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Abstract

We propose a lifelong learning system that has the ability
to reuse and transfer knowledge from one task to another
while efficiently retaining the previously learned knowledge-
base. Knowledge is transferred by learning reusable skills
to solve tasks in Minecraft, a popular video game which is
an unsolved and high-dimensional lifelong learning problem.
These reusable skills, which we refer to as Deep Skill Net-
works, are then incorporated into our novel Hierarchical Deep
Reinforcement Learning Network (H-DRLN) architecture us-
ing two techniques: (1) a deep skill array and (2) skill dis-
tillation, our novel variation of policy distillation (Rusu et
al. 2015) for learning skills. Skill distillation enables the H-
DRLN to efficiently retain knowledge and therefore scale in
lifelong learning, by accumulating knowledge and encapsu-
lating multiple reusable skills into a single distilled network.
The H-DRLN exhibits superior performance and lower learn-
ing sample complexity compared to the regular Deep Q Net-
work (Mnih et al. 2015) in sub-domains of Minecraft.

Introduction

Lifelong learning considers systems that continually learn
new tasks, from one or more domains, over the course of a
lifetime. Lifelong learning is a large, open problem and is
of great importance to the development of general purpose
Artificially Intelligent (AI) agents. A formal definition of
lifelong learning follows.

Definition 1. Lifelong Learning is the continued learning
of tasks, from one or more domains, over the course of a
lifetime, by a lifelong learning system. A lifelong learning
system efficiently and effectively (1) retains the knowledge
it has learned; (2) selectively transfers knowledge to
learn new tasks; and (3) ensures the effective and efficient
interaction between (1) and (2)(Silver, Yang, and Li 2013).

A truly general lifelong learning system, shown in Figure
2, therefore has the following attributes: (1) Efficient reten-
tion of learned task knowledge A lifelong learning system
should minimize the retention of erroneous knowledge. In
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Figure 1: A screenshot from Minecraft, a popular video
game which poses a challenging lifelong learning problem.

addition, it should also be computationally efficient when
storing knowledge in long-term memory. (2) Selective
transfer: A lifelong learning system needs the ability to
choose relevant prior knowledge for solving new tasks,
while casting aside irrelevant or obsolete information. (3)
System approach: Ensures the effective and efficient
interaction of the retention and transfer elements.

Lifelong learning systems in real-world domains suffer
from the curse of dimensionality. That is, as the state and
action spaces increase, it becomes more and more difficult
to model and solve new tasks as they are encountered. In
addition, planning over potentially infinite time-horizons
as well as efficiently retaining and reusing knowledge pose
non-trivial challenges. A challenging, high-dimensional
domain that incorporates many of the elements found
in lifelong learning is Minecraft. Minecraft is a popular
video game whose goal is to build structures, travel on
adventures, hunt for food and avoid zombies. An example
screenshot from the game is seen in Figure 1. Minecraft is
an open research problem as it is impossible to solve the
entire game using a single AI technique (Smith and Aha ;
Oh et al. 2016). Instead, the solution to Minecraft may
lie in solving sub-problems, using a divide-and-conquer
approach, and then providing a synergy between the various
solutions. Once an agent learns to solve a sub-problem, it
has acquired a skill that can then be reused when a similar
sub-problem is subsequently encountered.
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Figure 2: Lifelong Learning: A lifelong learning system (1)
efficiently retains knowledge and (2) selectively transfers
knowledge to solve new tasks. Upon solving a task, the
knowledge base is refined and new knowledge is added to
the system. A systems approach ensures efficient and effec-
tive interaction between (1) and (2).

Many of the tasks that are encountered by an agent
in a lifelong learning setting can be naturally de-
composed into skill hierarchies (Stone et al. 2000;
Stone, Sutton, and Kuhlmann 2005; Bai, Wu, and Chen
2015). In Minecraft for example, consider building a
wooden house as seen in Figure 1. This task can be de-
composed into sub-tasks (a.k.a skills) such as chopping
trees, sanding the wood, cutting the wood into boards and
finally nailing the boards together. Here, the knowledge
gained from chopping trees can also be partially reused
when cutting the wood into boards. In addition, if the agent
receives a new task to build a small city, then the agent can
reuse the skills it acquired during the ‘building a house’ task.

