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Abstract

Understanding the nature of dark energy, the mysterious force
driving the accelerated expansion of the Universe, is a major
challenge of modern cosmology. The next generation of cos-
mological surveys, specifically designed to address this is-
sue, rely on accurate measurements of the apparent shapes of
distant galaxies. However, shape measurement methods suf-
fer from various unavoidable biases and therefore will rely
on a precise calibration to meet the accuracy requirements
of the science analysis. This calibration process remains an
open challenge as it requires large sets of high quality galaxy
images. To this end, we study the application of deep con-
ditional generative models in generating realistic galaxy im-
ages. In particular we consider variations on conditional vari-
ational autoencoder and introduce a new adversarial objective
for training of conditional generative networks. Our results
suggest a reliable alternative to the acquisition of expensive
high quality observations for generating the calibration data
needed by the next generation of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our
cosmological model. We now have compelling evidence that
the expansion rate of the Universe is accelerating, suggest-
ing that the vast majority of the total energy content of the
Universe is the so-called dark energy. Yet we lack an under-
standing of what dark energy actually is, which provides one
of the main motivations behind the next generation of cos-
mological surveys such as LSST (LSST Science Collabora-
tion et al. 2009), Euclid (Laureijs et al. 2011) and WFIRST
(Green et al. 2012). These billion dollar projects are specifi-
cally designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
effect –i.e., the minute deflection of the light from distant ob-
jects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driv-
ing down statistical errors compared to the current genera-
tion of surveys, to the level where dark energy models may
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become distinguishable.
However, the quality of this analysis hinges on the accu-

racy of the shape measurement algorithms tasked with es-
timating the ellipticities of the galaxies in the survey. This
point is particularly crucial to the success of these missions,
as any unaccounted for measurement biases in their ensem-
ble averages would impact the final cosmological analysis
and potentially lead to false conclusions. In order to detect
and/or calibrate any such biases, future surveys will heavily
rely on image simulations, closely mimicking real observa-
tions but with a known ground truth lensing signal.

Galaxies

Propagation through the Universe

Stars

Propagation through the Earth’s 
atmosphere and telescope optics

Realisation on detector

(sheared) (pixellated)(blurred)

Propag
atmospmosp

(pixellated)(blurred)

Figure 1: Illustration of the processes involved in the mea-
surement of weak gravitational lensing. The light from dis-
tant galaxies is deflected by the matter in the Universe, caus-
ing a shearing of the galaxy images, which are then further
blurred by the atmosphere and the telescope optics and fi-
nally pixelated into a noisy image by the imaging sensor. Im-
age credit: Mandelbaum et al. (2014), adapted from Kitching
et al. (2010).

Producing these image simulations, however, is challeng-
ing in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only
be obtained by extremely expensive space-based imaging
surveys, which will remain a scarce resource for the foresee-
able future. The largest current survey being used for image
simulation purposes is the COSMOS survey (Scoville et al.
2007), carried out using the Hubble Space Telescope (HST).
Despite being the largest available dataset, COSMOS is rela-
tively small, and there is great interest in increasing the size
of our galaxy image samples to improve the quality of this
crucial calibration process.

In this work, we propose an alternative to the expen-
sive acquisition of more high quality calibration data using
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Figure 2: Samples from the GALAXY-ZOO dataset versus generated samples using conditional generative adversarial network
of Section 3. Each synthetic image is a 128× 128 colored image (here inverted) produced by conditioning on a set of features
y ∈ [0, 1]37. The pair of observed and generated images in each column correspond to the same y value. For details on these
crowd-sourced y features see (Willett et al. 2013). These instances are selected from the test-set and were unavailable to the
model during the training.

