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Abstract

Feature selection aims to select a small subset from the
high-dimensional features which can lead to better learn-
ing performance, lower computational complexity, and bet-
ter model readability. The class imbalance problem has been
neglected by traditional feature selection methods, therefore
the selected features will be biased towards the majority
classes. Because of the superiority of F-measure to accu-
racy for imbalanced data, we propose to use F-measure as
the performance measure for feature selection algorithms.
As a pseudo-linear function, the optimization of F-measure
can be achieved by minimizing the total costs. In this paper,
we present a novel cost-sensitive feature selection (CSFS)
method which optimizes F-measure instead of accuracy to
take class imbalance issue into account. The features will be
selected according to optimal F-measure classifier after solv-
ing a series of cost-sensitive feature selection sub-problems.
The features selected by our method will fully represent the
characteristics of not only majority classes, but also minor-
ity classes. Extensive experimental results conducted on syn-
thetic, multi-class and multi-label datasets validate the effi-
ciency and significance of our feature selection method.

Introduction

Feature selection has been one of the most popular dimen-
sionality reduction techniques. It is a process of choosing a
subset of relevant features from the high-dimensional data
according to certain performance measure (Tang, Alelyani,
and Liu 2014). Feature selection can further benefit the ma-
chine learning tasks such as classification and cluster by
speeding up the learning process, improving the model gen-
eralization capability, and alleviating the effect of the curse
of dimensionality (Nie et al. 2010). A considerable amount
of research has been done during the last decade (Villela,
de Castro Leite, and Neto 2015; Wang, Tang, and Liu 2015;
Luo et al. 2016; Qian and Zhai 2013; Zhao et al. 2010; Xu,
Tao, and Xu 2015), which can be divided into three groups:
filter methods, wrapper methods and embedded methods.
Filter methods, such as ReliefF (Kononenko 1994), mRMR
(Peng, Long, and Ding 2005), F-statistic (Liu and Motoda
2012) and Information Gain (Raileanu and Stoffel 2004),
choose features only relying the characteristics of data.
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Wrapper methods utilize predefined classifiers as a black
box to evaluate the selected features. Support vector ma-
chine recursive feature elimination (SVM-RFE) (Guyon et
al. 2002) and correlation-based feature selection (CFS) (Hall
and Smith 1999) are representative wrapper methods. Em-
bedded methods embed the feature selection process into
classifier training. Regularized regression-based feature se-
lection methods (Nie et al. 2010; Han and Kim 2015) are
typical embedded methods.

The methods mentioned above are demonstrated effec-
tive in most situations. However, almost all of these meth-
ods neglect the influence of class imbalance issue. They are
designed under the implicit assumption that the data distri-
bution or sampling are balanced, i.e., the sample sizes for
different classes are about the same. The class imbalance
issue is quite common in real-world datasets, which will
negatively impact the traditional feature selection methods
since they are inclined to choose the features that character-
ize the majority classes rather than those describe the minor-
ity classes. The neglect of class imbalance issue will make it
more difficult to obtain better results for the subsequent ma-
chine learning tasks since the selected features are already
biased towards the majority classes.

Feature selection methods which are dependent on classi-
fiers also have the class imbalance problem (Nie et al. 2010;
Han and Kim 2015). Taking regularized regression-based
feature selection for example, these regularization models
aim to minimize the fitting errors of the objective functions
where the misclassification costs for different classes are
treated equally (Tang, Alelyani, and Liu 2014). Therefore
the feature subset is chosen to achieve the highest classi-
fication accuracy, which is not an appropriate performance
under the imbalanced setting. Consequently, these types of
methods can be referred as cost-blind feature selection meth-
ods.

High and balanced pair values of precision and recall re-
sult in high F-measure performance (Parambath, Usunier,
and Grandvalet 2014). Therefore F-measure is a more suit-
able measure compared with accuracy in the imbalanced
classes scenario (Pillai, Fumera, and Roli 2012; Dembczyn-
ski et al. 2011). Besides F-measure in binary classification,
its variants in multi-class and multi-label classification are
receiving much attention recently (Dembczynski et al. 2013;
2011; Ye et al. 2012; Pillai, Fumera, and Roli 2012). There
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is a great number of studies on optimizing these F-measures,
which can be categorized into two paradigms: the decision-
theoretic approaches (DTA) (Lewis 1995) and empirical
utility maximization (EUM) approaches. DTA approaches
first estimate a probability model, which will be utilized
to compute the optimal predictions. EUM approaches (Jan-
sche 2005; Tsochantaridis et al. 2005) follow the structured
risk minimization principle to minimize the objective func-
tion. Directly optimizing F-measure is difficult since it is
non-convex, so different approximation methods are used
in practice, such as the algorithms for maximizing a con-
vex lower bound of F-measure for support vector machines
(Tsochantaridis et al. 2005), and maximizing the expected F-
measure of a probabilistic classifier using a logistic regres-
sion model (Jansche 2005). A simple yet effective method
is to threshold the scores obtained by classifiers to maxi-
mize the F-measure empirically (Parambath, Usunier, and
Grandvalet 2014; Yang 2001). Recent developments (Ye
et al. 2012; Koyejo et al. 2014; Parambath, Usunier, and
Grandvalet 2014; Narasimhan, Vaish, and Agarwal 2014)
investigate the pseudo-linear property of F-measures by for-
mulating them as functions of per-class false negative/false
positive rate. Through the reduction to cost-sensitive clas-
sification, the optimization of F-measures can be accom-
plished by solving a series of cost-sensitive classification
sub-problems.