In a high-dimensional, lifelong learning setting such as
Minecraft, learning skills and when to reuse the skills is
non-trivial. This is key to efficient knowledge retention and
transfer, increasing exploration, efficiently solving tasks and
ultimately advancing the capabilities of the Minecraft agent.

Reinforcement Learning (RL) provides a generalized
approach to skill learning through the options framework
(Sutton, Precup, and Singh 1999). Options are Temporally
Extended Actions (TEAs) and are also referred to as skills
(da Silva, Konidaris, and Barto 2012) and macro-actions
(Hauskrecht et al. 1998). Options have been shown both
theoretically (Precup and Sutton 1997; Sutton, Precup, and
Singh 1999) and experimentally (Mann and Mannor 2013;
Mankowitz, Mann, and Mannor 2014) to speed up the
convergence rate of RL algorithms. From here on in, we
will refer to options as skills.

In order to learn reusable skills in a lifelong learning

setting, the framework needs to be able to (1) learn skills,
(2) learn a controller which determines when a skill should
be used and reused and (3) be able to efficiently accumulate
reusable skills. There are recent works that perform skill
learning (Mankowitz, Mann, and Mannor 2016a; 2016b;
Mnih et al. 2016a; Bacon and Precup 2015), but these works
have focused on learning good skills and have not explicitly
shown the ability to reuse skills nor scale with respect to the
number of skills in lifelong learning domains.

With the emergence of Deep RL, specifically Deep
Q-Networks (DQNs), RL agents are now equipped
with a powerful non-linear function approximator that
can learn rich and complex policies (or skills). Us-
ing these networks the agent learns policies (or skills)
from raw image pixels, requiring less domain spe-
cific knowledge to solve complicated tasks (E.g Atari
video games). While different variations of the DQN
algorithm exist (Van Hasselt, Guez, and Silver 2015;
Schaul et al. 2015; Wang, de Freitas, and Lanctot 2015;
Bellemare et al. 2015), we will refer to the vanilla version
unless otherwise stated. There are deep learning ap-
proaches that perform sub-goal learning (Rusu et al. 2016;
Kulkarni et al. 2016), yet these approaches rely on providing
the task or sub-goal to the agent, prior to making a decision.
Kulkarni et al. (2016) also rely on manually constructing
sub-goals a-priori for tasks and utilize intrinsic motivation
which may be problematic for complicated problems
where designing good intrinsic motivations is not clear and
non-trivial.

In our paper, we present our novel lifelong learning sys-
tem called the Hierarchical Deep Reinforcement Learning
(RL) Network (H-DRLN) architecture shown in Figure 3 (It
is defined formally in the Hierarchical Deep RL Network
Section). While we do not claim to provide an end-to-end
solution, the H-DRLN contains all the basic building
blocks of a truly general lifelong learning framework (see
the Related Work Section for an in-depth overview). The
H-DRLN controller learns to solve complicated tasks in
Minecraft by learning reusable RL skills in the form of
pre-trained Deep Skill Networks (DSNs). Knowledge is
retained by incorporating reusable skills into the H-DRLN
via a Deep Skill module. There are two types of Deep Skill
Modules: (1) a DSN array (Figure 3, Module A) and (2)
a multi-skill distillation network (Figure 3, Module B),
our novel variation of policy distillation (Rusu et al. 2015)
applied to learning skills. Multi-skill distillation enables the
H-DRLN to efficiently retain knowledge and therefore scale
in lifelong learning, by encapsulating multiple reusable
skills into a single distilled network. When solving a new
task, the H-DRLN selectively transfers knowledge in the
form of temporal abstractions (skills) to solve the given
task. By taking advantage of temporally extended actions
(skills), the H-DRLN learns to solve tasks with lower
sample complexity and superior performance compared to
vanilla DQNs.

Main Contributions: (1) A novel Hierarchical Deep

1554



Reinforcement Learning Network (H-DRLN) architecture
which includes an H-DRLN controller and a Deep Skill
Module. The H-DRLN contains all the basic building blocks
for a truly general lifelong learning framework. (2) We show
the potential to learn reusable Deep Skill Networks (DSNs)
and perform knowledge transfer of the learned DSNs to new
tasks to obtain an optimal solution. We also show the po-
tential to transfer knowledge between related tasks without
any additional learning. (3) We efficiently retain knowledge
in the H-DRLN by performing skill distillation, our varia-
tion of policy distillation, for learning skills and incorporate
it into the Deep Skill Model to solve complicated tasks in
Minecraft. (4) Empirical results for learning an H-DRLN
in sub-domains of Minecraft with a DSN array and a dis-
tilled skill network. We also verify the improved conver-
gence guarantees for utilizing reusable DSNs (a.k.a options)
within the H-DRLN, compared to the vanilla DQN.