deep conditional generative models. In recent years, these
models have achieved remarkable success in modeling com-
plex high-dimensional distributions, producing natural im-
ages that can pass the visual Turing test. Two prominent ap-
proaches for training these models are variational autoen-
coder (VAE) (Kingma and Welling 2013; Rezende, Mo-
hamed, and Wierstra 2014) and generative adversarial net-
work (GAN) (Goodfellow et al. 2014). Our aim is to train a
coditional variation of these models using existing HST data
and generate new galaxy images “conditioned” on statistics
of interest such as the brightness or size of the galaxy. This
will allow us to synthesize calibration datasets for specific
galaxy populations, with objects exhibiting realistic mor-
phologies. In related works in machine learning literature
Regier et al. (2015) use a convex combination of smooth
and spiral templates in an (unconditioned) generative model
of galaxy images and Regier, McAuliffe, and Prabhat (2015)
propose using VAE for this task.1

In the following, Section 1 gives a brief background on
the image generation for calibration and its significance for
modern cosmology. We then review the current approaches
to deep conditional generative models and introduce new
techniques for our problem setting in Sections 2 and 3. In
Section 4 we assess the quality of the generated images by

1The current approach to address this problem in cosmology
literature is to fit analytic parametric light profiles (defined by
size, intensity, ellipticity and steepness parameters) to the observed
galaxies, followed by a simple modelling of the distribution of the
fitted parameters as a function of a quantity of interest, such as the
galaxy brightness. This modelling usually simply involves fitting
a linear dependence of mean and standard deviation of a Gaus-
sian distribution – e.g., see (Hoekstra, Viola, and Herbonnet 2016);
Appendix A. However, simple parametric models of galaxy light
profiles do not have the complex morphologies needed for cali-
bration task. The only currently available alternative, if realistic
galaxy morphologies are needed, is to use the training set images
themselves as the input of the simulation pipeline. This involves
subsampling the training set to match the distribution of size, red-
shift and brightness of the target galaxy simulations, leaving only a
relatively small number of objects, reused several hundred times to
simulate a large survey – e.g., see (Jarvis et al. 2016); Section 6.1.

comparing the conditional distributions of shape and mor-
phology parameters between simulated and real galaxies,
and find good agreement.

1 Weak Gravitational Lensing

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted γ, whose amplitude and orientation depend on
the matter distribution between the observer and these dis-
tant galaxies. This shear affects in particular the apparent
ellipticity of galaxies, denoted e. Measuring this weak lens-
ing effect is made possible under the assumption that back-
ground galaxies are randomly oriented, so that the ensem-
ble average of the shapes would average to zero in the ab-
sence of lensing. Their apparent ellipticity e can then be
used as a noisy but unbiased estimator of the shear field γ:
E[e] = γ. The cosmological analysis then involves comput-
ing auto- and cross-correlations of the measured ellipticities
for galaxies at different distances. These correlation func-
tions are compared to theoretical predictions in order to con-
strain cosmological models and shed light on the nature of
dark energy.

However, measuring galaxy ellipticities such that their en-
semble average (used for the cosmological analysis) is unbi-
ased is an extremely challenging task. Fig. 1 illustrates the
main steps involved in the acquisition of the science images.
The weakly sheared galaxy images undergo additional dis-
tortions (essentially blurring) as they go through the atmo-
sphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this fig-
ure illustrates, the cosmological shear is clearly a subdom-
inant effect in the final image and needs to be disentangled
from subsequent blurring by the atmosphere and telescope
options. This blurring, or Point Spread Function (PSF), can
be directly measured by using stars as point sources, as
shown at the top of Fig. 1.

Once the image is acquired, shape measurement algo-
rithms are used to estimate the ellipticity of the galaxy while
correcting for the PSF. However, despite the best efforts of
the weak lensing community for nearly two decades, all cur-
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Figure 3: Samples from the COSMOS dataset and generated samples using the conditional variational autoencoder (C-VAE,
scheme I) and our variation on conditional generative adversarial network (C-GAN). Each column image shows three 64× 64
images (here inverted) produced by conditioning on the same set of features y ∈ �3 in the test-set. Due to its high dynamic
range, most figures are very faint. In the bottom three rows, each image is individually normalized.