By employing F-measure as the performance measure
of selected features, we present an effective cost-sensitive
feature selection (CSFS) method to handle the feature se-
lection problem in the imbalanced data setting. Different
from the existing embedded feature selection approaches
(Nie et al. 2010; Han and Kim 2015), which focus on op-
timizing the accuracy, we encourage the feature selection
solution to achieve the best F-measure. Motivated by the
developments (Parambath, Usunier, and Grandvalet 2014;
Ye et al. 2012) that F-measure optimization problem can
be decomposed into a series of cost-sensitive classifica-
tion problems, we further modify the classifiers of regular-
ized regression-based feature selection methods into cost-
sensitive. After solving a series of cost-sensitive feature se-
lection problems, features will be selected according to the
optimal classifier with the largest F-measure. Therefore, the
class imbalance is taken into consideration, and selected
features will fully represent both majority class and minor-
ity class. Experimental results on synthetic, multi-class and
multi-label datasets have confirmed the efficiency of our
method.

F-Measure Optimization Reduction

We first give a brief introduction of the notations used in this
paper. We present matrices as bold uppercase letters and vec-
tors as bold lowercase letters. Given a matrix W = [wij ],
we denote wi as its i-th row and wj as its j-th column.
For p > 0, the �p-norm of the vector b ∈ R

n is defined
as ‖b‖p = (

∑n
i=1 |bi|p)

1
p . The �p,q-norm of the matrix

W ∈ R
n×m is defined as ‖W‖p,q = (

∑n
i=1 ‖wi‖qp)

1
q ,

where p > 0 and q > 0. The symbol � denotes the element-
wise multiplication.

Actual Actual
Positive Negative

Predicted
tp fpPositive

Predicted
fn tnNegative

(a) Confusion matrix

Actual Actual
Positive Negative

Predicted 0 rPositive
Predicted

1 + β2 − r 0Negative

(b) Cost matrix

Figure 1: Confusion matrix and associated cost matrix of
binary classification.

For a given binary classifier, there are four possible out-
comes: true positives tp, false positives fp, false negatives
fn, and true negatives tn. They are represented as a con-
fusion matrix in Figure 1(a). F-measure can be defined in
terms of the marginal probabilities of classes and the per-
class false negative/false positive probabilities. The marginal
probability of label k is denoted by Pk, and the per-class
false negative probability and false positive probability of a
classifier h are denoted by FNk(h) and FPk(h), respec-
tively (Parambath, Usunier, and Grandvalet 2014). These
probabilities of a classifier h can be summarized by the error
profile e(h):

e(h) = (FN1(h), FP1(h), . . . , FNL(h), FPL(h)), (1)

where L is the number of labels, e2k−1 of e(h) ∈ R
2L

is the false negative probability of class k and e2k is the
false positive probability. In binary classification, we have
FN2 = FP1. Thus, for any β > 0, F-measure can be writ-
ten as a function of error profile e:

Fβ(e) =
(1 + β2)(P1 − e1)

(1 + β2)P1 − e1 + e2
. (2)

There are several different definitions of F-measures in
multi-class and multi-label classification. Specifically, we
can transform the multi-class or multi-label classification
into multiple binary classification problems, and the average
over the Fβ-measures of these binary problems is defined
as the macro-F-measure. According to (Parambath, Usunier,
and Grandvalet 2014), the micro-F-measure mlFβ for multi-
label classification is defined as:

mlFβ(e) =
(1 + β2)

∑L
k=1(Pk − e2k−1)∑L

k=1((1 + β2)Pk + e2k − e2k−1)
. (3)