Previous Research on Lifelong Learning in RL

Designing a truly general lifelong learning agent is a
challenging task. Previous works on lifelong learning in RL
have focused on solving specific elements of the general
lifelong learning system as shown in Table 1.

According to Definition 1, a lifelong learning agent
should be able to efficiently retain knowledge. This is
typically done by sharing a representation among tasks,
using distillation (Rusu et al. 2015) or a latent basis (Ammar
et al. 2014). The agent should also learn to selectively use
its past knowledge to solve new tasks efficiently. Most
works have focused on a spatial transfer mechanism, i.e.,
they suggested learning differentiable weights from a shared
representation to the new tasks (Jaderberg et al. 2016;
Rusu et al. 2016). In contrast, Brunskill and Li (2014)
suggested a temporal transfer mechanism, which identifies
an optimal set of skills in past tasks and then learns to use
these skills in new tasks. Finally, the agent should have
a systems approach that allows it to efficiently retain
the knowledge of multiple tasks as well as an efficient
mechanism to transfer knowledge for solving new tasks.

Our work incorporates all of the basic building blocks
necessary to performing lifelong learning. As per the life-
long learning definition, we efficiently transfer knowledge
from previous tasks to solve a new target task by utilizing RL
skills (Sutton, Precup, and Singh 1999). We show that skills
reduce the sample complexity in a complex Minecraft en-
vironment and suggest an efficient mechanism to retain the
knowledge of multiple skills that is scalable with the number
of skills.

Background

Reinforcement Learning: The goal of an RL agent is to
maximize its expected return by learning a policy π : S →
ΔA which is a mapping from states s ∈ S to a probabil-
ity distribution over the actions A. At time t the agent ob-
serves a state st ∈ S, selects an action at ∈ A, and re-
ceives a bounded reward rt ∈ [0, Rmax] where Rmax is

Works H-DRLN Ammar Brunskill Rusu Rusu Jaderberg
(this work) et. al and Li et. al. et. al.

Attribute (2014) (2014) (2015) (2016) (2016)
Memory
efficient � � � � � �

Knowledge architecture
Retention Scalable to

high � � � � � �
dimensions
Temporal

abstraction � � � � � �
Selective transfer
Transfer Spatial

abstraction � � � � � �
transfer

Multi-task � � � � � �
Systems

Approach
Transfer � � � � � �

Table 1: Previous works on lifelong learning in RL.

the maximum attainable reward and γ ∈ [0, 1] is the dis-
count factor. Following the agents action choice, it tran-
sitions to the next state st+1 ∈ S . We consider infinite
horizon problems where the cumulative return at time t is
given by Rt =

∑∞
t′=t γ

t′−trt. The action-value function
Qπ(s, a) = E[Rt|st = s, at = a, π] represents the expected
return after observing state s and taking an action a under a
policy π. The optimal action-value function obeys a funda-
mental recursion known as the Bellman equation:

Q∗(st, at) = E

[
rt + γmax

a′
Q∗(st+1, a

′)
]

.

Deep Q Networks: The DQN algorithm (Mnih et al.
2015) approximates the optimal Q function with a Convolu-
tional Neural Network (CNN) (Krizhevsky, Sutskever, and
Hinton 2012), by optimizing the network weights such that
the expected Temporal Difference (TD) error of the optimal
bellman equation (Equation 1) is minimized:

Est,at,rt,st+1
‖Qθ (st, at)− yt‖22 , (1)

where

yt =

⎧⎨
⎩
rt if st+1 is terminal

rt + γmax
a’