rent state-of-the-art shape measurement algorithms are still
susceptible to biases in the inferred shears. These measure-
ment biases are commonly modeled in terms of additive and
multiplicative bias parameters c and m defined as:

E[e] = (1 +m) γ + c (1)

where γ is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors
such as the PSF size/shape, the level of noise in the images
or, more generally, intrinsic properties of the galaxy popula-
tion (like their size and ellipticity distributions, etc. ). Cali-
bration of these biases can be achieved using image simula-
tions, closely mimicking real observations for a given survey
but using galaxy images distorted with a known shear, thus
allowing the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al. 2015), use a forward modeling of the obser-
vations, reproducing all the steps of the image acquisition
process in Fig. 1, and therefore require as a starting point
galaxy images with high resolution and S/N. The main dif-
ficulty in these image simulations is therefore the need for a
calibration sample of high quality galaxy images representa-
tive of the galaxy population of the survey being simulated.
Our aim in this work is to train a deep generative model
which can be used to cheaply synthesize such data sets for
specific galaxy populations, by conditioning the samples on
measurable quantities.

1.1 Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure
of distance). To facilitate the training, we align all galax-
ies along their major axis and produce 85,000 instances of
64x64 image stamps using the GalSim package.

We also use the GALAXY-ZOO dataset (Willett et al. 2013)
to demonstrate the abilities of our alternative conditional ad-
versarial objective. Each of the 61,000 galaxy images in this
dataset is accompanied by y ∈ [0, 1]37 features produced
using a crowd-sourced set of questions that form a decision

tree. We cropped the central 50% of these images and re-
sized them to 128×128 pixels. We augmented both datasets
by flipping the images along the vertical and horizontal axes.

2 Conditional Variational Autoencoder

Applications in semi-supervised learning and structured
prediction have motivated different versions of the “con-
ditional” variational autoencoder (C-VAE) in the past
(Kingma et al. 2014; Sohn, Lee, and Yan 2015). Although
the architecture that we discuss here resembles to those of
(Kingma et al. 2014; Sohn, Lee, and Yan 2015), there are
some differences due to different objectives.

We are interested in learning the conditional density
p∗(x | y) for x ∈ X and y ∈ Y , given a set of observations
D = (x̂1, ŷ1), . . . , (x̂N , ŷN ), by learning model parameters
θ that maximizes the conditional likelihood

∏
(x̂,ŷ)∈D pθ(x̂ |

ŷ) – e.g., for the COSMOS dataset X = �64×64 and Y = �3.
In a latent-variable model, an auxiliary variable z ∈ Z is in-
troduced to increase the expressive power of pθ(x, z | y),
such that

∫
Z pθ(x, z | y)dz is the marginal of interest. Here,

different assignments to z can explain variations and com-
plex statistical dependencies in p(x | y).

To enable efficient (ancestral) sampling from this model,
pθ can be a directed model pθ(x, z | y) = pθ1(z | y) pθ2(x |
z, y), where we first sample z ∼ pθ1(· | y) followed by
x ∼ pθ2(· | z, y). An expressive form for the conditional
distributions pθ1 and pθ2 is a deep neural network, that can
represent complex directed graphical models. Here, for ex-
ample, we model pθ2(x | z, y) using multi-layered convolu-
tional or densely connected neural networks that encode the
mean and variance of a multi-variate Gaussian for the COS-
MOS dataset and the expectation of Bernoulli variables for
the GALAXY-ZOO dataset.

To learn the parameters θ one needs to estimate the poste-
rior pθ(z | x, y), which is often intractable in directed mod-
els. An elegant solution to this problem is to introduce a sec-
ond directed model q(z | x, y), called inference or recogni-
tion model. This conditional distribution is also encoded as
a deep neural network and it is tasked with estimating the
intractable posterior pθ(z | x, y).

