
ization error. As such, the goal of expected risk minimization
is to achieve a good tradeoff between optimization error and
generalization error. Although the critical issue of the tradeoff
between optimization error and generalization error has been
mentioned previously, no clear solution has been articulated
in MA methods. To the best of our knowledge, this work
represents a first attempt to address this problem and we hope
it will draw the attention of researchers to further investigate
this key problem in MA-based recommender systems.

This paper proposes an expected risk minimized matrix
approximation method (ERMMA), which can achieve a good
tradeoff between optimization error and generalization er-
ror both theoretically and empirically. ERMMA randomly
shrinks the learning step of a fraction of training examples
in each epoch during stochastic gradient updates, which can
improve generalization performance over standard methods
due to lower bound of uniform stability. Our theoretical anal-
ysis proves that ERMMA can achieve lower expected risk
bound, i.e., a better tradeoff between optimization error and
generalization error, compared with classic MA methods.
Moreover, based on our theoretical analysis, popular tech-
niques such as regularization and adaptive learning steps,
which have been successful in improving model performance,
can also be incorporated by ERMMA without violating its
key characteristics. Experimental studies using real-world
datasets (MovieLens and Netflix) demonstrate that, by in-
troducing proper regularization term and adaptive learning
steps, ERMMA can achieve better accuracy compared with
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six state-of-the-art MA-based collaborative filtering methods
in both rating prediction and item ranking problems, further
pushing the state-of-the-art performance for this important
class of problems.

Problem Formulation

This section first defines the key concepts of expected risk
minimization and then introduces low-rank matrix approxi-
mation.

Empirical Risk vs. Expected Risk

Consider a sample S = {x1, x2, . . . , xn} (xi ∈ X) drawn
i.i.d. from some unknown distribution D. The general goal
of empirical risk minimization is to find a model w that can
minimize the following empirical risk:

RS(w) =
1

n

∑
xi∈S

f(w;xi) (1)

where f is a given loss function and f(w;x) measures the
loss of model w over example x. Similarly, the true risk of a
given model w can be measured as follows:

R(w) = Ex∼Df(w;x) (2)

Then, given a randomized learning algorithm A and w =
A(S), the general goal of the learning algorithm A is to
find a w that can minimize the discrepancy between R(w)
and RS(w). Here, we adopt the expected generalization er-
ror (Hardt, Recht, and Singer 2015) to measure this discrep-
ancy as follows:

εgen = EA,S(RS(A(S))−R(A(S))) (3)

where the expectation is taken over the randomness of A and
S. To bound εgen, uniform stability on randomized learning
algorithms can be employed.

Definition 1. [Uniform Stability (Bousquet and Elisseeff
2001)] A randomized learning algorithm A is ε-uniformly
stable if for any two samples S and S′ satisfying that S and
S′ differ in at most one example, we have

sup
x

EA(f(A(S);x)− f(A(S′);x)) ≤ ε.

Let εstab be the smallest upper bound in the definition
above, Hardt et al. (2015) pointed out that the expected risk
of a learned model w by stochastic gradient descent (SGD)
on a sample S can be bounded as follows:

E(R(w)) ≤ E(RS(w
S
∗ )) + εopt + εstab (4)

where wS
∗ = argminw RS(w) is the model with minimum

empirical risk, εopt is the expected gap between empirical
risk and minimum empirical risk, and εstab is the uniform
stability bound. Generally, εopt will decrease with the number
of iterations in SGD while εstab will increase. Therefore, a
tradeoff between εopt and εstab is needed to achieve lower
εopt + εstab, i.e., lower expected risk bound.

Low-Rank Matrix Approximation

Given the general framework above, we now focus on the
specific problem of matrix approximation. Consider a user-
item rating matrix M ∈ R

m×n, where m and n stand for the
numbers of users and items, respectively. The general goal
of matrix approximation is to determine two feature matrices
U ∈ R

m×r and V ∈ R
n×r, such that M ≈ M̂ = UV T .