Qθtarget

(
st+1, a

′
)

otherwise

Notice that this is an offline learning algorithm, mean-
ing that the tuples {st,at, rt, st+1, γ} are collected from
the agents experience and are stored in the Experience
Replay (ER) (Lin 1993). The ER is a buffer that stores
the agents experiences at each time-step t, for the purpose
of ultimately training the DQN parameters to minimize
the loss function. When we apply minibatch training
updates, we sample tuples of experience at random from
the pool of stored samples in the ER. The DQN maintains
two separate Q-networks. The current Q-network with
parameters θ, and the target Q-network with parameters
θtarget. The parameters θtarget are set to θ every fixed num-
ber of iterations. In order to capture the game dynamics,
the DQN represents the state by a sequence of image frames.
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Double DQN (Van Hasselt, Guez, and Silver 2015):
Double DQN (DDQN) prevents overly optimistic estimates
of the value function. This is achieved by performing
action selection with the current network θ and evaluating
the action with the target network θtarget yielding the
DDQN target update yt = rt if st+1 is terminal, otherwise
yt = rt + γQθtarget

(st+1,maxa Qθ(st+1, a)). DDQN is
utilized in this paper to improve learning performance.

Skills, Options, Macro-actions (Sutton, Precup, and
Singh 1999): A skill σ is a temporally extended control
structure defined by a triple σ =< I, π, β > where I is
the set of states where the skill can be initiated, π is the
intra-skill policy, which determines how the skill behaves
in encountered states, and β is the set of termination
probabilities determining when a skill will stop executing.
The parameter β is typically a function of state s or time t.

Semi-Markov Decision Process (SMDP): Planning with
skills can be performed using SMDP theory. More formally,
an SMDP can be defined by a five-tuple < S,Σ, P,R, γ >
where S is a set of states, Σ is a set of skills, and P
is the transition probability kernel. We assume rewards
received at each timestep are bounded by [0, Rmax].
R : S × σ → [0, Rmax

1−γ ] represents the expected discounted
sum of rewards received during the execution of a skill σ
initialized from a state s. The solution to an SMDP is a skill
policy μ.

Skill Policy: A skill policy μ : S → ΔΣ is a map-
ping from states to a probability distribution over skills Σ.
The action-value function Q : S × Σ → R represents
the long-term value of taking a skill σ ∈ Σ from a state
s ∈ S and thereafter always selecting skills according to pol-
icy μ and is defined by Q(s, σ) = E[

∑∞
t=0 γ

tRt|(s, σ), μ].
We denote the skill reward as Rσ

s = E[rt+1 + γrt+2 +
· · · + γk−1rt+k|st = s, σ] and transition probability as
P σ
s,s′ =

∑∞
j=0 γ

jPr[k = j, st+j = s′|st = s, σ]. Under
these definitions the optimal skill value function is given by
the following equation (Stolle and Precup 2002):

Q∗Σ(s, σ) = E[Rσ
s + γkmax

σ′∈Σ
Q∗Σ(s

′, σ′)] . (2)

Policy Distillation (Rusu et al. 2015): Distillation (Hin-
ton, Vinyals, and Dean 2015) is a method to transfer knowl-
edge from a teacher model T to a student model S. This
process is typically done by supervised learning. For ex-
ample, when both the teacher and the student are sepa-
rate deep neural networks, the student network is trained
to predict the teacher’s output layer (which acts as labels
for the student). Different objective functions have been
previously proposed. In this paper we input the teacher
output into a softmax function and train the distilled net-
work using the Mean-Squared-Error (MSE) loss: cost(s) =
‖Softmaxτ (QT (s))−QS(s)‖2 where QT (s) and QS(s) are
the action values of the teacher and student networks respec-
tively and τ is the softmax temperature. During training, this
cost function is differentiated according to the student net-
work weights.

Policy distillation can be used to transfer knowledge from
N teachers Ti, i = 1, · · ·N into a single student (multi-task
policy distillation). This is typically done by switching be-
tween the N teachers every fixed number of iterations dur-
ing the training process. When the student is learning from
multiple teachers (i.e., multiple policies), a separate student
output layer is assigned to each teacher Ti, and is trained for
each task, while the other layers are shared.

Hierarchical Deep RL Network
In this Section, we present an in-depth description of the
H-DRLN (Figure 3); a new architecture that extends the
DQN and facilitates skill reuse in lifelong learning. Skills
are incorporated into the H-DRLN via a Deep Skill Module
that can incorporate either a DSN array or a distilled
multi-skill network.