This is achieved through a variational bound on the con-
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Figure 4: Cross-correlation between y and z in C-VAE when
p(z | y) = p(z), with and without cross-correlation penalty.

ditional log-likelihood:

log(pθ(x̂ | ŷ)) ≥− DKL(qφ(z | x̂, ŷ)‖pθ1(z | ŷ)) (2)
+ Ez∼qφ(·|x̂,ŷ)[log pθ2(x̂ | z, ŷ)]

where the first term is the KL-divergence between the pos-
terior qφ and the conditional prior pθ1 and the second term
is the reconstruction error – that is we want the model to
achieve low reconstruction error while encoding the dataset.
At the same time the KL-divergence term encourages the
code to follow a distribution, dictated by the the condi-
tion y. Fortunately, the reparametrization-trick by (Kingma
and Welling 2013; Rezende, Mohamed, and Wierstra 2014;
Williams 1992) enables the maximization of this lower-
bound (i.e., learn θ1, θ2 and φ) using stochastic back-
propagation through the layers of these three neural net-
works. This enables maximizing the log-likelihood of an
expressive model with large number of parameters through
variations of stochastic gradient descent.

2.1 Cross-Correlation

Inspired by the application of cross-correlation in disentan-
gling the factors in an autoencoder by Cheung et al. (2014),
we also consider an alternative method of conditioning in
VAE. Let us proceed with a simple question: what happens
here if we simplify the prior pθ1(z | y) ⇒ pθ1(z)? In prin-
ciple, the simplified C-VAE would try to make the posterior
qφ(z | x, y) independent of y.2 In this case, for generating
samples x ∼ pθ(· | y), we could still sample z ∼ pθ1(·) and
then generate x ∼ pθ2(· | y, z).

In practice, we observe z and y become more and more
decorrelated during the training, but this happens at a slow
pace. We can further enforce this decorrelation using a mini-
batch cross-correlation penalty

C({ŷ}, {z}) def
=

1

2

∑

i,j

( 1

N

N∑

n=1

(ŷ
(n)
i − ȳi)(z

(n)
i − z̄i)

)2

where {ŷ}/{z} are conditions/codes in a mini-batch of size
N , where z ∼ qψ(· | x̂) and i, j index dimensions of ŷ, z
respectively. Here ȳi and z̄i are mini-batch average values.

2This is because the information content of y is already avail-
able to the generative model pθ(x | y, z) for reconstruction and
reducing the information exchange through z should reduce the
KL-divergence penalty DKL(qφ(z | x̂, ŷ)‖p(z)).
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Figure 5: Negative log-likelihood of different C-VAE
schemes. Note that scheme II can only serve as a baseline
and due to correlation between ŷ and z cannot be used for
conditional sampling.

Lack of cross-correlation only entails independence, if
both yi and zi have Gaussian distribution. Although pθ1(z)
is by design a standard Gaussian, the condition y may have
an arbitrary distribution. To resolve this, we transform ŷi →
F−1
N (Fyi

(ŷi)), where Fyi
is the empirical cumulative distri-

bution function (CDF) for ŷ ∈ D and F−1
N is the (numer-

ically approximated) inverse CDF of Gaussian. The trans-
formed variable has a Gaussian distribution.

2.2 Experiments

Figure 4 compares the reduction in the average cross-
correlation between ŷ and z for the same network, with and
without the cross-correlation penalty. For numerical stability
we linearly increase the penalty coefficient from 0 to 1000
over iterations. These results are for the COSMOS dataset.
All C-VAE results are using the log-pixel-intensity, also for
numerical stability.

Figure 5 compares − log(pθ(x̂ | ŷ)) for three models:

I using a neural network to encode pθ1(z | y)
II using pθ1(z | y) = pθ1(z)

III pθ1(z | y) = pθ1(z) plus cross-correlation penalty

The figure suggests that the first scheme eventually produces
better models. It also shows that enforcing the independence
of z and y only slightly decreases the likelihood, compared
to the baseline II where z and y remain highly dependent.

