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Abstract

Automatic generation of natural language description for in-
dividual images (a.k.a. image captioning) has attracted exten-
sive research attention. In this paper, we take one step fur-
ther to investigate the generation of a paragraph to describe a
photo stream for the purpose of storytelling. This task is even
more challenging than individual image description due to the
difficulty in modeling the large visual variance in an ordered
photo collection and in preserving the long-term language co-
herence among multiple sentences. To deal with these chal-
lenges, we formulate the task as a sequence-to-sequence
learning problem and propose a novel joint learning model by
leveraging the semantic coherence in a photo stream. Specif-
ically, to reduce visual variance, we learn a semantic space
by jointly embedding each photo with its corresponding con-
textual sentence, so that the semantically related photos and
their correlations are discovered. Then, to preserve language
coherence in the paragraph, we learn a novel Bidirectional
Attention-based Recurrent Neural Network (BARNN) model,
which can attend on the discovered semantic relation to pro-
duce a sentence sequence and maintain its consistence with
the photo stream. We integrate the two-step learning com-
ponents into one single optimization formulation and train
the network in an end-to-end manner. Experiments on three
widely-used datasets (NYC/Disney/SIND) show that the pro-
posed approach outperforms state-of-the-art methods with
large margins for both retrieval and paragraph generation
tasks. We also show the subjective preference of the machine-
generated stories by the proposed approach over the baselines
through a user study with 40 human subjects.

Introduction

Generating a human-level narrative from an ordered photo
stream, in this research we refer to as “visual storytelling”,
presents a fundamental challenge to both computer vision
and natural language processing areas. This is challenging
because it requires not only the full understanding of each
photo in a stream as well as the relation among different pho-
tos, but also a sophisticated mechanism to generate a natural
paragraph from the perspective of language coherence.

∗This work was performed when Yu Liu was visiting Microsoft
Research Asia as a research intern. This research was also sup-
ported by US New York State Empire Innovation Program.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Image Captions: 
A group people is play ball. 
A man is playing a ball. 
A group of people is having dinner 
around a table.

Storytelling: 
A group of people gather as a team. 
The ball game begins. 
After the ball game, the team winds 
down with some food.

Figure 1: The difference between storytelling and image
captions in isolation is the coherence among sentences, i.e.
the green term “ball game” and the blue term “the team” are
introduced from previous photos with corresponding color.
[Best viewed in color]

Existing researches have focused more on generating nat-
ural descriptions for a single photo. In this research we take
one step further to investigate the problem of paragraph-
ing a photo stream. We consider this task as a sequence-
to-sequence learning problem, where the input is a photo
stream (with order) while the output is a sentence sequence,
each corresponding to one photo.

It is a totally different issue from conventional sequence-
to-sequence problems. The closely related research to vi-
sual storytelling is image and video captioning, where the
Recurrent Neural Networks (RNNs) are usually employed
for generating a single sentence from a given image or
video clip (Venugopalan et al. 2015a; Donahue et al. 2015;
Venugopalan et al. 2015b; Pan et al. 2016). However, the
task of visual storytelling is more challenging due to the dif-
ficulty of modeling the large visual variance in an ordered
photo collection and preserving the long-term language co-
herence among multiple sentences. First, at the input side,
photo stream usually has significantly large visual variance
(Fu et al. 2015), such as in Figure 1. Most existing models
for sequence learning with deep structure (e.g., RNN) are
not designed to deal with such long-term dependency with
large visual variance. Second, at the output side, visual sto-
rytelling requires much more complicated textual form in
coherent and consistent paragraph. As the storytelling in the
Figure 1, the overlapping of semantics between sentences
often results in complex relational structure of a story.

To deal with the above two challenges, we formulate this
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task as a sequence-to-sequence learning problem and pro-
pose a novel joint learning model by leveraging the semantic
coherence in a photo stream.