Deep Skill Module: The pre-learned skills are repre-
sented as deep networks and are referred to as Deep Skill
Networks (DSNs). They are trained a-priori on various
sub-tasks using our version of the DQN algorithm and
the regular Experience Replay (ER) as detailed in the
Background Section. Note that the DQN is one choice of
architecture and, in principal, other suitable networks may
be used in its place. The Deep Skill Module represents a set
of N DSNs. Given an input state s ∈ S and a skill index i,
it outputs an action a according to the corresponding DSN
policy πDSNi . We propose two different Deep Skill Module
architectures: (1) The DSN Array (Figure 3, module A): an
array of pre-trained DSNs where each DSN is represented
by a separate DQN. (2) The Distilled Multi-Skill Network
(Figure 3, module B), a single deep network that represents
multiple DSNs. Here, the different DSNs share all of the
hidden layers while a separate output layer is trained for
each DSN via policy distillation (Rusu et al. 2015). The
Distilled skill network allows us to incorporate multiple
skills into a single network, making our architecture scalable
to lifelong learning with respect to the number of skills.

H-DRLN architecture: A diagram of the H-DRLN
architecture is presented in Figure 3 (top). Here, the outputs
of the H-DRLN consist of primitive actions as well as
skills. The H-DRLN learns a policy that determines when
to execute primitive actions and when to reuse pre-learned
skills. If the H-DRLN chooses to execute a primitive action
at at time t, then the action is executed for a single timestep.
However, if the H-DRLN chooses to execute a skill σi

(and therefore DSN i as shown in Figure 3), then DSN i
executes its policy, πDSNi(s) until it terminates and then
gives control back to the H-DRLN. This gives rise to two
necessary modifications that we needed to make in order to
incorporate skills into the learning procedure and generate a
truly hierarchical deep network: (1) Optimize an objective
function that incorporates skills; (2) Construct an ER that
stores skill experiences.

Skill Objective Function: As mentioned previously, a H-
DRLN extends the vanilla DQN architecture to learn con-
trol between primitive actions and skills. The H-DRLN loss
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Module A Module B

H-DRLN

Figure 3: The H-DRLN architecture: It has outputs that
correspond to primitive actions (a1, a2, ..., am) and DSNs
(DSN1, DSN2, ..., DSNn). The Deep Skill Module (bot-
tom) represents a set of skills. It receives an input and a skill
index and outputs an action according to the corresponding
skill policy. The architecture of the deep skill module can be
either a DSN array or a Distilled Multi-Skill Network.

function has the same structure as Equation 1, however in-
stead of minimizing the standard Bellman equation, we min-
imize the Skill Bellman equation (Equation 2). More specif-
ically, for a skill σt initiated in state st at time t that has
executed for a duration k, the H-DRLN target function is
given by:

yt =

⎧⎨
⎩

∑k−1
j=0

[
γjrj+t

]
if st+k terminal∑k−1

j=0

[
γjrj+t

]
+ γkmax

σ’
Qθtarget

(
st+k, σ

′
)

else

This is the first work to incorporate an SMDP cost
function into a deep RL setting.

Skill - Experience Replay: We extend the regular ER
(Lin 1993) to incorporate skills and term this the Skill Ex-
perience Replay (S-ER). There are two differences between
the standard ER and our S-ER. Firstly, for each sampled skill
tuple, we calculate the sum of discounted cumulative re-
wards, r̃, generated whilst executing the skill. Second, since
the skill is executed for k timesteps, we store the transition
to state st+k rather than st+1. This yields the skill tuple
(st, σt, r̃t, st+k) where σt is the skill executed at time t.

Experiments

To solve new tasks as they are encountered in a lifelong
learning scenario, the agent needs to be able to adapt to new
game dynamics and learn when to reuse skills that it has
learned from solving previous tasks. In our experiments, we
show (1) the ability of the Minecraft agent to learn DSNs
on sub-domains of Minecraft (shown in Figure 4a − d). (2)
The ability of the agent to reuse a DSN from navigation
domain 1 (Figure 4a) to solve a new and more complex task,
termed the two-room domain (Figure 5a). (3) The potential
to transfer knowledge between related tasks without any
additional learning. (4) We demonstrate the ability of the
agent to reuse multiple DSNs to solve the complex-domain
(Figure 5b). (5) We use two different Deep Skill Modules
and demonstrate that our architecture scales for lifelong
learning.