3 A New Objective for Adversarial Training

A major problem with VAE-generated images is their blur-
riness. A few recent works address this issue (Kingma, Sal-
imans, and Welling 2016; Larsen, Sønderby, and Winther
2015; Dosovitskiy and Brox 2016) – e.g., by defining a
more expressive reconstruction loss. Fortunately, the noise
model is available for COSMOS images, and the added noise
to some extent reduces this problem in our application (see
Section 4).

An alternative to generative modeling that does not suf-
fer from this problem is offered by adversarial training of
generative networks (Goodfellow et al. 2014). In the adver-
sarial setting, a generator Gω : Z → X attempts to fool
the discriminator Dψ : X → [0, 1] into classifying its fake
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Figure 6: The prediction error for real and generated images
in C-GAN for COSMOS dataset.

instances x = G(z) as real, while the discriminator’s ob-
jective is to correctly classify the two sources of real ver-
sus generated instances. Deep networks representing these
adversaries are trained alternatively, and under some condi-
tions pG (the implicit distribution of the generator Gω for
z ∼ U(0, 1)) converges to p∗ –i.e., at this fixed-point, the
generator produces realistic images that are indistinguish-
able by the discriminator.

The conditional variation of this method was first intro-
duced by Mirza and Osindero (2014) and used in a cascade
of conditional models with increasing resolution in (Denton
et al. 2015). In these conditional models, the generator Gω :
Z×Y → X and the discriminator Dψ : X ×Y → [0, 1], are
both deep neural networks that are now conditioned on the
same observed variable ŷ ∈ D. The min-max formulation of
this adversarial setting seeks a saddle-point for

min
ω

max
ψ

Ex̂,ŷ∈D,z∈U
[
log(Dψ(x̂, ŷ))

+ log(1−Dψ(Gω(z, ŷ), ŷ))
]

In practice it is much more efficient to use a different loss
function for the generator as it produces stronger gradients
for the generator at the beginning (Goodfellow et al. 2014):

max
ψ

Ex̂,ŷ∈D,z∈U
[
log(Dψ(x̂, ŷ))+

log(1−Dψ(Gω(z, ŷ), ŷ))
]

max
ω

Ez∈U
[
log(Dψ(Gω(z, ŷ), ŷ))

]

Here, one must carefully adjust the expressive power of G
and D to avoid oscillations, and domination of either adver-
sary. The choice of hyper-parameters is known to be a ma-
jor hurdle in training of adversarial networks and using this
scheme, despite much effort, we could not train a generator
for our problem that uses continuous conditional variables.

We introduce an alternative adversarial objective for
conditional generative modeling that in our experience is
more stable and did not require any hyper-parameter tun-
ing in our application. The basic idea is simple: A predictor
R : X → Y replaces the discriminator D : X × Y → [0, 1].
The predictor attempts to produce predictions of the condi-
tion ŷ ∈ D for the real data, that are at least as good as its
predictions for generated instances. The generator’s objec-
tive is to produce instances with low prediction error

Figure 7: Comparison of a C-VAE sample before and after
adding noise and a real COSMOS image with corresponding
size, magnitude and redshift.

Predictor: min
ψ

min{0, (3)

Ex̂,ŷ∈D,z∈U
[
�(Rψ(Gω(z, ŷ)), ŷ)− �(Rψ(x), ŷ)

]}
Generator: min

ω
Eŷ∈D,z∈U

[
�(Rψ(Gω(z, ŷ)), ŷ)

]
(4)

where in our application �(y, ŷ) = ‖y − ŷ‖22.

(a) Galaxy sizes (b) Galaxy brightness

Figure 8: Comparison of galaxy sizes and brightness be-
tween real COSMOS images and C-VAE samples. Colors in-
dicate the value of the relevant variable used to condition the
generated images (half-light radius for size and magnitude
for brightness)

Why should the generator produces realistic images at all
as long as the predictor makes equally bad predictions for
both real and generated images? Both errors Eqs. (3) and (4)
will be low in this case. The key here is that the generator
always seeks to improve its samples to increase their predic-
tion accuracy and therefore the dynamics of this adversarial
setting does not allow this mode of failure.