First, we learn a common semantic space by jointly em-
bedding each image with its corresponding sentence using
semantic embedding in (Kiros, Salakhutdinov, and Zemel
2014) to alleviate visual variance problem. Semantic learn-
ing is important in tasks like multimedia representation and
search (Mei et al. 2014). As other semantic learning works
(Fu et al. 2014; Wang et al. 2016), we assume that the se-
mantics of visual and text in telling the same story are rel-
evant (Liu, Mei, and Chen 2016). Our idea is to learn a
semantic space where the related photo-sentence pair can
be close enough to reflect the same semantics. As a result,
semantically related photos with different visual attributes
(Gan, Yang, and Gong 2016) will have large visual gap,
but can be bridged by the neighbor-relation in the seman-
tic space. Hence the visual variance is reduced and seman-
tics are learned. For example, as in Figure 1, since it can be
observed in the story dataset that “dinner/picnic” almost al-
ways follow a “ball game,” we learn that these two visually
different events should be semantically closed. Moreover, a
semantic relation matrix (coherence matrix), can be further
identified by distance measure in this space. The coherence
matrix is important to describe the semantic structure of the
story, and will be used in an attention scheme to guide the
training of our sequence model for narrative paragraph gen-
eration.

Second, we propose a Bidirectional Attention-based Re-
current Neural Network (BARNN) to use the coherence ma-
trix to enforce the sentence-to-sentence coherence. In our
model, as the convention, the memory of each recurrent
timestep encodes the deep feature (semantic in our case)
of one photo/sentence in the sequence. Existing research
(Park and Kim 2015) has proposed to use bidirectional RNN
(BRNN) to capture sentence-level transition, and only con-
siders the adjacent memories in the sequence. However, as
we have shown in Figure 1, stories usually consist of much
more complex structure, where the semantic of arbitrary
timesteps in the sequence can be related. In this structure,
each semantic memory may be contributed from arbitrary
timesteps. In the storytelling example in Figure 1, the term
“the team” and “ball game” in sentence 1 and 2 can con-
tributes to the prior knowledge “after the ball game, the
team...” in sentence 3. To this end, we propose to design
a framework with attention mechanism that integrates the
memory semantics from various timesteps, via connections
called skip. For this purpose, We design a novel recurrent
unit by granting classic GRU with skip connections to al-
low this attention scheme. Thus the unit is called skip-GRU
(sGRU). Note that the coherence matrix plays a role here of
guiding the attention in how much information to contribute.
Therefore, learning this BARNN can enable us to coherently
model the sequence of photos. Note that we combine the
learning of BARNN and previous semantic embedding into
one objective function and train in end-to-end manner.

The contributions of the paper can be summarized as:
• The inherent challenges of visual storytelling are ad-

dressed by training an cross-modality embedding model,

which can overcome the large visual variance in photo
stream and represent the semantic of an underlying story.

• A novel BARNN framework with a new-designed skip-
GRU is proposed to leverage implicit semantic relation in
order to enforce the coherence of predicted sentences.

• Extensive experiments on the three storytelling datasets
(NYC, Disney (Park and Kim 2015) and SIND (Huang
et al. 2016)) have been carried out, and superior perfor-
mance over the state-of-the-art with large margins in both
retrieval and generation tasks has been obtained.

Related Work

Due to rapid growth of research interest recently in visual-
to-language translation, there are a good number of related
works has been carried out. They can be divided into three
categories: single-frame to single-sentence, multi-frame to
single-sentence and multi-frame to multi-sentence.

