
A Framework for Minimal Clustering
Modification via Constraint Programming

Chia-Tung Kuo
University of California, Davis

tomkuo@ucdavis.edu

S. S. Ravi
University at Albany

sravi@albany.edu

Thi-Bich-Hanh Dao
University of Orleans

thi-bich-hanh.dao@univ-orleans.fr

Christel Vrain
University of Orleans

Christel.Vrain@univ-orleans.fr

Ian Davidson
University of California, Davis

davidson@cs.ucdavis.edu

Abstract

Consider the situation where your favorite clustering algo-
rithm applied to a data set returns a good clustering but there
are a few undesirable properties. One adhoc way to fix this
is to re-run the clustering algorithm and hope to find a better
variation. Instead, we propose to not run the algorithm again
but minimally modify the existing clustering to remove the
undesirable properties. We formulate the minimal clustering
modification problem where we are given an initial clustering
produced from any algorithm. The clustering is then modified
to: i) remove the undesirable properties and ii) be minimally
different to the given clustering. We show the underlying fea-
sibility sub-problem can be intractable and demonstrate the
flexibility of our constraint programming formulation. We
empirically validate its usefulness through experiments on so-
cial network and medical imaging data sets.

Introduction

Consider the situation where you wish to cluster your ego-
network (those people you have a direct friendship link to)
into k groups and invite each group to a separate dinner
party. For each person you know their interests, location,
gender and age. After applying your favorite clustering algo-
rithm you have k very cohesive clusters except perhaps the
range of ages for some cluster is too large or one cluster has
too many females compared to males. Heuristically trying
to move points from one cluster to another until a satisfac-
tory result is found is not a viable approach as we show the
intractability of re-clustering data to reduce cluster diameter
(see Theorems (1) and (2)). Simply removing data points to
get desirable clusters undermines the intended use of clus-
tering in the first place. For example we can’t just leave out
some friends from the dinner parties. A more principled ap-
proach is to add constraints and reapply the clustering algo-
rithm with the hope that the resultant clustering is similar to
the previous yet free of the undesirable properties. However,
this approach has several issues: 1) most constrained clus-
tering algorithms (Basu, Davidson, and Wagstaff 2008) deal
with simple instance level constraints, such as MUST-LINK

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and CANNOT-LINK, which cannot be used to balance car-
dinality of males/females and 2) there is no guarantee the
resultant clustering found will be similar to the original.

An alternative we explore in this paper is to start with the
initial clustering and minimally modify it whilst removing
the undesirable properties. Though in this work the initial
clustering is given by an algorithm, in practice it may be
generated from an existing solution to a clustering problem
or a set partition induced in any manner.

We can view this proposed work as being related to but
quite different to constrained clustering. Constrained clus-
tering allows domain experts to inject human guidance into
clustering a priori before the clustering algorithm begins.
This work instead allows providing guidance a posteriori
after the clustering is found. This has the advantage of al-
lowing feedback to be injected for any clustering algorithm.
In short, we provide a principled way to generate a new min-
imally modified clustering whilst retaining most of the orig-
inal solution.

Figure 1: A schematic workflow for our clustering modifica-
tion setting. The initial clustering Π can be produced in any
manner.

Our approach is as follows and shown in Figure 1. We
start with an initial clustering, Π, the output of any clustering
algorithm or any other process that produces a set partition;
this initial clustering has a corresponding clustering sum-
mary of properties S. Note this summary need not be with
respect to the features used in the clustering algorithm. For
example, in our experimental section we cluster Facebook
data based only on the friend-network topology and summa-
rize it based on user profile information. The user then modi-
fies S, leading to a modified summary S′. Our approach then
looks for a Π′ that satisfies the modified summary S′ but is

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1389



also a minimal modification of Π. The general problem is:
Problem 1. Minimal Clustering Modification (MCM).
Input: Initial clustering Π of k blocks and its k-part sum-
mary S. The user modifies parts of S to obtain a user-desired
summary S′.
Output: A modified clustering Π′ of k blocks similar to Π
but also satisfying summary S′, formally:

minimize
Π′

d(Π,Π′)

subject to Π′ satisfies S′ (1)

where d(Π,Π′) is a distance measure between 2 clusterings.
The contribution of this paper is summarized as follows.

• We introduce the minimal clustering modification (MCM)
problem and a discrete optimization problem formulation.

• We show intractability results for an underlying feasibility
sub-problem.