This scheme, also relaxes the constraint on the expressive
power of the adversaries. This is because the predictor has
no incentive to lower the error for the real data, as long as
its prediction errors are not worse that those of the generated
data. Therefore, it is only the generator that fuels the compe-
tition and training is practically finished when the generator
is unable to improve.

A mode of failure that our scheme does not resolve is
the collapse of generator, where generator G(y, z) repeats
few output patterns by solely relying on y and basically ig-
noring the random feed z. The predictor eventually realizes
this repeating pattern in generated data but gradient descent
can no longer rescue the generator from this local optima.
A solution to this problem called mini-batch discrimination
was recently proposed by Salimans et al. (2016), where each
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instance in the mini-batch is augmented with information
about its differences with other instances in the same mini-
batch. The Predictor can therefore detect this tendency of
the generator early on, and the generator incurs a loss for its
behavior before its complete collapse. For better mini-batch
statistics, we use relatively larger mini-batches with 128/256
instances.

3.1 Experiments

Following Radford, Metz, and Chintala (2015) we use
(de)convolutional layers with (fractional) stride, batch nor-
malization (Ioffe and Szegedy 2015) and leaky-ReLU acti-
vation functions in our deep networks. For optimization, we
use Adam (Kingma and Ba 2014) with reduced exponential
decay rate of .5 for the first moment estimates.

Figure 6 reports the prediction loss �(Rψ(Gω(z, ŷ), ŷ))
and �(Rψ(x), ŷ) for the COSMOS dataset, were we use 4
(de)convolution layers. The figure suggests that the predictor
tends to keep the prediction error of the real images slightly
higher than that of generated images. Both of these quan-
tities reduce over time, and their agreement with validation
errors could monitor convergence. The fact that the error is
decreasing over time and prediction error for both real and
generated data remains close to each other is due to hav-
ing a “laid back” predictor – i.e., by removing the min(0, .)
operation in predictor’s loss, we would lose both of these
properties.

For illustration purposes, we applied the same method to
the GALAXY-ZOO dataset. Figure 2 shows some instances in
the test-set accompanied by C-GAN generated image condi-
tioned on the same ŷ. For this dataset we used 5-layer fully
(de)convolutional generator and predictor, mini-batch dis-
crimination, batch-normalization and tanh activation func-
tion for the final layer of the generator.

4 Validation
In this section, we assess the quality of the model generated
galaxy images by comparing common image statistics used
in weak lensing analyses. Our aim is to consistently mea-
sure the same statistics on real COSMOS images and images
generated by our model for the same set of input variables
y. These statistics are affected by the presence of noise in
the image, but as was noted in the previous section, our C-
VAE generates essentially noiseless images, which prevents
direct comparison with real images. We limit this analysis
to C-VAE generated images (as we found it to produce more
consistent results compared to C-GAN) and add a noise field
to our generated images. This noise model, calibrated for
COSMOS observations, is provided by the GalSim package;
see Fig. 7.

The most commonly used image statistics in weak lensing
analyses rely on the second moments of the galaxy’s inten-
sity profile I(u1, u2), where (u1, u2) are pixel coordinates.
The second moment tensor Q is defined as:

Qαβ =

∫
du1du2 W (u1, u2) I(u1, u2) uαuβ∫

du1du2 W (u1, u2) I(u1, u2)
,

with (α, β) ∈ {1, 2} and where W is a weighting func-
tion. This tensor can be used to define a size measurement

σ = | det(Q)|1/4 which reduces to the standard deviation if
the light profile is a Gaussian. More importantly, the second
moments are commonly used to measure galaxy ellipticities
which can be defined as:

e = e1 + ie2 =
Q11 −Q22 − 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2

To measure Q in practice, we use the adaptive moments
method (Hirata and Seljak 2003; Mandelbaum et al. 2005)
which estimates the second order moments by fitting an el-
liptical Gaussian profile to the galaxy light profile. As a side
product of this method, we can also use the amplitude of the
best fit Gaussian model as a proxy for the brightness of the
galaxy.