Single-frame to single-sentence modeling These re-
searches focus on image captioning task, which can be clas-
sified into two sub-categories: semantic element based meth-
ods (Kulkarni et al. 2013; Farhadi et al. 2010; Mitchell et
al. 2012; Yang et al. 2011) and Convolutional Neural Net-
work (CNN) based methods(Vendrov et al. 2016; Kiros,
Salakhutdinov, and Zemel 2014; Karpathy and Li 2015;
Vinyals et al. 2015; Mao et al. 2015). In semantic element
based methods, the regions of interest are first detected and
represented in intermediate space defined by a group of se-
mantic elements (object, action, scene) to fill in a sentence
template. In CNN based model (Krizhevsky, Sutskever, and
Hinton 2012), the CNN fully-connected layer output is ex-
tracted to represent the input images for classification.

Multi-frames to single-sentence modeling This family
of approaches, mainly focus on video captioning to cap-
tures the temporal dynamics in variable-length of video
frames sequence and to map them to a variable-length of
words (Venugopalan et al. 2015a; Donahue et al. 2015;
Venugopalan et al. 2015b). The sequence-to-sequence mod-
eling are mainly relied on a RNN framework, such as Long-
Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber
1997). Moreover, bidirectional RNN (BRNN) is explored re-
cently to model the sequence in both forward and backward
passes (Peris et al. 2016). The approach proposed by (Yao et
al. 2015) argues that a video has local-global temporal struc-
ture. They employ a 3D CNN to extract local action feature
and an attention-based LSTM to exploit the global structure.
However, this family of approaches have not yet exploited
the visual variance and text coherence problem simultane-
ously in one single framework.

Multi-frame to multi-sentence modeling The work by
(Park and Kim 2015) is the first scheme to explore the
task of image streams to sentence sequence. They use a co-
herence model in textual domain, which is able to resolve
the entity transition patterns frequently found between sen-
tences. However, they define the coherence as rigid word re-
appearance frequency, which is unable to address the seman-
tic gap and therefore cannot fully express the deeply mean-
ings. Moreover, they focuses on textual coherence without
acknowledging the problem of large visual variance.
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Figure 2: The framework of our approach. The images sequence is input to (a) to obtain 4096-dim VGG features, which is
then mapped to 300-dim semantic embedding vectors x via (b). Then on the right side, x is fed to the (c) BARNN as a whole
sequence to predict their corresponding sentence embedding vectors h. Meanwhile, on the left side, x is matched in semantic
space (e) with the groundtruth sentence embedding v, which is the output of (d). To learn the model, the embedding loss (e)
and BARNN loss (c) are minimized in the same objective.

Approach

We formulate the visual storytelling task as a sequence-to-
sequence learning problem and propose a novel two-step
approach. As shown in Figure 2, the proposed framework
includes two main parts: (1) image and sentence embed-
ding for joint semantic space learning, corresponding to part
(a,b,d,e), and (2) BARNN for paragraph generation using
semantic relation of coherence in part (c). The images em-
bedding feature x from (a,b) are further translated to predict
sentence embedding features h in (c). Meanwhile, we ob-
tain the groundtruth sentence embedding vectors v from (d).
Then we calculate the embedding loss by matching x with
v in (e), as well as the BMRNN prediction loss of h given
v in (c). Finally, the framework can be trained by iteratively
minimizing the loss in both (e,c) as one objective. In test
process, we feed h from (c) to a pre-trained language model
to generate narrative paragraph.

Joint Embedding for Semantic Space

The goal of embedding model is to learn a common seman-
tic space for photos and sentences. Since one image is paired
with one sentence, which narrates this image under the con-
text of the story, we assume they share same semantics.
Thus, we propose to jointly embed both image and sentence
into a common semantic space. We make use of the-state-
of-art visual-language embedding model (Kiros, Salakhut-
dinov, and Zemel 2014) in our work.