• We formulate the MCM problem using constraint pro-
gramming as the modeling platform.

• We describe how to encode different feedback in our for-
mulation and provide a complexity analysis.

• Our empirical experiments show our method scales ap-
proximately linearly with respect to the number of in-
stances to re-cluster (see Figure 8).
We next discuss related work and then types of human

feedback of interest to a user. Complexity results and their
implications are presented afterwards. We then formulate
our problem under a constraint programming model and
then demonstrate the usefulness of our approach on real data
sets and discuss the results after which we conclude.

Related Work

We discuss related work below and address how our current
problem is related yet different from it.

Constrained Clustering allows the injection of guidance
a priori and is dependent on the chosen clustering algorithm
(Basu, Davidson, and Wagstaff 2008) with guidance suitable
for semi-supervised clustering setting where the guidance
is given from labels. In contrast, our proposed work is al-
gorithm independent, applied after the algorithm converges
and allows high level feedback from a domain expert.

Alternative Clustering (Qi and Davidson 2009; Dang
and Bailey 2010) addresses the problem of finding a clus-
tering that is different from the given one yet whose quality
is comparable to the original one. Our setting is different in
that the user finds the given clustering acceptable yet only
wants it to be minimally modified to satisfy some additional
criteria as opposed to targeting a completely distinctive one.

Constraint Programming (CP) is a declarative paradigm
for discrete optimization (Freuder 1997; Barták 2001). Some
prior work introduced declarative framework such as the
SAT problem in modeling constraints in clustering (Gilpin
and Davidson 2011; Davidson, Ravi, and Shamis 2010).
More recent work formulated clustering and constrained
variations as a CP framework and proposed several efficient
propagators to detect invalid partial solutions early in the
search (Dao, Duong, and Vrain 2013; 2015).

Types of Human Feedback

Below we list some examples of common summaries of
intra-cluster and inter-cluster properties which provide feed-
back that can be modified. We present how to encode most of
these in Table 1 but only experiment with those in the intra-
cluster level feedback category due to space restrictions.

• Intra-Cluster Level Summaries for Feedback:

– Shrink diameter: e.g. reduce the diameter of cluster i
with respect to feature age to 10 years.

– Balance categorical feature values: e.g. make the num-
ber of females and males equal in cluster i.

– Upper/lower bounds on feature values per cluster: e.g.
every cluster should contain at least 10% female and no
more than 90% males.

• Inter-Cluster Level Summaries for Feedback:

– Widen/shrink the distance between two clusters based
on a feature: e.g. the distance between any two in-
stances in cluster i and cluster j should be at least 5
years with respect to age.

These modifications could all be encoded as constraints in
our CP model we introduce below and there are possibly
many other modifications a user may desire. CP is particu-
larly suited in this context owing to its flexibility in allowing
multiple criteria optimization, complex constraints and aux-
iliary variables. As mentioned earlier in this work our main
focus will be on intra-cluster level feedback, however we do
list the encodings of other feedback as well in later sections
to show CP’s flexibility.

Complexity of Reclustering Under Diameter

Reduction

In this section we establish intractability results on the gen-
eral re-clustering problem under one particular modification:
namely, cluster diameters. Such results support our choice of
CP as a modeling platform as one cannot expect to find a so-
lution efficiently with any particular algorithm.

A general statement of the diameter-based reclustering
problem is as follows.
Given: A set P = {p1, p2, . . . , pn} of n objects, an integer
k (1 ≤ k ≤ n), a k-clustering C = {C1, C2, . . . , Ck} of P ,
a list of � ≥ 1 attributes, with respect to which the diameter
of each cluster is computed, and numbers δi, 1 ≤ i ≤ �.
Requirement: Is there another clustering C1 of P , also with
k clusters, such that the maximum diameter of any cluster in
C1 along attribute i is at most δi, 1 ≤ i ≤ �? If so, find one
such clustering.

The remainder of this section presents complexity results
for two versions of this reclustering problem. The first ver-
sion shows the problem is NP-complete even if the diameter
needs to be reduced along just two dimensions. The second
version shows when the number of dimensions along which
the diameter needs to be reduced is not a constant, the prob-
lem is NP-complete even for just three clusters.

Diameter reduction along two dimensions. Suppose the
goal of reclustering is to reduce the diameters along � = 2

1390



dimensions; that is, along the two chosen dimensions, the
maximum diameter of any cluster must be at most δ1 and δ2
respectively. The following theorem shows that the reclus-
tering problem is computationally intractable.