State space - As in Mnih et al. (2015), the state space is
represented as raw image pixels from the last four image
frames which are combined and down-sampled into an
84 × 84 pixel image. Actions - The primitive action space
for the DSN consists of six actions: (1) Move forward, (2)
Rotate left by 30◦, (3) Rotate right by 30◦, (4) Break a
block, (5) Pick up an item and (6) Place it. Rewards - In all
domains, the agent gets a small negative reward signal after
each step and a non-negative reward upon reaching the final
goal (See Figure 4 and Figure 5 for the different domain
goals).

Training - Episode lengths are 30, 60 and 100 steps
for single DSNs, the two room domain and the complex
domain respectively. The agent is initialized in a random
location in each DSN and in the first room for the two room
and complex domains. Evaluation - the agent is evaluated
during training using the current learned architecture every
20k (5k) optimization steps (a single epoch) for the DSNs
(two room and complex room domains). During evaluation,
we averaged the agent’s performance over 500 (1000) steps
respectively. Success percentage: The % of successful task
completions during evaluation.

Training a DSN

Our first experiment involved training DSNs in sub-domains
of Minecraft (Figure 4a − d), including two navigation
domains, a pickup domain and a placement domain re-
spectively. The break domain is the same as the placement
domain, except it ends with the break action. Each of these
domains come with different learning challenges. The
Navigation 1 domain is built with identical walls, which
provides a significant learning challenge since there are
visual ambiguities with respect to the agent’s location (see
Figure 4a). The Navigation 2 domain provides a different
learning challenge since there are obstacles that occlude the
agent’s view of the exit from different regions in the room
(Figure 4b). The pick up (Figure 4c), break and placement
(Figure 4d) domains require navigating to a specific location
and ending with the execution of a primitive action (Pickup,
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Figure 4: The domains: (a)-(d) are screenshots for each of
the domains we used to train the DSNs.

Break or Place respectively).

In order to train the different DSNs, we use the Vanilla
DQN architecture (Mnih et al. 2015) and performed a grid
search to find the optimal hyper-parameters for learning
DSNs in Minecraft. The best parameter settings that we
found include: (1) a higher learning ratio (iterations between
emulator states, n-replay = 16), (2) higher learning rate
(learning rate = 0.0025) and (3) less exploration (eps endt -
400K). We implemented these modifications, since the stan-
dard Minecraft emulator has a slow frame rate (approxi-
mately 400 ms per emulator timestep), and these modifi-
cations enabled the agent to increase its learning between
game states. We also found that a smaller experience replay
(replay memory - 100K) provided improved performance,
probably due to our task having a relatively short time hori-
zon (approximately 30 timesteps). The rest of the parame-
ters from the Vanilla DQN remained unchanged. After we
tuned the hyper-parameters, all the DSNs managed to solve
the corresponding sub-domains with almost 100% success
as shown in Table 2. (see supplementary material for learn-
ing curves).

Training an H-DRLN with a DSN

In this experiment, we train the H-DRLN agent to solve a
complex task, the two-room domain, by reusing a single
DSN (pre-trained on the navigation 1 domain).

Two room Domain: This domain consists of two-rooms
(Figure 5a(iii)). The first room is shown in Figure 5a(i)
with its corresponding exit (Figure 5a(ii)). Note that the
exit of the first room is not identical to the exit of the
navigation 1 domain (Figure 4a). The second room contains
a goal (Figure 5a(iii)) that is the same as the goal of the
navigation 1 domain (Figure 4a). The agent’s available
action set consists of the primitive movement actions and
the Navigate 1 DSN.

Skill Reusability/Knowledge Transfer: We trained the
H-DRLN architecture as well as the vanilla DQN on the
two-room domain. We noticed two important observations.

Figure 5: Composite domains: (a) The two-room domain
and (b) the complex domain with three different tasks, (i)
navigation, (ii) pickup and (iii) placement

Figure 6: Two room domain success percentages for the
vanilla DQN, the single DSN, the H-DRLN after a single
epoch (START) and in the last epoch (END).

(1) The H-DRLN architecture solves the task after a single
epoch and generates significantly higher reward compared
to the vanilla DQN. This is because the H-DRLN makes
use of knowledge transfer by reusing the DSN trained on
the one-room domain to solve the two-room domain. This
DSN is able to identify the exit of the first room (which
is different from the exit on which the DSN was trained)
and navigates the agent to this exit. The DSN is also able
to navigate the agent to the exit of the second room and
completes the task. The DSN is a temporally extended
action as it lasts for multiple time steps and therefore
increases the exploration of the RL agent enabling it to
learn to solve the task faster than the vanilla DQN. (2)
After 39 epochs, the vanilla DQN completes the task with
50% success percentage. This sub-optimal performance
is due to wall ambiguities, causing the agent to get stuck
in sub-optimal local minima. After the same number of
epochs, the agent completes the task using the H-DRLN
with 76% success.