As in the approach by Kiros, the embedding model con-
sist of two pipelines, the bottom-up for image and top-down
for sentence. In Figure 2, the image pipeline consists of
CNN in (a) for the 4096 dimension VGG features and a
Feed-forward Network in (b). The output of (b) is a K-dim
(K=300) vector x representing the image embedding. The
sentence embedding (d) represents one sentence with the last

hidden v of an LSTM which takes the Word2Vecs (Mikolov
et al. 2013) of word sequence as input. Finally in (e), the
image and sentence are embedded together by minimizing a
contrastive loss:

Cemb(x,v) =
∑

v′∈V ′ max(0, α− xv + xv′)

+
∑

x′∈X′ max(0, α− xv + x′v),
(1)

where x (or v) is image (or sentence) embedding vector,
V ′(or X′) are the negative paired sentence (or image) sam-
ples. In our research, 127 negative samples are randomly
chosen from training set for each positive sample. α denote
the contrastive margin (0.1 in our experiment).

In this learned space, an image becomes closer to others
in one story if they share same semantics. This is because, as
we assumed, it is trained by image-sentence pair shares se-
mantics and the sentences are also coherently close. Thus it
defines a semantic space where the distance between photos
describes the semantic relation. Intuitively, the distances be-
tween images in a story are reduced compared their original
visual differences. As a result, the embedded image vectors
as input have shorter dependency and will be much easier
for the RNN model in next phase to learn.

Bidirectional Attention RNN (BARNN) for Textual
Story Generation

The role of BARNN is to model the semantic structure of
stories and generate coherent textual narratives. As in Fig-
ure 2 (c), the BARNN take sequence of image embedding
vectors x as input, and produce corresponding sentence em-
bedding sequence h as output.

Attention with Semantic Structure From the embedding
space that models the semantic closeness between images,
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Figure 3: Our skip-GRU model. The black circuit stands
for the classic GRU, and red part denotes the preservation
scheme we added for skip with a specific delay

one can easily infer the semantic relation by inner product
of any two semantic embedding vectors:

Rpt = xpxt, (2)

where xp and xt are image embeddings of image p and t.
Note that xp and xt are normalized to keep Rpt <= 1.

Taking advantage of the neighborhood preserving prop-
erty (Hadsell, Chopra, and LeCun 2006) of contrastive loss
in the learning of the embedding space, the relation Rpt re-
flects the coherence of sentence vp and vt to be predicted,
since we assume that paired image-sentence share semantic.
Thus, to leverage this implicit relation at the output end, we
will attend on the relation Rpt as weight to allow the seman-
tic of xp to affect the semantic of xt in a sequence model.

Skip-GRU (sGRU) In the BARNN model, we define
sGRU and use it as basic unit. As in Figure 2 (c), the blue
connections across arbitrary timesteps are skips. We name
the new GRU as skip Gated Recurrent Unit (sGRU). In this
section, we will first introduce the classic GRU, followed by
the newly-designed sGRU. The complete BARNN frame-
work will be described in details at the end.

The classic GRU, as proposed in (Cho et al. 2014), is a
hidden unit used in RNN model for capturing long-range
dependencies in sequence modeling. In Figure 3, the circuit
in black shows the graphical depiction of the GRU design,
specified by following operations:

zt = σ(Wzxxt +Wzhht−1)

rt = σ(Wrxxt +Wrhht−1)

h̃ = tanh(Whxxt +Whhrt � ht−1)

ht = zth̃+ (1− zt)ht−1

(3)

where t is the current time, xt is the input, ˜h is the current
hidden state and ht is the output. zt and rt are update gate
and reset gate, respectively.

To further take advantage of the implicit semantic rela-
tion and model the coherence structure in RNN, we propose
a skip scheme to allow the communication between arbi-
trary states in the RNN, with attention on other semantics.
As shown in Figure 3, we add a preservation scheme (red
part) to the original design of GRU. Given the current time t
and the previous time p, the memory of hp has been saved,
and reused after a delay |t − p| with weight Rpt <= 1 to
help ht−1 predict the current hidden state of ht:

st = σ(Wsxxt +Wshhp)

h̃ = tanh(Whxxt +Whhrt � ht−1

+
∑

p<t
Rpt ·Whpst � hp)

ht = zth̃+ (1− zt)ht−1

(4)

The formulas of gates rt and zt are the same with that in
equations 3. st is skip gate to control how much information
is used from hp. Similar to other gates, the design of skip
gate st is controlled by current input and outputs of skip
ancestor.