In some cases, good performance can be achieved when the
rank of U and V r � min{m,n}. As such, this type of
matrix approximation is also referred to as low-rank matrix
approximation (LRMA). To determine appropriate U and
V , the problem of empirical risk minimization is usually
defined and solved as follows (Paterek 2007; Koren 2008;
Salakhutdinov and Mnih 2008):

U, V = arg min
U ′,V ′

RS(U
′, V ′) (5)

where S is the set of observed user-item ratings in M .
Typically, mean square loss is adopted in the above prob-

lem, i.e., f(U, V ;Mi,j) = (Mi,j − UiV
T
j )2. However, the

low-rank assumption makes the square loss non-convex.
Recently, a convex relaxation of LRMA is proposed by
Mazumder et al. (2010):

f(Z;Mi,j) = (Mi,j − Zi,j)
2 + μ||Z||∗ (6)

where nuclear norm ||Z||∗ is the sum of the singular values
of Z (a convex relaxation of the rank). Recent theoretical
analysis (Candès and Recht 2009; Mazumder, Hastie, and
Tibshirani 2010) showed that the above f is convex in Z.

Solving LRMA Problems

Many recent works (Gemulla et al. 2011; Chen et al. 2015;
Li et al. 2016) adopted stochastic gradient descent (SGD)
to solve the LRMA problem due to its low computation
cost (Mazumder, Hastie, and Tibshirani 2010) and high gen-
eralization performance (Hardt, Recht, and Singer 2015). In
SGD, loss functions can be iteratively optimized as follows:

w ← w − α∇f(w;x) (7)
where w is a model and x is a randomly selected example.
Hardt et al. (2015) proved that the SGD method can achieve
good generalization performance. Moreover, the generaliza-
tion performance of SGD can be improved by setting a frac-
tion of the gradient weights to zero (Hardt, Recht, and Singer
2015):

w ← w − αds∇f(w;x) (8)
where ds is 0 with probability s and 1 with probability 1− s.
However, the method above cannot guarantee minimum ex-
pected risk because setting gradients to zero means those
examples are not chosen in training and unchosen examples
will sacrifice training accuracy, which can not be easily com-
pensated by the improvement in generalization performance.
This will be further analyzed in the next section.

ERMMA: Expected Risk Minimized Matrix

Approximation
In this section, we first analyze the generalization perfor-
mance improvement of ERMMA and then prove that ER-
MMA can also achieve better tradeoff between εopt and εstab,
i.e., lower expected risk bound.
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Optimization Problem of ERMMA

Instead of setting a fraction of the gradient weights to zero,
ERMMA shrinks a fraction of the gradient weights by a
parameter 0 ≤ λ ≤ 1 in SGD, so that there is less sacrifice
in optimization accuracy and generalization performance can
still be improved. To do so, it is equivalent to optimizing the
following problem using standard SGD:

min
w

λRS(w) + (1− λ)RSd
(w) (9)

where RS(w) is empirical risk (Equation 1) and RSd
(w) =

1
nd

∑
xi∈Sd

f(w;xi) is the empirical risk on Sd. Here, Sd is
the set of examples that are randomly selected from S with
probability 1 − s, and nd is the number of examples in Sd.
Note that solving the problem above using SGD is equivalent
to Equation 7 if we set λ = 1 and equivalent to Equation 8 if
we set λ = 0.

Generalization Error Analysis

Hardt et al. (2015) have analyzed the generalization error
bound of solving classic empirical risk minimization problem
using standard SGD method, in which uniform stability can
be bounded as follows:
Theorem 1. Given a loss function f : Ω → R, assum-
ing f(·;x) is convex, ||∇f(·;x)|| ≤ L (L-Lipschitz) and
||∇f(w;x) − ∇f(w′;x)|| ≤ β||w − w′|| (β-smooth) for
all x ∈ X and w,w′ ∈ Ω. Suppose that SGD is run with
the t-th step size αt ≤ 2/β for totally T steps. Then, SGD
satisfies uniform stability on samples with n examples by
εstab ≤ 2L2

n

∑T
t=1 αt.