Theorem (1). The reclustering problem where the maxi-
mum diameter must be reduced along two dimensions is NP-
complete.

Diameter reduction along many dimensions. When the
number of dimensions � along which the diameter must be
reduced is large, we can show that the reclustering prob-
lem is NP-complete even when the number of clusters is just
three. This result is shown below.

Theorem (2). Suppose the number of dimensions along
which the maximum diameter must be reduced is �. Let
δi denote the bound on the diameter along dimension i,
1 ≤ i ≤ �. The reclustering problem is NP-complete for
any k ≥ 3.

See Appendix1 for proofs of the two theorems.

Constraint Programming Formulation

In this section we describe how to encode the MCM problem
(Problem 1) as a CP model through auxiliary variables and
constraints, It is followed by a model complexity analysis in
terms of numbers of variables, constraints needed and typi-
cal run time in our experiments. We provide enough details
to reproduce our results and our code is made available2.

Variables and Constants Used in Our Model

Clustering. We represent a k-way clustering Π (and Π′) as a
list of n cluster indices in [1, . . . , k], one for each data point.
The difference between two clusterings Π and Π′, d(Π,Π′),
is measured by the number of positions in which the two lists
differ; formally d(Π,Π′) =

∑n
i=1 I[Π[i] �= Π′[i]] where

Π[i] is the i-th entry in Π and I[·] is the indicator function.
Such a choice eliminates the ambiguity of permutations of
the cluster indices. It is important to note that since the given
clustering Π is desirable, we wish to minimally change its
composition. Having an objective focused on some measure
of clustering quality difference can result in a fundamen-
tally different clustering.

Clustering summary. We focus our discussion here on
numerical features but will list some encoding of feedback
on binary features in latter section. The feature-wise diam-
eters for the clusters are represented as a k × f matrix D
where D[i, j] records the diameter for the i-th cluster with
respect to the j-th feature. Analogously D′ is defined as the
diameters the user desires on the modified clustering Π′.

For convenience we pre-compute all pairwise distances
with respect to each feature and denote them by a 3-
dimensional array D where D[t, i, j] is the distance between
the i-th instance and the j-th instance with respect to the t-th
feature. Finally let X denote the n× f feature matrix.

1https://sites.google.com/site/chiatungkuo/publication
2https://sites.google.com/site/chiatungkuo/publication

Encoding Our Model: Objective and Summary

Here we describe how to encode the objective and the
constraints using auxiliary variables and simple constructs
found in most popular CP platforms. Note that we chose to
implement our model in the CP language Numberjack (He-
brard, O’Mahony, and O’Sullivan 2010) due to its simple in-
terface and its use of state-of-the-art integer linear program
(ILP) solvers. ILP solvers such as Gurobi (Inc. 2015) (used
in our experiments) can easily exploit multi-core architec-
tures. Other more sophisticated and extensible CP languages
exist (e.g. (Gecode Team 2006)).

Objective. The number of instances moved from the ini-
tial clustering can be encoded straightforwardly with auxil-
iary variables, z, recording where Π and Π′ disagree.

∀i = 1, . . . , n, z[i] = I[Π′[i] �= Π[i]] (2)

It then follows the objective is

minimize
n∑

i=1

z[i] (3)

Diameter summary. In order to succinctly measure the
modified clusterings (Π′) diameters, we define a cluster
membership matrix as a k × n binary matrix C, where each
row indicates the membership of the corresponding cluster.
This is enforced by the following constraints.

∀c = 1, . . . , k, ∀i = 1, . . . , n, C[c, i] = I[Π′[i] = c] (4)

Now we describe how we encode constraints to enforce
the desired diameters.

First attempt. A straightforward encoding follows the
definition of diameter: we require each pair of instances in
the same cluster to have (feature-wise) distance smaller than
or equal to the specified diameter, shown as follows.

∀c = 1, . . . , k, ∀t = 1, . . . , f,

max
i,j=1,...,n

{C[c, i]C[c, j]D[t, i, j]} ≤ D′[c, t] (5)

Note C[c, i] = 1 if the i-th instance is in cluster c. Thus
C[c, i]C[c, j] = 1 if and only if the i-th instance and the j-th
instance are both in cluster c. One significant drawback of
this encoding, however, is that max is taken over n2 vari-
ables. This makes the encoding and solving very inefficient
(both memory and CPU) when n is large.