Figure 9: Comparison of galaxy ellipticity (left) and size
(right) distributions measured from second moments be-
tween real COSMOS images and CVAE samples.

We compare real COSMOS images to C-VAE samples by
processing the images in pairs, where every COSMOS galaxy
in our validation set is associated to a C-VAE sample condi-
tioned on the half-light radius, magnitude and redshift of the
real galaxy. Fig. 8a shows for each pair of images the galaxy
size σ, as measured using second order moments; see also
Fig. 3. The color of the points indicates the half-light radius
of the COSMOS galaxy in the pair, also used to condition the
C-VAE sample. As can be seen, the sizes of generated galax-
ies are generally unbiased. Fig. 8b shows the similar results
for brightness; C-VAE is generating samples of the correct
brightness without any significant bias.

The most relevant image statistics for weak lensing sci-
ence are the ellipticity and size distributions of a given
galaxy sample. Fig. 9 compares these overall distributions
measured on real and generated galaxies. Note that contrary
to the previous test where the quantities considered (size and
brightness) were part of the condition variable y, the elliptic-
ity is not. Therefore, this test allows us to check how well the
model is able to blindly learn correct galaxy shapes. This fig-
ure shows that despite being slightly more elliptical than real
galaxies, the ellipticity distribution of the C-VAE samples is
broadly consistent with the COSMOS distribution. Fig. 9 also
compares size distributions which are in good agreement.
This comes as no surprise however as C-VAE samples are
explicitly conditioned on galaxy sizes and the previous test
has shown these samples to be largely unbiased.
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Conclusion

In this paper, we proposed novel techniques and studied the
application of two most promising methods for deep condi-
tional generative modeling in producing galaxy images. In
the future, we plan to measure more subtle morphological
statistics in generated images and find ways for simultane-
ous learning of the noise model. We are also investigating
the application of our variation on adversarial training in
other settings and assessing the effectiveness of the predictor
as a stand-alone classification/regression model.

References
Cheung, B.; Livezey, J. A.; Bansal, A. K.; and Olshausen, B. A.
2014. Discovering hidden factors of variation in deep networks.
arXiv preprint arXiv:1412.6583.
Denton, E. L.; Chintala, S.; Fergus, R.; et al. 2015. Deep gen-
erative image models using a laplacian pyramid of adversarial
networks. In Advances in Neural Information Processing Sys-
tems, 1486–1494.
Dosovitskiy, A., and Brox, T. 2016. Generating images with
perceptual similarity metrics based on deep networks. arXiv
preprint arXiv:1602.02644.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Gen-
erative adversarial nets. In Advances in Neural Information Pro-
cessing Systems, 2672–2680.
Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.;
Brown, R.; Conselice, C.; Donahue, M.; et al. 2012. Wide-Field
InfraRed Survey Telescope (WFIRST) Final Report. ArXiv e-
prints.
Hirata, C., and Seljak, U. 2003. Shear calibration biases in
weak-lensing surveys. Monthly Notices of the Royal Astronom-
ical Society 343:459–480.
Hoekstra, H.; Viola, M.; and Herbonnet, R. 2016. A study
of the sensitivity of shape measurements to the input pa-
rameters of weak lensing image simulations. arXiv preprint
arXiv:1609.03281.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167.
Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S.;
Amara, A.; Armstrong, R.; Becker, M.; Bernstein, G.; Bonnett,
C.; et al. 2016. The des science verification weak lensing shear
catalogues. Monthly Notices of the Royal Astronomical Society
460(2):2245–2281.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M.
2014. Semi-supervised learning with deep generative models.
In Advances in Neural Information Processing Systems, 3581–
3589.
Kingma, D. P.; Salimans, T.; and Welling, M. 2016. Im-
proving variational inference with inverse autoregressive flow.
arXiv:1606.04934.
Kitching, T.; Balan, S.; Bernstein, G.; Bethge, M.; Bridle, S.;
Courbin, F.; Gentile, M.; Heavens, A.; et al. 2010. Gravitational