The following theorem proves that solving the problem
defined in Equation 9 using SGD has lower uniform stability
bound, i.e., better generalization performance.
Theorem 2. Given a loss function f : Ω → R, assuming
that f(·;x) is convex, ||∇f(·;x)|| ≤ L (L-Lipschitz) and
||∇f(w;x)−∇f(w′;x)|| ≤ β||w − w′|| (β-smooth) for all
x ∈ X and w,w′ ∈ Ω. Suppose that we run SGD to solve the
problem defined in Equation 9 with the t-th step size αt ≤
2/β for totally T steps, then this satisfies uniform stability on
samples with n examples by εstab ≤ 2(1−s+sλ)2L2

n

∑T
t=1 αt.

Proof. Proof can be found in supplementary material.

Remark 1. Since s and λ are in [0, 1], we know that
1−s+sλ ≤ 1, i.e., 2(1−s+sλ)2L2

n

∑T
t=1 αt ≤ 2L2

n

∑T
t=1 αt.

Therefore, we can conclude that solving ERMMA using SGD
is more stable than solving classic empirical risk minimiza-
tion problems using SGD. In other words, the models learned
from ERMMA generalize better when we adopt the same
number of iterations T and learning step αt for both methods.

Expected Risk Analysis

Here, we analyze the expected risk of solving the problem
defined in Equation 9 using SGD and prove that it can yield
lower expected risk bound, i.e., lower εopt + εstab, than solv-
ing classic empirical risk minimization problem using Equa-
tion 7 and Equation 8 in certain circumstances. The result
from Nemirovski and Yudin (Nemirovsky and Yudin 1983)
are adopted to analyze the bound of εopt + εstab.

Theorem 3. (Nemirovsky and Yudin 1983) Assume we run
SGD with constant step size α on a convex function R(w) =
Ex∈Xf(w;x), in which ||∇f(w;x)|| ≤ L and ||w0−w∗|| ≤
D (w∗ = argminw R(w)). Let w̄T be the average of T
iterations by SGD, then R(w̄T ) ≤ R(w∗) + D2

2αT + L2α
2 .

The expected risk of solving classic empirical risk mini-
mization problem using standard SGD can be bounded by
the following theorem.

Theorem 4. (Hardt, Recht, and Singer 2015) Let S =
{x1, . . . , xn} (|S| = n). Loss function f is convex, β-
smooth and L-Lipschitz. RS(w) = 1

n

∑
x∈S f(w;x) and

wS
∗ = argminw RS(w). Suppose that we run SGD with T

steps by a constant step size α ≤ 2/β and from a start
point w0 satisfying that ||w0 − w∗|| ≤ D. Then the av-
erage of the T iterations w̄T satisfies that E(R(w̄T )) ≤
E(RS(w

S
∗ )) +

DL√
n

√
n+2T

T .

The expected risk of solving classic empirical risk mini-
mization problem using Equation 8 can be bounded by the
following theorem.

Theorem 5. Let S = {x1, ..., xn} (|S| = n). Loss func-
tion f is convex, β-smooth and L-Lipschitz. RS(w) =
1
n

∑
x∈S f(w;x) and wS

∗ = argminw RS(w). Suppose that
we run Equation 8 with T steps by a suitable constant step
size α ≤ 2/β and from a start point w0 satisfying that
||w0 − w∗|| ≤ D. Then the average of the T iterations w̄T

satisfies that E(R(w̄T )) ≤ E(RS(w
S
∗ ))+

DL√
n

√
n+2(1−s)2T

(1−s)T .

Proof. Proof can be found in supplementary material.

The expected risk of solving ERMMA using SGD can be
bounded as follows.