More efficient encoding. Here we describe our encod-
ing of the same diameter summary where each constraint
involves at most n variables. The crucial observation is that
these diameters are defined feature-wise, as opposed to the
classical notion where a single diameter encompasses all
dimensions. Accordingly, instead of requiring each pair in
the same cluster to obey this cluster’s diameter, we require
just the difference between the maximum and the mini-
mum value of the feature in a cluster to obey such diame-
ter. Specifically we pre-compute the feature-wise minimums
and maximums of our data as follows.

Ml[t] ← min
i=1,...,n

{X[i, t]} ∀t = 1, . . . , f

Mu[t] ← max
i=1,...,n

{X[i, t]} ∀t = 1, . . . , f
(6)

1391



Then the last sets of constraints in the complete optimiza-
tion encoding in Figure 2 (last 4 lines) enforce the diameter
constraints. Note L[c, t] and H[c, t] are the lowest and high-
est values in cluster c for feature t respectively. The multipli-
cation by C[c, i] either keeps a value (if the i-th instance is
in cluster c) or zeros it out (otherwise). The additional sub-
tractions and additions of the pre-computed minimums (Ml)
and maximums (Mu) of features ensure that maximizing (or
minimizing) over extra 0’s does not affect the results.

minimize
z,C,L,H

n∑

i=1

z[i]

subject to

∀c = 1, . . . , k, ∀i = 1, . . . , n, C[c, i] = I[Π′[i] = c]

∀i = 1, . . . , n, z[i] = I[Π′[i] �= Π[i]]

∀c = 1, . . . , k, ∀t = 1, . . . , f,

L[c, t] = min
i=1,...,n

{C[c, i](X[i, t]−Mu[t])}+Mu[t]

H[c, t] = max
i=1,...,n

{C[c, i](X[i, t]−Ml[t])}+Ml[t]

H[c, t]− L[c, t] ≤ D′[c, t]

Figure 2: CP optimization encoding where the user provides
a set of desired (feature-wise) diameters D′ as feedback.

Encoding other feedback/summary. As mentioned ear-
lier CP is flexible in encoding other types of feedback as
constraints. A list of common constraints conforming to
feedback introduced earlier and their encodings are pre-
sented in Table 1. It is also worth mentioning that these con-
straints need not apply to all features or clusters. The ranges
of the indices for the constraints in Table 1 (i.e. c, t, etc)
could be determined at the user’s discretion.

Complexity and Implementation Issues

Here we present the complexity of our model and show that
the numbers of variables and constraints are linear in the
number of instances n, the number of clusters k and the
number of features f . In addition the variables also have
rather small domains. This is important since a CP solver,
in the worst case, might need to search through all possi-
ble combinations of variable assignments (typically much
fewer though). Therefore in general smaller domain sizes
lead to shorter run times. Consequently our experiments on
the Facebook data (n = 4039, k = 4, f = 2) and fMRI data
(n = 1730, k = 4, f = 2) each take less than 2 minutes to
finish on a 12-core workstation.

Figure 3 provides a tabulation of the numbers of variables,
their domain sizes and the associated constraints used to en-
code our model in Figure 2. Note the domain size r for vari-
ables L and H arises from the discretization of continuous
values and the choice of r typically involves a tradeoff be-
tween precision and model complexity as is the case in all
other discretization problems.

Vars. Number Domain size
Π′ n k

z n 2
C nk 2
L nk r

H nk r

(a) Numbers and domain sizes
of variables used in our model.

Constraints Number #. Vars. involved
Bind z n 2
Bind C nk 2
Bind L kf n + 1

Bind H kf n + 1

H − L ≤ D′ kf 2
(b) Number of constraints and the numbers
of variables involved in each constraint.

Figure 3: Complexity of encoding Figure 2 model.

Empirical Evaluation

We experiment with two real world data sets (social network
and medical imaging) to explore the benefits of using modi-
fication and also UCI data sets to explore scalability issues.