Multi-class classification differs from multi-label classifi-
cation in that only a single class can be predicted for each
example. According to (Kim, Wang, and Yasunori 2013),
one definition of multi-class micro-F-measure, denoted as
mcFβ can be written as:

mcFβ(e) =
(1 + β2)(1− P1 −

∑L
k=2 e2k−1)

(1 + β2)(1− P1)−
∑L

k=2 e2k−1 + e1
. (4)

The fractional-linear F-measures presented in Eqs. (2-4)
are pseudo-linear functions with respect to e. The impor-
tant property of pseudo-linear functions is that their level
sets, as function of the false negative rate and the false
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Figure 2: Illustration of F1-measure surface with level sets
and two total cost hyperplanes. Different a(ri) will generate
differnt costs for the misclassification errors. Error profile
space contains all possible values of e. We can notice that
higher values of F-measure entail lower values of the total
cost.

positive rate, are linear. Based on this observation, a re-
cent work (Parambath, Usunier, and Grandvalet 2014) was
proposed for F-measure maximization by reducing it into
cost-sensitive classification, and proved that the obtained
optimal classifier for a cost-sensitive classification problem
with label dependent costs is also an optimal classifier for
F-measure. This method can be separated into three steps.
Firstly, the F-measure interval is discretized into a set of
evenly spaced values {ri}. F-measure is not invariant under
label switching (Nie et al. 2010), i.e., if the positive label is
changed to negative, a different F-measure can be obtained.
Therefore, the F-measure interval is discretized within the
range [0, 1 + β2] rather than [0, 1] in practice. Secondly, for
each given F-measure value ri, cost function a : R1

+ → R
2L
+

generates a cost vector a(ri) and assigns costs to the el-
ements of error profile e, more specifically, 1 + β2 − ri
for false negative and ri for false positive in binary classi-
fication. These costs are shown as a cost matrix in Figure
1(b) (Parambath, Usunier, and Grandvalet 2014). Therefore
the goal of optimization is changed to minimize the total
cost 〈a(ri), e(h)〉, which is the inner product of cost vec-
tor and error profile (Parambath, Usunier, and Grandvalet
2014). Finally, cost-sensitive classifiers for each a(ri) are
learned to minimize the total cost 〈a(ri), e(h)〉, and the one
with largest F-measure on the validation set is selected as
the optimal classifier. Figure 2 shows that the higher the F-
measure value, the lower the total cost. This indicates that
maximizing F-measure can be achieved by minimizing the
corresponding total cost.

Cost-Sensitive Feature Selection

When the data sampling of different classes is imbalanced,
it is difficult to discover a satisfactory feature selection solu-

tion to fully represent the properties of different classes. To
deal with this problem, we propose to optimize F-measure
instead of accuracy in the feature selection task. Motivated
by the reduction of F-measure optimization to cost-sensitive
classification (Parambath, Usunier, and Grandvalet 2014),
we modify the classifiers used in traditional feature selec-
tion methods into cost-sensitive by adding properly gener-
ated costs with the in-depth theory guidance. Features are se-
lected according to the classifier with the optimal F-measure
performance. This leads to a novel cost-sensitive feature se-
lection (CSFS) method. Figure 3 presents a systematic illus-
tration of our method .

Problem Formulation

Given training data, let X = [x1, . . . ,xn] ∈ R
d×n de-

note feature matrix with n samples and the feature di-
mension is d. The corresponding label matrix is given by
Y = [y1; . . . ;yn] ∈ {−1, 1}n×m where yi is a row vec-
tor of the labels for the i-th example, and m is the num-
ber of class labels. The general formulation of regularized
regression-based feature selection methods (Nie et al. 2010;
Han and Kim 2015), which aim to obtain a projection matrix
W ∈ R

d×m, can be summarized as follows:

min
W

L(XTW −Y) + λR(W), (5)

where L(·) is the norm-based loss function of the predic-
tion residual, R(·) is the regularizer that introduces spar-
sity to make W applicable for feature selection, and λ is
a trade-off parameter. For simplicity, the bias has been ab-
sorbed into W by adding a constant value 1 to the feature
vector of each example. Such methods have been widely
used in both multi-class and multi-label learning tasks (Nie
et al. 2010; Kong and Ding 2014; Han and Kim 2015;
Xu, Tao, and Xu 2016). However, they are designed to max-
imize the classification accuracy, which is unsuitable for
highly imbalanced classes situations (Parambath, Usunier,
and Grandvalet 2014), since equal costs are assigned to dif-
ferent classes.