Theorem 6. Let S = {x1, ..., xn} (|S| = n). Loss func-
tion f is convex, β-smooth and L-Lipschitz. RS(w) =
1
n

∑
x∈S f(w;x) and wS

∗ = argminw RS(w). Suppose that
we solve ERMMA using SGD (with rate s and shrinkage
coefficient λ) with T steps by a suitable constant step size
α ≤ 2/β and from a start point w0 satisfying that ||w0 −
w∗|| ≤ D. Then the average of the T iterations w̄T satisfies

that E(R(w̄T )) ≤ E(RS(w
S
∗ )) +

DL√
n

√
λn+2(1−s+λs)2T

λT .

Proof. Proof can be found in supplementary material.

From Theorem 4 and 6, we know that the expected risk of
ERMMA is more sharply bounded than that of classic empir-

ical risk minimization problem if DL√
n

√
λn+2(1−s+λs)2T

λT ≤
DL√
n

√
n+2T

T , i.e., (1−s+λs)2

λ ≤ 1. However, it is nontrivial
to directly compare the expected risk bounds between Theo-
rem 5 and Theorem 6. Instead, we compare the lower bounds
of these two theorems. Based on the arithmetic-mean in-
equality, we know that for Equation 8 DL√

n

√
n+2(1−s)2T

(1−s)T =

DL√
n

√
n/(1−s)+2(1−s)T

T ≥ DL√
n

√
2
√
2nT
T . For ERMMA, we

have DL√
n

√
λn+2(1−s+λs)2T

λT = DL√
n

√
n+2(1−s+λs)2T/λ

T ≥
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DL√
n

√
2
√

2nT (1−s+λs)2/λ

T . Again, we can conclude that if
(1− s+ λs)2/λ ≤ 1 then the lower bound of the expected
risk bound of ERMMA will be smaller than that of solving
empirical risk minimization problem using Equation 8.

Remark 2. ERMMA can achieve sharper bound of ex-
pected risk than solving classic empirical risk minimization
problem using Equation 7 and Equation 8 if (1−s+λs)2

λ ≤ 1.
Solving the inequality above, we can conclude that if λ ∈
[ (1−s)2

s2 , 1] and s ∈ [ 12 , 1] then ERMMA will have sharper
expected risk bound than solving empirical risk minimization
problem using Equation 7 and Equation 8.

Extension of ERMMA

This section extends ERMMA to more general and practical
settings, so that popular “tricks” of SGD, e.g., regularization,
adaptive learning step, etc., can also be adopted by ERMMA.

Regularization

Regularization is popular among today’s machine learning
techniques. Here, we analyze the error bounds of ERMMA
with one of the most popular regularization method — L2-
regularization (Ng 2004). By introducing L2-regularization
term μ

2 ||w||2, the gradient update rule of ERMMA should be
modified as follows:

g(w) = w−αμw−α(λ∇f(w;x)+(1−λ)ds(x)∇f(w;x))

where ds(x) = 0 if x is selected with probability s and
ds(x) = 1 otherwise. Then, we analyze how expansive the
new update rule g(w) is. For any w and w′, we have
||g(w)− g(w′)||
≤(1− αμ)||w − w′||+ α(λ+ ds(x)(1− λ))||∇f(w)−∇f(w′)||
≤(1− αμ)||w − w′||+ α(λ+ ds(x)(1− λ))β||w − w′||
≤(1 + α(β − μ))||w − w′||

where the first inequality holds due to triangle inequality,
the second inequality holds because f is β-smooth, and the
third inequality holds because ds(x) ≤ 1. Thus, if we choose
μ < β and α ≤ 2/(β − μ), the update rule g(w) will still
be 1-expansive, so that all the theorems in the paper can be
proved by replacing β with β − μ. This indicates that all the
characteristics of ERMMA can hold when L2-regularization
is introduced.