Lensing Accuracy Testing 2010 (GREAT10) Challenge Hand-
book. ArXiv e-prints.
Larsen, A. B. L.; Sønderby, S. K.; and Winther, O. 2015.
Autoencoding beyond pixels using a learned similarity metric.
arXiv preprint arXiv:1512.09300.
Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J. .; Brinch-
mann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.;
and et al. 2011. Euclid Definition Study Report. ArXiv e-prints.
LSST Science Collaboration; Abell, P. A.; Allison, J.; Ander-
son, S. F.; Andrew, J. R.; Angel, J. R. P.; Armus, L.; Arnett, D.;
Asztalos, S. J.; Axelrod, T. S.; and et al. 2009. LSST Science
Book, Version 2.0. ArXiv e-prints.
Mandelbaum, R.; Hirata, C. M.; Seljak, U.; Guzik, J.; Pad-
manabhan, N.; Blake, C.; Blanton, M. R.; Lupton, R.; and
Brinkmann, J. 2005. Systematic errors in weak lensing: appli-
cation to SDSS galaxy-galaxy weak lensing. Monthly Notices of
the Royal Astronomical Society 361:1287–1322.
Mandelbaum, R.; Rowe, B.; Bosch, J.; Chang, C.; Courbin, F.;
Gill, M.; Jarvis, M.; Kannawadi, A.; et al. 2014. The Third
Gravitational Lensing Accuracy Testing (GREAT3) Challenge
Handbook. The Astrophysical Journal Supplement 212:5.
Mirza, M., and Osindero, S. 2014. Conditional generative ad-
versarial nets. arXiv preprint arXiv:1411.1784.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative ad-
versarial networks. arXiv preprint arXiv:1511.06434.
Regier, J.; Miller, A.; McAuliffe, J.; Adams, R.; Hoffman, M.;
Lang, D.; Schlegel, D.; and Prabhat, M. 2015. Celeste: Varia-
tional inference for a generative model of astronomical images.
In Proceedings of the 32nd International Conference on Ma-
chine Learning.
Regier, J.; McAuliffe, J.; and Prabhat. 2015. A deep generative
model for astronomical images of galaxies. NIPS Workshop:
Advances in Approximate Bayesian Inference.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic
backpropagation and approximate inference in deep generative
models. arXiv preprint arXiv:1401.4082.
Rowe, B. T. P.; Jarvis, M.; Mandelbaum, R.; Bernstein, G. M.;
Bosch, J.; Simet, M.; Meyers, J. E.; Kacprzak, T.; et al. 2015.
GALSIM: The modular galaxy image simulation toolkit. As-
tronomy and Computing 10:121–150.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for training
gans. arXiv preprint arXiv:1606.03498.
Scoville, N.; Aussel, H.; Brusa, M.; Capak, P.; Carollo, C. M.;
Elvis, M.; Giavalisco, M.; Guzzo, L.; et al. 2007. The Cos-
mic Evolution Survey (COSMOS): Overview. The Astrophysi-
cal Journal Supplement Series 172:1–8.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning structured output
representation using deep conditional generative models. In Ad-
vances in Neural Information Processing Systems, 3483–3491.
Willett, K. W.; Lintott, C. J.; Bamford, S. P.; Masters, K. L.;
Simmons, B. D.; Casteels, K. R.; Edmondson, E. M.; Fortson,
L. F.; et al. 2013. Galaxy zoo 2: detailed morphological classi-
fications for 304 122 galaxies from the sloan digital sky survey.
Monthly Notices of the Royal Astronomical Society stt1458.
Williams, R. J. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine learn-
ing 8(3-4):229–256.

1494