Knowledge Transfer without Learning: We then
decided to evaluate the DSN (which we trained on the
navigation 1 domain) in the two-room domain without
performing any additional learning on this network. We
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found it surprising that the DSN, without any training on
the two-room domain, generated a higher reward compared
to the vanilla DQN which was specifically trained on the
two-room domain for 39 epochs. Figure 6 summarizes
the success percentage comparison between the different
architectures in the two-room domain. The vanilla DQN,
DSN, H-DRLN START and H-DRLN END had average
success percentages of 50%, 67.65%, 73.08% and 76% re-
spectively. The DSN performance is sub-optimal compared
to the H-DRLN architecture but still manages to solve the
two-room domain. This is an exciting result as it shows
the potential for DSNs to identify and solve related tasks
without performing any additional learning.

Training an H-DRLN with a Deep Skill Module

In this section, we discuss our results for training and
utilizing the H-DRLN with a Deep Skill Module to solve
the complex Minecraft domain. In each of the experiments
in this section, we utilized DDQN to train the H-DRLN and
the DDQN baseline unless otherwise stated.

Complex Minecraft Domain: This domain (Figure 5b)
consists of three rooms. Within each room, the agent is
required to perform a specific task. Room 1 (Figure 5b(i))
is a navigation task, where the agent needs to navigate
around the obstacles to reach the exit. Room 2 (Figure
5b(ii)) contains two tasks. (1) A pickup task whereby the
agent is required to navigate to and collect a block in the
center of the room; (2) A break task, where the agent needs
to navigate to the exit and break a door. Finally, Room 3
(Figure 5b(iii)) is a placement task whereby the agent needs
to place the block that it collected in the goal location. The
agent receives a non-negative reward if it successfully navi-
gates through room 1, collects the block and breaks the door
in room 2 and places the block in the goal location in room
3 (Arrow path in Figure 5b). Otherwise, the agent receives a
small negative reward at each timestep. Note that the agent
needs to complete three separate tasks before receiving a
sparse, non-negative reward. The agent’s available action
set are the original primitive actions as well as the DSN’s:
(1) Navigate 2, (2) Pickup, (3) Break and (4) Placement.

Training and Distilling Multiple DSNs: As mentioned
in the H-DRLN Section, there are two ways to incorporate
skills into the Deep Skill Module: (1) DSN Array and (2)
Multi-Skill Distillation. For both the DSN array and multi-
skill distillation, we utilize four pre-trained DSNs (Navigate
2, Pickup, Break and Placement). These DSNs collectively
form the DSN array. For the multi-skill distillation, we uti-
lized the pre-trained DSNs as teachers and distil these skills
directly into a single network (the student) using the dis-
tillation setup shown in Figure 7, and as described in the
Background Section. Once trained, we tested the distilled
network separately in each of the three individual rooms
(Figure 4b − d). The performance for each room is shown
in Table 2 for temperatures τ = 0.1 and τ = 1. The high
success percentages indicate that the agent is able to success-
fully complete each task using a single distilled network. In

Domain τ = 0.1 τ = 1 Original DSN
Navigation 81.5 78.0 94.6

Pick Up 99.6 83.3 100
Break 78.5 73.0 100

Placement 78.5 73.0 100

Table 2: The success % performance of the distilled multi-
skill network on each of the four tasks (Figures 4b− d).

Figure 7: Multi-skill distillation.

contrast to policy distillation, our novelty lies in the ability
to, not only distil skills into a single network, but also learn a
control rule (using the H-DRLN) that switches between the
skills to solve a given task.