The advantages of the skip gate design are two folds. First,
the attention scheme explores the semantic structure and
guarantees the coherence between arbitrary states. The se-
mantic invisible in current photo can be retrieved from other
semantically close photos. Second, the skip gate ensures the
non-linear mapping through skips. Such non-linear function
is more powerful and more flexible in expressing compli-
cated mappings. In contrast, linear combination proposed in
(Ghosh et al. 2016), used as one of our baseline is expected
to yield worse performance in the experiments.

Bidirectional Framework In this research, the bidi-
rectional framework enables us to consider timesteps
of both past and future. We rewrite the sGRU in the
equations 4 into a compact form: (zt, rt, st, ˜h,ht) =
sGRU(xt,ht−1,R,hp;W ), to define the operations of the
proposed BARNN components as:

(zf
t , r

f
t , s

f
t , h̃

f ,hf
t ) = sGRU(xt,h

f
t−1,R,hf

p ;W
f )

(zb
t , r

b
t , s

b
t , h̃

b,hb
t) = sGRU(xt,h

b
t+1,R

T ,hb
p;W

b)

ht = W f
h h

f
t +W b

hh
b
t

(5)

where f indicates forward pass and b denotes backward
pass. The two passes neither have inter-communication nor
share parameters, except for the input xt. Each pass is
learned independently. In training, we learn the parameters
W = {W f ,W b,W f

h ,W
b
h} in equations 5. Note that the

skip relation matrix of backward pass Rb can be obtained by
transposing the forward pass Rf , i.e. Rb = (Rf )T .

For the compatibility measure in (c), we employ again the
contrastive loss with margin, which calculates:

Ccpt
(h,v) =

∑
v′∈V ′ max {0, γ − hv + hv′)}

+
∑

h∈H′ max {0, γ − hv + h′v}.
(6)

Similar to formula 1, h (or v) is the positive hidden (or sen-
tence embedding) vector, and V ′(or H ′) are its 127 negative
paired sentence embedding (or hidden) vectors that are ran-
domly selected. γ denote the contrastive margin (0.2 in our
experiment).

Combination of Two Models

We jointly measure the embedding between visual to lan-
guage and semantic compatibility of coherence in one ob-
jective function by summing all terms of Cemb and Ccpt:
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NYC

R@1 R@5 R@10 Medr

Random 0.17 0.25 0.59 763
1NN 5.95 13.57 20.71 63.5

BARNN-sGRU 16.23 28.7 39.53 19
BARNN-EMB 17.27 29.42 38.97 19

BCLSTM 15.10 29.91 41.07 18
CRCN 11.67 31.19 43.57 14

BARNN 29.37 45.43 52.10 8

Table 1: Sentence retrieval evaluation on NYC

Disney

R@1 R@5 R@10 Medr

Random 0.26 1.17 1.95 332
1NN 9.18 19.05 27.21 45

BARNN-sGRU 19.97 37.48 46.04 14
BARNN-EMB 21.57 39.24 46.50 12

BCLSTM 19.77 38.92 45.20 14
CRCN 14.29 31.29 43.2 16

BARNN 35.01 49.07 57.83 6

Table 2: Sentence retrieval evaluation on Disney

SIND

R@1 R@5 R@10 Medr

Random 0.0 0.04 0.10 2753
1NN 4.8 13.00 21.07 74

BARNN-sGRU 21.39 38.72 46.96 14
BARNN-EMB 21.63 38.54 47.01 14

BCLSTM 21.47 37.30 47.39 18
CRCN 9.87 28.74 39.51 21

BARNN 24.07 44.29 53.06 9

Table 3: Sentence retrieval evaluation on SIND

C =
∑

(X,V )
Cemb(x,v) +

∑
(H,V )

Ccpt(h,v), (7)

where H = {h1,h2, ...,hN} is output of the BARNN
model with a story photo stream input and V =
{v1,v2, ...,vN} is the sentence sequence to be matched.
And X = {x1,x2, ...xN} are the image embedding vec-
tors. For the training, we take an iterative scheme which al-
ternatively minimizes the two terms of the object. We iterate
between the training of the two parts when validation error
stops decreasing in m=5 epochs.