Adaptive Learning Step

In many real-world problems, SGD will converge with a
small number of epochs, e.g., tens of epochs. If we ran-
domly choose Sd in Equation 9 for each epoch, some exam-
ples may be chosen many times while some other examples
may not be chosen at all by the end of training. Therefore,
underfitting or overfitting issues may appear on some ex-
amples. Learning rate adaption have been proposed to ad-
dress such kind of issue (Duchi, Hazan, and Singer 2011;
Zeiler 2012), which can adaptively set learning rates to
improve robustness of SGD. This idea can be adopted in
ERMMA by setting adaptive learning steps for different
examples, e.g., the new learning step can be defined as

α′
t = l(t, x)αt, where l(t, x) is the adaptive weight for ex-

ample x at step t. Next, we analyze the stability of ERMMA
with such adaptive learning steps.

Lemma 1. Assuming that loss function f is convex and β-
smooth, if the t-th learning step of solving ERMMA using
SGD is α′

t = l(t, x)αt, then the gradient update of ERMMA
will be 1-expansive if l(t, x)αt ≤ 2/β.

Proof. Proof can be found in supplementary material.

Then, all the theorems in the paper can be similarly proved
by replacing αt with α′

t = l(t, x)αt. By introducing L2-
regularization and adaptive learning step to ERMMA, we can
extend Equation 9 as follows:

min
w

λ

n

∑

xi∈S

l1(t, x)f(w;xi) +
λ′

nd

∑

xi∈Sd

l2(t, x)f(w;xi) +
μ

2
||w||2

(10)
where l(t, x) is the adaptive weight to adjust the learning rate
for example x at the t-th step and λ′ = 1− λ. n and nd are
the numbers of examples in S and Sd, respectively. Note that,
l1 and l2 in Equation 10 can be different weighting functions
as long as Lemma 1 holds.

Experiments

In this section, we verify the performance of ERMMA in two
popular scenarios of recommender systems: 1) rating predic-
tion, in which ERMMA predicts how users will rate unseen
items; and 2) item ranking, in which ERMMA predicts how
users will rank different unseen items.

Based on previous analysis, it is desirable to choose the
loss function as follows: f(U, V ;Mi,j) = (Mi,j − Zi,j)

2 +
μ1||Z||∗ +μ2||U ||2 +μ3||V ||2, where U and V are user and
item feature matrices, resp., M is the targeted user-item rating
matrix, and Z = UV T is the approximation of M by U and
V . However, it is non-trivial to minimize nuclear norm using
iterative methods. Therefore, we try to minimize an upper
bound of the above loss function based on the property that
||Z||∗ ≤ minU,V

1
2 (||U ||2 + ||V ||2) (Srebro and Shraibman

2005) as follows:

f(U, V ;Mi,j) = (Mi,j − Zi,j)
2 + μ(||U ||2 + ||V ||2).

Moreover, we define l1(t, xi) and l2(t, xi) in Equation 10 as
(
∑

xi∈S f(w;xi)/|S|)− 1
2 and (

∑
xi∈Sd

f(w;xi)/|Sd|)− 1
2 ,

resp., then the optimization problem defined in Equation 10
can be converted to a classic recommendation problem, i.e.,
the root mean square error minimization problem.

Three popular datasets are adopted in the experiments:
MovieLens 1M dataset (6,040 users, 3,706 items, ∼ 106 rat-
ings). MovieLens 10M (∼70k users, 10k items, 107 ratings)
and Netflix (∼480k users, 18k items, 108 ratings). For each
dataset, we randomly split it into training and test sets and
keep the ratio of training set to test set as 9:1.

For ERMMA, we consider all the options including s
and λ, and use learning rate v = 0.001 for stochastic
gradient decent, μ = 0.06 for regularization coefficient,
ε = 0.0001 for gradient descent convergence threshold, and
T = 250 for maximum number of iterations. For RSVD,
BPMF, we use the same parameter values provided in the
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Figure 1: Training error vs. test error with varying number of epochs for three different methods: 1) RSVD 1: RSVD trained with
standard SGD (left); 2) RSVD 2: RSVD trained with SGD by randomly setting 10% of gradient updates to 0 (middle); and 3)
ERMMA trained with standard SGD by randomly shrinking 10% of gradient updates with 0.5 (right) on MovieLens 10M dataset.
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Figure 2: The performance of ERMMA with different s and
λ on MovieLens 1M dataset.