Experiment #1: Social Network Modification

We apply our proposed approach to a network data
set: Facebook-egonets from Stanford SNAP Data sets
(Leskovec and Krevl 2014). This data set consists of 4039
Facebook users where the friendships among them are
known and for each person a list of binarized categorical
features such as gender3. We run (normalized) spectral clus-
tering algorithm (von Luxburg 2007) on this graph to find
an initial 4-way clustering; a hard clustering is then obtained
from the best of 10 runs of k-means on the spectral embed-
ding. Note that spectral clustering only utilizes the friend-
ship graph topology, but not the node features. The cluster-
ing found is of very low cut cost but a summary of the ini-
tial clustering shown in Figure 4(a) shows a widely differing
composition compared to the population averages.

Our aim now is to minimally modify the original cluster-
ing to correct for gender and language imbalance by con-
straining them to be close to the population averages. We
choose the upper and lower bounds according to the aver-
ages in the initial summary and set bounds [0.36, 0.4] for
gender and [0.13, 0.15] for language so that these two fea-
tures are “balanced” across clusters. We find a minimum of
69 nodes need to be moved between clusters and the sum-
mary for the resulting modified clustering is presented in
Figure 4(b).

An important comparison is against another clustering
satisfying the same summary of “balanced” features but
without enforcing the objective of “minimal modification”.
This simulates re-running the clustering algorithm from the
beginning and enforcing the balancing constraints. One of-
ten found clustering simply puts most instances in one clus-
ter, resulting in 4015 instances in cluster 1 and 8 instances

3The feature values are anonymized so, for example, it is un-
known if 1 is male or female.

1392



Constraints Encoding
Diameters ∀c = 1, . . . , k, ∀t = 1, . . . , f, H[c, t] − L[c, t] ≤ D′[c, t]

Splits ∀c1, c2 = 1, . . . , k where c1 �= c2, ∀t = 1, . . . , f, min
i,j=1,...,n

{C[c1, i]C[c2, j]D[t, i, j]} ≥ S′[c1, c2, t]

Bound cluster size lc ≤ ∑n
i=1 C[c, i] ≤ uc

Keep a cluster
∑

i C[c, i] ≥ 1 for cluster c to be kept
Merge clusters

∑
i C[c, i] = 0 for cluster c to be merged (i.e. effectively empty a cluster)

Balance binary features ∀c = 1, . . . , k, ∀t = 1, . . . , f, pl

∑n
i=1 C[c, i] ≤ ∑n

i=1 C[c, i]X[i, t] ≤ pu
∑n

i=1 C[c, i]

Table 1: Common constraints and their encodings. Note we assume H and L are properly encoded auxiliary variables as in
Figure 2. S ′ is a user-desired k × k × f matrix of the desired splits between clusters; pl and pu are the user-desired lower and
upper bounds on the counts of 1’s (True) in binary features for each cluster (see our Experiment #1).

in each of clusters 2, 3 and 4, leading to a total of 1074
swaps across clusters from the initial clustering. We also re-
port the normalized cut costs (the objective of normalized
spectral clustering) on the three clusterings: initial, satisfy-
ing summary+minimally modified, satisfying just summary.
Their cut costs are, respectively, 0.97, 1.34 and 3.04. Note a
constraint on the cut cost could be additionally included if it
was desired to keep it below a bound.

Initial clustering
C1 C2 C3 C4 Population

Gender 1096 (0.37) 37 (0.54) 169 (0.49) 230 (0.36) 1532 (0.38)
Language 402 (0.13) 5 (0.07) 64 (0.19) 78 (0.12) 549 (0.14)

Size 2988 69 345 637 4039

(a) Initial clustering summary

Modified clustering
C1 C2 C3 C4 Population

Gender 1124 (0.37) 22 (0.39) 117 (0.40) 269 (0.40) 1532 (0.38)
Language 408 (0.14) 7 (0.13) 43 (0.15) 91 (0.13) 549 (0.14)

Size 3014 56 293 676 4039

(b) Modified clustering summary

Figure 4: Summaries for the initial and modified clusterings.
“Gender” and “Language” record the numbers of instances
that have this feature being 1; the numbers in the brackets
give the ratios. Size is the number of instances in the cluster.

Experiment #2: Spatial Region Modification

In this experiment, we apply our approach to a fMRI brain
imaging data which allows exploring modification based on
spatial information. We work on one particular slice in the
mid-brain so that each scan consists of 2D snapshots over
time and each slice has a total of 1730 voxels/nodes whose
blood oxidation levels are measured at an interval of 3ms
over 200+ time steps.