Test Process with Language Model

In the testing, we feed the image test data to the frame-
work and obtain the predicted sentence embedding features
h from (c) in Figure 2. Note that we do not have the ground
truth sentences in testing. The predicted features h are then
stacked in order and input to a pre-trained language model
to obtain paragraph output.

We build the language model using a LSTM as (Venu-
gopalan et al. 2015a). The LSTM read each embedding fea-
ture of h as input, and then generate one word at each
timestep. Finally, multiple sentences are stacked in order to
produce the narrative paragraph.

Experiment

Both retrieval and generation tasks are evaluated for our ap-
proach. For retrieval task, we compare the performance of
the approach in three datasets against a group of the-state-
of-art methods containing both existing models and varia-
tions of the proposed model. Two type of measures are used:
quantitative measures and user study. For generation task,
we perform in test set to produce novel paragraph as a whole.
We then evaluate the language by METEOR/BLUE/CIDEr
and compared to the-state-of-art baselines.

Experiment Setting

Dataset We make use of three recently proposed datasets,
the SIND (Huang et al. 2016), NYC and Disneyland dataset
(Park and Kim 2015). All three datasets consist of sequential
image-stream-to-sentence-sequence pairs.

Specifically, the SIND is the first dataset particularly cre-
ated for sequential vision-to-language and other story related
tasks (Agrawal et al. 2016). It contains 48,043 stories with
210,819 unique photos. The image streams are extracted
from Flickr and the text stories are written by AMT. Each
story consists of 5 images and 5 corresponding sentences.
The dataset has been split into 38,386 (80%) stories as train-
ing set, 4,837 (10%) as test set and 4,820 (10%) as validation
set. The NYC and Disney datasets are automatically gener-
ated from blog posts searched with travel topics NYC and
Disneyland, in total 11,861 and 7,717 stories, respectively.
We follow the splitting of dataset in that 80% as training set,
10% as validation set and the others as test set.

Retrieval Task The framework retrieves the best stories
from the training set and compares with groundtruth (GT).
For evaluation, both quantitative measures and user study
are employed. For quantitative measure, the Recall@K met-
ric and median rank are used. Recall@K indicates the recall
rate of the GT retrieval given top K candidates while the me-
dian rank is the median rank value of the retrieved GT. The
higher Recall@K and lower median rank value, the better
the performance. For user study, 40 users are invited to give
rating on 200 randomly chosen results of the proposed ap-
proach, another the-state-of-art baseline method and the GT.

Baselines for Retrieval Task In the experiments, we con-
sider both state-of-art methods from the existing models and
variations of the proposed model. Since the visual story-
telling is a relatively new research direction, there are only
few existing research works to compare with. To the best
of our knowledge, the most closely related work is (CRCN)
(Park and Kim 2015). Besides, we also adopt the state-of-art
models in vision-to-language tasks as baseline, such as video
description using CNN and BRNN of (Peris et al. 2016).
Particularly, we keep the semantic embedding part in this
framework, which makes a variation to our model without
attention scheme and sGRU, so its called (BARNN-sGRU).
Comparing against (BARNN-sGRU) we evaluate the effec-
tiveness of the proposed sGRU architecture. Likewise, with-
out the part of semantic embedding, (BRNN-EMB) evaluate
the embedding part. To validate our claim on the non-linear
mapping of sGRU, we compare to CLSTM unit which is in
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Ground truth:  It was an exciting day, very dramatic! Someone there had extra flags 
for us. There was already a big crowd when we got there. We got a few nice pictures 
near the fountain. We continued to demonstrate,  making sure to be heard.
CRCN: The people kept marching as the crowd got even bigger. The people worked 
together to have their opinion heard. The group kept getting bigger and bigger. The 
crowd marched in peaceful protest. Some of the people held signs in protest.
Proposed: Everyone was excited to see what type of event would unfold. Some people 
came through with a banner, and we were hoping it was the start of a parade. More and 
more people kept coming, and it started getting hard to see what was happening. There 
was a celebration in town, and everyone came down to see what was going on. Some 
people started to head home, and we thought that might a good idea for us too.