original papers (Paterek 2007; Salakhutdinov and Mnih 2008;
Li et al. 2016). For SMA, all parameters were set to de-
fault values in their implementation 1. For GSMF, we select
α = 1.0, β = 70, λ = 0.05 and rank r = 20. For LLORMA,
we choose learning rate v = 0.001 and regularization coef-
ficient μ = 0.01, and the number of local models z = 50.
This is a slight modification of the original LLORMA ex-
perimental setup, where better performance can be achieved.
For WEMAREC, we adopt learning rate v = 0.002 and reg-
ularization coefficient μ = 0.01, and default values provided
in the source code for unstated parameters (such as the en-
semble weights and the maximum number of iterations in
clustering).

Generalization Error and Expected Risk Analysis

Figure 1 compares the trends of training and test errors with
the number of epochs on a classic matrix approximation
method — RSVD (Paterek 2007) and ERMMA. More specif-
ically, we compare three cases: 1) RSVD trained by standard
SGD; 2) RSVD trained with SGD by randomly setting a
fraction of gradient updates to 0 (s = 0.1); and 3) ERMMA
trained with standard SGD (s = 0.1, λ = 0.5). As we can
see from Figure 1, RSVD 2 can indeed decrease the discrep-
ancy between training and test errors compared with RSVD
1, but the test accuracy has negligible improvement due to
the increase in training error. In contrast, ERMMA can a)
better reduce the discrepancy between training and test errors

1https://github.com/ldscc/StableMA.git

Table 1: Root mean square error (RMSE) comparison be-
tween ERMMA (rank = 250) and six state-of-the-art ma-
trix approximation-based collaborative filtering methods —
RSVD (Paterek 2007), BPMF (Salakhutdinov and Mnih
2008), GSMF (Yuan et al. 2014), LLORMA (Lee et al. 2013),
WEMAREC (Chen et al. 2015) and SMA (Li et al. 2016).
Note that, ERMMA statistically significantly outperforms the
other methods with 95% confidence level.

Method MovieLens (10M) Netflix
RSVD 0.8256 ± 0.0006 0.8534 ± 0.0001
BPMF 0.8197 ± 0.0004 0.8421 ± 0.0002
GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006

LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004
WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001

SMA 0.7682 ± 0.0003 0.8036 ± 0.0004
ERMMA 0.7670 ± 0.0007 0.8018 ± 0.0001

and b) yield lower test error than the other two methods. This
confirms that ERRMA can achieve both lower generalization
error and lower expected risk than the other two methods.

Sensitivity Analysis

The expected risk bound of ERMMA depends on two key pa-
rameters: 1) the ratio of randomly selected examples whose
gradient updates are shrank — s; and 2) the shrinkage coeffi-
cient for the selected examples — λ. Here, we show how ER-
MMA performs with different combinations of s and λ. As
shown in Figure 2, ERMMA achieves good accuracy when s
and λ are greater than 0.5. Moreover, ERMMA achieves al-
most optimal accuracy when s, λ is around (0.8, 0.8), so that
we adopt s = 0.8 and λ = 0.8 for the following experiments.

Note that, regularization term and adaptive learning steps
also have impacts on ERMMA’s performance, and their ef-
fectiveness are analyzed in the supplementary material.

Performance Comparison in Rating Prediction

Table 1 compares the recommendation accuracy between
the proposed method and six state-of-the-art MA-based col-
laborative filtering methods in rating prediction task, and
root mean square error (RMSE) is adopted to measure the
performance. Note that, LLORMA (Lee et al. 2013) and WE-
MAREC (Chen et al. 2015) are matrix approximation-based
ensemble methods, which have been proved to be more ac-
curate than single matrix approximation methods. However,
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Table 2: AP and NDCG@10 comparisons between ERMMA and six state-of-the-art matrix approximation-based collaborative
filtering methods on Movielens 1M and Movielens 10M datasets. Note that, ERMMA statistically significantly outperforms the
other methods with 95% confidence level.