We start off by constructing a 1730 node completely con-
nected graph where the edge weights are the absolute value
of Pearson correlations between the voxels measured over
time. Such correlation measure has been widely used in the
neuroscience community (Friston 2011). As before we cre-
ate an initial clustering by running normalized spectral clus-
tering on this graph and then selecting the best result from
10 runs of k-means on the spectral embedding. The initial
clustering is shown in Figure 5(a).

Often in practice we like clusters to represent compact
regions in the brain; however this initial clustering is gen-
erated based on correlations and does not take into account
any spatial coordinates in the brain. Accordingly we look

(a) Initial (b) Modified

Figure 5: Initial and modified clusterings on the fMRI scan.
The modification asks for the yellow cluster’s x-diameter
and the cyan cluster’s y-diameter to be shrunk. The color-
coded cluster numbers match the numbering in Figure 6.

for a modified clustering with tighter diameters in x-y spa-
tial coordinates, specifically, x-diameter ≤ 15 for cluster 3
and y-diameter ≤ 30 for cluster 2 (yellow and cyan in Fig-
ure 5) while keeping the diameters for the other clusters. Our
CP model returns a new clustering that moves a total of 109
voxels where 36 voxels were moved from cluster 2 to cluster
4 and 63 voxels were moved from cluster 3 to cluster 4. We
present the summaries of the initial and the modified clus-
terings in Figure 6. Note this is a globally optimal solution.

Cluster index C1 (Blue) C2 (Cyan) C3 (Yellow) C4 (Red)
x-diameter 46 49 48 52
y-diameter 37 41 45 44

size 390 369 152 819
(a) Initial summary

Cluster index C1 (Blue) C2 (Cyan) C3 (Yellow) C4 (Red)
x-diameter 46 49 15 52
y-diameter 37 26 45 44

size 390 323 89 928
(b) Modified summary

Figure 6: Summaries for the initial and modified clusterings
for the fMRI scan experiment. Size is the number of voxels
in the cluster.

Experiment #3: Run time analysis

Earlier we presented the modeling complexity. Here we em-
pirically observe the run time and evaluate the quality of
the modified clustering in terms of the algorithm’s objec-
tive, compared to the initial clustering. We test our formula-
tion on two data sets from UCI repository, Yeast and Pima

1393



(Lichman 2013). Yeast consists of 1484 data instances with
6 numerical features (No. 1-4, 7 and 8). Pima has 768 data
instances with 8 numerical features. Note that we only con-
sider enforcing diameters on the numerical features as diam-
eters are not suited for categorical features.

Run time v.s. number of features. Here we test the run
times of our model in Figure 2 when the diameter con-
straints are enforced on different subsets of features. For
each data set, we compute an initial clustering Π using k-
means (k = 4 for Yeast and k = 3 for Pima) on the feature-
normalized data (again we pick the best out of 10 runs).
We then compute the summary of Π as a matrix of diam-
eters, D, as shown earlier. Now we tighten the first dimen-
sion of the first cluster with modified diameters D′ defined
as D′[1, 1] = 0.8D[1, 1] and D′[i, j] = D[i, j] everywhere
else. The results are shown in Figure 7 where we gradually
enforce the diameter constraints on more and more dimen-
sions. Figure 7(b) only includes feature subsets up to 5 fea-
tures (No. 1-5) as the model becomes infeasible at this point.
It is worth noting the jump in run time when the model is
infeasible due to that the solver potentially needs to search
exhaustively through all branches to conclude infeasibility.

Run time v.s. number of instances. Here we report the
run times when the feature set is fixed but we vary the num-
ber of instances, n. For each n we randomly sample a sub-
set of instances and create an initial clustering similarly as
above. Then we compute its summary and shrink the first di-
ameter of the first cluster as above and solve for it. We draw
5 such random samples for each n and report the averages
and standard deviations in Figure 8. The results suggest the
run time scales roughly linearly in the number of instances
when we shrink one diameter in one cluster. Further results
(not shown) indicate a similar linear relationship when more
than 1 diameter is shrunk but as our intractability results in-
dicate the feasibility problem then becomes intractable and
the solver does not always find a solution.

(a) Yeast (b) Pima

Figure 7: Run time v.s. feature subsets. The x-axis specifies
the subsets of features for which diameter summaries are
enforced (i.e. changing the index set of t in Figure 2).