Ground truth:  The flag corps led the parade down the streets. The mayor closed up 
the parade waving at the crowd as he passed. The flag twirlers came out, but had some 
problems staying in sync. Onlookers gathered on the sides of the street for the parade. 
Then the local marching band entertained us.
CRCN: They’re much trickier than a normal kite. This group finally got theirs in the 
air long enough to place second. It’s time for the annual kite flying contest in location. 
One of the contests is managing to fly a box kite. Some of the kites go pretty high in 
strong wind.
Proposed:  Quite a lot of participants and spectators. Participants gather the night 
before the wildflower triathlon. Getting ready to start the first leg. Participants in good 
spirits for the event. Another wave gets ready to swing. 

Figure 4: Examples of visual storytelling result on SIND. Three stories are generated for each photo stream: story by GT,
story by baseline (CRCN) and story by the proposed BARNN. The colored words indicate the semantic matches between the
generation results with the GT. The proposed scheme shows better semantic alignment with the GT than the baseline. [Best
viewed in color]

linear fashion (Ghosh et al. 2016). It’s a bidirectional frame-
work, hence we call this baseline as (BCLSTM). We also
test the K-NN search (1NN) without sequential modeling
part, which equals to a search based single image captioning
baseline. It demonstrates the value of modeling the entire
photo stream rather than single one. We also add random
retrieval scheme (Random) as a simple baseline.

Generation Task We pre-train a LSTM language model
by using an additional Book Corpus Dataset (Zhu et al.
2006), and then tune it on our own storytelling datasets. If
we view the sentence embedding part (d) as an encoder from
text sentence to embedding features, the language model
will act as a decoder in the opposite way. Therefore, we can
use (d) to create a synthetic dataset from books to pre-train
the language model which can approximate the inverse map-
ping of (d). Then it will be fine-tuned by the storytelling
datasets. The generation performance of our approach is
compared with the baselines in (Huang et al. 2016) by ME-
TEOR and with baseline (CRCN) by BLUE and CIDEr.

Results and Discussion

The quantitative results of story sentences retrieval are
shown in Table 1, 2 and 3. We observe that we perform bet-
ter in a large margins than other baselines on all datasets,
that confirms our analysis on the visual variance and seman-
tic relation, and the proposed BARNN model can effective
capture and leverage this semantic relations to improve the
performance in visual storytelling. Specifically, comparison
with (CRCN) shows that visual modeling on photo stream
can better accomplish the visual storytelling task, rather
than just capturing rigid coherence in textual domain. We
also found that the proposed scheme outperforms (BARNN-
sGRU) and (BARNN-EMB) variations, which verifies the
two importance phase of our proposed approach, the sGRU
model and semantic embedding model, respectively. More-
over, it is because of the non-linear design that empowers the
sGRU to capture the skipping information, since it achieves
higher results than (BCLSTM) where a linear scheme is
used. Note that we take use the same VGGNet fc7 feature
(Simonyan and Zisserman 2015) in all baselines for fair

Proposed Beam=10 Greedy -Dup +Grounded

33.32 23.13 27.76 30.11 31.42

Table 4: METEOR score of our generation approach and
baseline.

comparison.
We also discover that the visual models (BARNN-sGRU)

and (BARNN-EMB) all yield much better results than
(CRCN) under the retrieval metrics. This verifies that model-
ing from visual domain rather than textual domain can better
accomplish the storytelling task. The (1NN) baseline shows
unsatisfactory results, indicating that the visual story is not
a simple concatenation of individual image captions.