Metric Average Precision NDCG@10
Data | Method N=5 N=20 N=50 N=5 N=20 N=50

M
ov

ie
le

ns
1M

RSVD 0.7473 ± 0.0005 0.7230 ± 0.0008 0.7207 ± 0.0009 0.6423 ± 0.0024 0.6456 ± 0.0010 0.6348 ± 0.0025
BPMF 0.6352 ± 0.0011 0.6356 ± 0.0009 0.6719 ± 0.0103 0.5006 ± 0.0030 0.4915 ± 0.0016 0.5467 ± 0.0169
GSMF 0.7041 ± 0.0008 0.7087 ± 0.0018 0.7382 ± 0.0017 0.6031 ± 0.0034 0.6236 ± 0.0016 0.6522 ± 0.0011

LLORMA 0.7446 ± 0.0008 0.7784 ± 0.0008 0.7916 ± 0.0010 0.6200 ± 0.0015 0.7247 ± 0.0031 0.7554 ± 0.0019
WEMAREC 0.7492 ± 0.0021 0.7821 ± 0.0008 0.7849 ± 0.0011 0.6527 ± 0.0047 0.6927 ± 0.0016 0.6948 ± 0.0016

SMA 0.7672 ± 0.0007 0.7850 ± 0.0011 0.7914 ± 0.0005 0.6618 ± 0.0041 0.7378 ± 0.0020 0.7560 ± 0.0015
ERMMA 0.7689 ± 0.0007 0.7864 ± 0.0007 0.7925 ± 0.0012 0.6639 ± 0.0027 0.7419 ± 0.0012 0.7574 ± 0.0005

M
ov

ie
le

ns
10

M

RSVD 0.6804 ± 0.0007 0.6518 ± 0.0004 0.6901 ± 0.0011 0.6157 ± 0.0008 0.5863 ± 0.0005 0.6088 ± 0.0014
BPMF 0.5707 ± 0.0001 0.5715 ± 0.0002 0.5618 ± 0.0010 0.5007 ± 0.0003 0.5084 ± 0.0007 0.4895 ± 0.0018
GSMF 0.6053 ± 0.0033 0.6655 ± 0.0005 0.7273 ± 0.0016 0.5512 ± 0.0024 0.5943 ± 0.0004 0.6439 ± 0.0023

LLORMA 0.7199 ± 0.0002 0.7407 ± 0.0005 0.7612 ± 0.0002 0.6358 ± 0.0005 0.6676 ± 0.0009 0.6924 ± 0.0004
WEMAREC 0.7162 ± 0.0019 0.7407 ± 0.0002 0.7535 ± 0.0010 0.6367 ± 0.0023 0.6794 ± 0.0004 0.6934 ± 0.0008

SMA 0.7284 ± 0.0004 0.7452 ± 0.0004 0.7536 ± 0.0006 0.6562 ± 0.0010 0.6790 ± 0.0009 0.6856 ± 0.0007
ERMMA 0.7298 ± 0.0005 0.7492 ± 0.0004 0.7632 ± 0.0003 0.6575 ± 0.0003 0.6834 ± 0.0009 0.6976 ± 0.0005

the proposed method statistically significantly outperforms
all the six methods. This confirms that ERMMA can achieve
lower expected risk than all the other methods. Meanwhile,
the computational complexity of ERMMA is the same as
RSVD and SMA, i.e., O(rmn) per-iteration where m,n is
the number of users and items respectively, r is the rank.