Training the H-DRLN: We now show results for
training the (1) H-DRLN with a DSN array, (2) H-DRLN
with DDQN and a DSN array and (3) H-DRLN with DDQN
and a distilled multi-skill network (with τ = 0.1). This is
compared to (4) a DDQN baseline. The learning curves can
be seen in Figure 8. We performed these trials 5 times for
each architecture and measured success rates of 85 ± 10%,
91 ± 4% and 94 ± 4% (mean% ± std) for the H-DRLN,
H-DRLN with DDQN and H-DRLN with DDQN and a
distilled multi-skill network respectively. To calculate these
values we averaged the success percentages for the final
10 epochs. Note that the distilled H-DRLN has a higher
average success rate and both H-DRLN’s with DDQN have
lower variance. The DDQN was unable to solve the task.
This is due to a combination of wall ambiguities (as in the
two room domain) and requiring more time to learn. The
H-DRLN is able to overcome ambiguities and also learns
to reuse skills. We also trained the DDQN with intrinsic
rewards which enabled it to solve the task. However, this
required a significantly larger amount of training time
compared to the H-DRLN and the result was therefore
omitted.

Skill usage: Figure 9 presents the usage % of skills by
the H-DRLN agent during training. We can see that around
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Figure 8: The success % learning curves for the (1) H-
DRLN with a DSN array (blue), (2) H-DRLN with DDQN
and a DSN array (orange), and (3) H-DRLN with DDQN
and multi-skill distillation (black). This is compared with
(4) the DDQN baseline (yellow).

Figure 9: Skill usage % in the complex domain during train-
ing (black). The primitive actions usage % (blue) and the
total reward (yellow) are displayed for reference.

training epoch 50, the agent starts to use skills more fre-
quently (black curve). As a result, the H-DRLN agent’s per-
formance is significantly improved, as can be seen by the in-
crease in reward (yellow curve). After epoch 93, the agent’s
skill usage reduces with time as it needs to utilize more prim-
itive actions. This observation makes sense, since planning
only with skills will yield a sub-optimal policy if the skills
themselves are sub-optimal. However, planning with both
primitive actions and skills always guarantees convergence
to an optimal policy (utilizing only primitive actions in the
worst-case) (Mann and Mannor 2013). In our case, the skills
that were trained on the one-room domains helped the agent
to learn in the complex domain but were sub-optimal due to
small changes between the one-room domains and the com-
plex domain. Thus, the agent learned to refine his policy by
using primitive actions. To conclude, Figures 8 and 9 tell us
that, while skills are used approximately 20% of the time by
the final H-DRLN policy, they have a significant impact on
accelerating the agent’s learning capabilities.

Discussion

We presented our novel Hierarchical Deep RL Network
(H-DRLN) architecture. This architecture contains all
of the basic building blocks for a truly general lifelong
learning framework: (1) Efficient knowledge retention via
multi-skill distillation; (2) Selective transfer using temporal
abstractions (skills); (3) Ensuring interaction between (1)
and (2) with the H-DRLN controller. We see this work as a
building block towards truly general lifelong learning using
hierarchical RL and Deep Networks.

We have also provided the first results for learning Deep
Skill Networks (DSNs) in Minecraft, a lifelong learning
domain. The DSNs are learned using a Minecraft-specific
variation of the DQN (Mnih et al. 2015) algorithm. Our
Minecraft agent also learns how to reuse these DSNs on
new tasks by the H-DRLN. We incorporate multiple skills
into the H-DRLN using (1) the DSN array and (2) the
scalable distilled multi-skill network, our novel variation of
policy distillation.

In addition, we show that the H-DRLN provides superior
learning performance and faster convergence compared to
the DDQN, by making use of skills. Our work can also
be interpreted as a form of curriculum learning (Bengio et
al. 2009) for RL. Here, we first train the network to solve
relatively simple sub-tasks and then use the knowledge it
obtained to solve the composite overall task. We also show
the potential to perform knowledge transfer between related
tasks without any additional learning. This architecture also
has the potential to be utilized in other 3D domains such
as Doom (Kempka et al. 2016) and Labyrinth (Mnih et al.
2016b).

Recently, it has been shown that Deep Networks tend to
implicitly capture the hierarchical composition of a given
task (Zahavy, Zrihem, and Mannor 2016). In future work,
we plan to utilize this implicit hierarchical composition to
learn DSNs. In addition, we aim to (1) learn the skills online
whilst the agent is learning to solve the task. This could be
achieved by training the teacher networks (DSNs), whilst
simultaneously guiding learning in the student network (our
H-DRLN); (2) Perform online refinement of the previously
learned skills; (3) Train the agent in real-world Minecraft
domains.
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