In Table 4, the narrative generation results are measured
by METEOR on the SIND dataset and compared with the
baselines methods in (Huang et al. 2016). This validates
the capability of the proposed model in creating novel sen-
tence that describes the semantic of story. The four base-
line models are all built on a regular sequence-to-sequence
RNN, with beam search beam = 10 (Beam=10), greedy
search (Greedy), rule-based de-duplication (-Dup) and vi-
sually grounded words from captioning (Grounded). The
proposed scheme yields better performance because (1)
the coherence problem is infeasible in the plain RNN in
(Beam=10) and (Greedy), and (2) the semantic is properly
modeled and the deeply meaning in sentences is suitably ex-
pressed to avoid the rigid heuristic rules employed by (-Dup)
and (Grounded).

In Table 5, we compare our narrative generation re-
sults against (CRCN) with unigram BLUE and CIDEr,
on both NYC and Disney datasets, denoted as BLUE(N),
CIDEr(N), BLUE(D) and CIDEr(D) in the table. The
scores of (CRCN) are reported in paper (Park and Kim
2015).

User Study

We perform user studies to test the preference on the sto-
ries by groundtruth, the proposed model and the baselines.
Since only (CRCN) is originally proposed for the sequen-
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Method BLUE(N) CIDEr(N) BLUE(D) CIDEr(D)

CRCN 26.83 30.9 28.15 51.3
Proposed 39.3 41.6 37.7 54.1

Table 5: METEOR score of our generation approach and
baseline.

GT CRCN BARNN
GT - 96.3% 86.8%

CRCN 2.0% - 13.5%
BARNN 7.0% 68.3% -

Mean Score 8.49 3.67 5.16

Table 6: The evaluation results of user study. The row 1-3 are
pairwise preference and the last row is the mean evaluation
scores.

tial vision-to-language task, we choose this method as base-
line in the user study. We randomly choose 200 stories from
test set of the SIND, each associated with three stories:
story from groundtruth (GT),story generated by (CRCN)
and story by our proposed method (BARNN). Please see
Figure 4 for examples. 40 users are invited to score on the
stories with a subjective score of 1-10 (Best story = 10).
All these three stories, including the groundtruth stories, are
read by the users and scored.

Table 6 shows the user study results, where the last row
is the mean score over all samples. We infer the user prefer-
ence between two stories by comparing their scores from
the same person. Equal scores indicate no preference to
any method and thus are not considered in preference in-
ference. Rows 1-3 in Table 6 show pairwise preference of
each method against others.

We observe that the stories by the proposed scheme is
much preferred over (CRCN) in user study. Over all users,
the mean score are higher than (CRCN). On average, 68.3%
of users prefer the proposed scheme over (CRCN), while
only 13.5% of users prefer (CRCN). From another prospec-
tive, 7.0% of the users even prefer the proposed scheme over
GT while there is only 2.0% of the user prefer the (CRCN)
over GT. These results all confirm the results obtained by the
proposed scheme are preferred over the baseline.

Conclusion

In this paper, we presented a framework for visual story-
telling, to generate human-level narrative from photo stream.
We addressed the inherent challenges of visual variance and
textual coherence. In this research, we designed a novel
BARNN with a new-designed sGRU model, with atten-
tion on sematic relation extracted from space space to en-
hance the textual coherence in narrative output. Extensive
experiments confirm the effectiveness of the proposed model
in both retrieval and narrative generation tasks. The pro-
posed BARNN outperforms the-state-of-art models with
large margins.
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