Quality Here we report the sums of within-cluster (Eu-
clidean) distances (SWCD) for the initial and modified clus-
terings from above. Figure 9 records our objectives (i.e. #
of points moved) and SWCD for corresponding experiments
in Figure 7. Notice that for solutions with the same optimal
objective value, their SWCDs can still be different since one
could possibly move an instance to different other clusters.
It should be noted, however, that since SWCD is calculated

(a) Yeast (b) Pima

Figure 8: Run time v.s. number of instances. The error bars
are the standard deviations out of 5 random samples.

based on all features at once whereas our diameter summary
is feature-wise, in general our formulation need not neces-
sarily lead to small changes in SWCD. But since the ini-
tial clustering was generated using k-means and our features
were normalized, we believe a small change in SWCD is
expected in this case.

Dim. Red. Initial {1} {1-2} {1-3} {1-4} {1-4,6} {1-4,6-7}
Objective 0 3 3 3 3 3 16
SWCD 9277 9328 9328 9328 9324 9342 9473

(a) Yeast
Dim. Red. Initial {1} {1-2} {1-3} {1-4} {1-5}
Objective 0 3 3 3 6 infeasible
SWCD 5829 5849 5849 5849 5843 N/A

(b) Pima

Figure 9: Quality of the initial and the minimally modified
clusterings for varying number of dimensions reduced.

Conclusions and Future Work

In this paper we introduce the problem of minimal clustering
modification and formulate it under the CP model. Our ap-
proach provides a high level summary of a given initial clus-
tering and then allows the user to modify the summary. We
then find the globally minimal number of changes needed
to generate a new clustering that satisfies the modified sum-
mary. We provide intractability results showing some partic-
ular problem cases are difficult and empirically evaluate our
approach on several benchmark and real data sets to demon-
strate its usefulness in applications and assess its efficiency.

We briefly discuss several possible extensions here. Our
work could easily be extended to consider a resource budget
model where moving a particular instance is associated with
a particular cost with the aim to minimize the total cost. This
is useful in settings where there are real costs associated with
modifying a clustering. We mentioned, but did not explore,
inter-cluster level modifications such as splitting a cluster
and merging two clusters. These types of modifications in-
volve changing the numbers of clusters between the initial
and final clusterings. We aim to explore such modifications
in future work.

Acknowledgment

We gratefully acknowledge support of this work from NSF
IIS:1422218, Functional Network Discovery for Brain Con-
nectivity.

1394



References

Barták, R. 2001. Theory and practice of constraint propa-
gation. In Proceedings of the 3rd Workshop on Constraint
Programming in Decision and Control, volume 50.
Basu, S.; Davidson, I.; and Wagstaff, K. 2008. Constrained
clustering: Advances in algorithms, theory, and applica-
tions. CRC Press.
Dang, X. H., and Bailey, J. 2010. Generation of alternative
clusterings using the cami approach. In SDM, volume 10,
118–129. SIAM.
Dao, T.-B.-H.; Duong, K.-C.; and Vrain, C. 2013. A Declar-
ative Framework for Constrained Clustering. In Proceedings
of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases,
419–434.
Dao, T.-B.-H.; Duong, K.-C.; and Vrain, C. 2015. Con-
strained clustering by constraint programming. Artificial In-
telligence.
Davidson, I.; Ravi, S.; and Shamis, L. 2010. A sat-based
framework for efficient constrained clustering. In SDM, 94–
105. SIAM.
Freuder, E. C. 1997. In pursuit of the holy grail. Constraints
2(1):57–61.
Friston, K. J. 2011. Functional and effective connectivity: a
review. Brain connectivity 1(1):13–36.
Gecode Team. 2006. Gecode: Generic con-
straint development environment. Available from
http://www.gecode.org.
Gilpin, S., and Davidson, I. 2011. Incorporating sat solvers
into hierarchical clustering algorithms: an efficient and flex-
ible approach. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1136–1144. ACM.
Hebrard, E.; O’Mahony, E.; and O’Sullivan, B. 2010.
Constraint Programming and Combinatorial Optimisation
in Numberjack. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimiza-
tion Problems, 7th International Conference, CPAIOR 2010,
181–185.
Inc., G. O. 2015. Gurobi optimizer reference manual.
Leskovec, J., and Krevl, A. 2014. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.edu/
data.
Lichman, M. 2013. UCI machine learning repository.
Qi, Z., and Davidson, I. 2009. A principled and flexible
framework for finding alternative clusterings. In Proceed-
ings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 717–726. ACM.
von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and Computing 17(4):395–416.

1395