Performance Comparison in Item Ranking

Table 2 compares the accuracy of ERMMA with the other
six MA-based collaborative filtering methods in item rank-
ing task. Average precision (AP) and normalized discounted
cumulative gain (NDCG) are adopted to measure the perfor-
mance. Note that, we only compare the methods on Movie-
lens 1M and Movielens 10M due to the memory limitation of
our server on Netflix. In this experiment, we fix the numbers
of ratings as N = 5, 20, 50 to form different training sets and
keep the rest ratings in the test sets. As shown in Table 2, ER-
MMA achieves better accuracy in both AP and NDGC@10
compared with all the other methods. This further confirms
that ERMMA can achieve lower expected risk than the other
methods.

Related Work

Uniform stability was first proposed by Bousquet and Elis-
seeff (2001), which can be adopted to obtain bounds on
generalization error of learning algorithms by their stabil-
ity properties. Prior works have shown that a variety of
learning algorithms possess the uniform stability property,
e.g., regularization networks (Bousquet and Elisseeff 2001),
learning to rank algorithms (Agarwal and Niyogi 2009;
Lan et al. 2008), etc. Recently, Hardt et al. proved that para-
metric models trained using SGD with limited iterations
have vanishing generalization error (Hardt, Recht, and Singer
2015). However, lower generalization error cannot guarantee
lower expected risk bound because generalization error is
only part of the expected risk bound. Therefore, it is more
desirable to design learning algorithms which can achieve
low expected risk bounds rather than only low generalization
error bounds. Different from their works, this paper focuses

on the expected risk minimization problem and proposes ex-
pected risk minimized matrix approximation method, which
has the potential to achieve lower expected risk based on our
theoretical analysis and empirical studies.

Matrix approximation methods have been extensively stud-
ied in the context of recommender systems. Paterek (2007)
applied regularized singular value decomposition (RSVD) in
the Netflix Prize contest. Later, Koren (2008) novelly pro-
posed a more accurate model — SVD++, which can effec-
tively combine matrix factorization and neighborhood model.
On the other side, Salakhutdinov and Mnih (2007) proposed
Probabilistic Matrix Factorization (PMF) by viewing ma-
trix factorization from a probabilistic perspective. Based on
this, they further proposed Bayesian Probabilistic Matrix
Factorization (BPMF) (Salakhutdinov and Mnih 2008), in
which fully Bayesian treatment is given to PMF. In addi-
tion, some recent works also attempted to train a singleton
model integrated with multiple types of relations by using
multi-task feature learning techniques (Yuan et al. 2014;
Chen et al. 2016). The above methods tried to solve the
classic empirical risk minimization problems in model train-
ing, so that generalization error or expected risk cannot be
directly minimized in those methods.

Recently, Srebro et al. (2004) analyzed the generalization
error bounds of collaborative prediction with low-rank matrix
approximation for binary recommendation problem. Li et
al. (2016) proposed the stable matrix approximation method,
which can improve the generalization performance of matrix
approximation by increasing the stability of MA methods.
Meanwhile, ensemble matrix approximation methods have
also been proposed to improve generalization performance
of MA methods by ensemble learning, e.g., DFC (Mackey,
Jordan, and Talwalkar 2011), LLORMA (Lee et al. 2013),
WEMAREC (Chen et al. 2015) etc. The above works only
consider how to achieve better generalization performance.
However, as analyzed in this paper, minimizing generaliza-
tion error cannot ensure minimum expected risk because
optimization error will typically increase when minimizing
generalization error. Therefore, minimizing expected risk in
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ERMMA should be more desirable than only minimizing
generalization error in the above works.

Conclusion
This paper proposes a new matrix approximation method —
ERMMA, which can minimize the expected risk of matrix
approximation models by achieving better tradeoffs between
optimization error and generalization error. Theoretical analy-
sis shows that ERMMA can yield lower expected risk bound
compared with other methods. Empirical studies on real-
world datasets also demonstrate that ERMMA can achieve
better performance than minimizing empirical risk in classic
matrix approximation methods. Furthermore, by introduc-
ing proper regularization term and adaptive learning steps,
ERMMA can achieve better accuracy than state-of-the-art
matrix approximation methods in both the rating prediction
task and the item ranking task.
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