To solve the class imbalance problem, we present a new
feature selection method, which optimizes F-measure by
modifying the classifiers of regularized regression-based
feature selection into cost-sensitive. Without loss of general-
ity, we start with the illustration on the cost-sensitive feature
selection under a binary-class setting, where the label vector
is [y1; y2; . . . ; yn] ∈ {−1, 1}n×1. As mentioned previously,
the cost for positive class is 1+ β2 − r and the cost for neg-
ative class is r. Thus for each class, we obtain a cost vector
c = [c1, . . . , cn]

T ∈ R
n, where ci = 1 + β2 − r if yi = 1,

and ci = r if yi = −1. The formulation of total cost for all
samples can be given as follows:

min
w

n∑

i=1

L((xT
i w − yi) · ci) + λR(w), (6)

where w ∈ R
d×1 is the projection vector. In multi-class

and multi-label scenarios, the cost vector ci ∈ R
n for

the i-th class can be obtained according to their per-class
false negative/false negative cost generated by correspond-
ing cost function a(r). Denoting the cost matrix as C =
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Figure 3: System diagram of the proposed cost-sensitive feature selection (CSFS) model in the case of binary classification. This
model can be divided into four stages. (1) Discretize the F-measure interval to obtain a set of evenly spaced values {r1, . . . , rn}.
(2) For a given ri, cost function a(ri) generates costs 1+β2− ri for the false negative and ri for the false positive, thus we can
get a series of cost-sensitive classifiers. (3) Select the optimal classifier with the largest F-measure value on the validation set.
(4) Select the top-ranking features according to the projection matrix W of the optimal classifier by sorting ‖wi‖ (1 ≤ i ≤ d)
in descending order.

[c1, c2, . . . , cm] ∈ R
n×m, we obtain the following formula-

tion:

min
W

n∑

i=1

L((xT
i W − yi)� ci) + λR(W), (7)

where ci is the i-th row of C corresponding to the i-th exam-
ple. Due to the rotational invariant property and robustness
to outliers (Nie et al. 2010), we adopt �2-norm based loss
function as the specific form of L(·) and the optimization
problem becomes:

min
W

n∑

i=1

‖(xT
i W − yi)� ci‖2 + λR(W). (8)

By further considering that

n∑

i=1

‖(xT
i W− yi)� ci‖2 = ‖(XTW−Y)�C‖2,1, (9)

and taking the commonly used �2,1-norm as regularization
(Nie et al. 2010), we obtain the following compact form
of the cost-sensitive feature selection (CSFS) optimization
problem:

min
W

‖(XTW −Y)�C‖2,1 + λ‖W‖2,1. (10)

As shown in Figure 3, we can get a series of cost-sensitive
feature selection problems with different cost matrix C cor-
responding to each F-measure value r. After obtaining the
optimal W, features can be selected by sorting ‖wi‖ (1 ≤
i ≤ d) in descending order. If ‖wi‖ shrinks to zero, the i-th
feature is less important and will not be selected.

Optimization

For a given F-measure r, the corresponding cost matrix C is
fixed and thus W is the only variable in Eq. (10). Taking the
derivative of the objective function with respect to wk(1 ≤

k ≤ m) and setting it to zero, we obtain1:

XUkGUkX
Twk −XUkGUkyk + λDwk = 0, (11)

where diagonal matrix Uk = diag(ck), D is a diagonal
matrix with the i-th diagonal element as dii = 1

2‖wi‖2
and G

is a diagonal matrix with the i-th diagonal element as gii =
1

2‖((XTW −Y)�C)i‖2 . Each wk can thus be solved in

the closed form:

wk = (λD+XUkGUkX
T )−1(XUkGUk)yk. (12)

Since the solution of W is dependent on D and G, we
develop an iterative algorithm to obtain the ideal D and G.
The whole optimization procedure is described in Algorithm
1. In each iteration, D and G are calculated with current W,
and then each column vector wk of W is updated based on
the newly solved D and G. The iteration procedure is re-
peated until the convergence criterion is reached. The con-
vergence of Algorithm 1 is guaranteed by the following the-
orem:

Theorem 1. Algorithm 1 monotonically decreases the ob-
jective value of Eq. (10) in each iteration, that is,

‖(XTWt+1 −Y)�C‖2,1 + λ‖Wt+1‖2,1 ≤
‖(XTWt −Y)�C‖2,1 + λ‖Wt‖2,1.

(13)

Due to the limited space, the proof of Theorem 1 is not
presented here. In a nutshell, according to (Nie et al. 2010),
the objective value of Eq. (10) monotonically decreases in
each iteration.

1When ‖wi‖2 = 0, Eq. (10) is not differnetiable. This prob-
lem can be solved by introducing a small perturbation to regular-
ize dii as 1

2
√

‖wi‖22+ζ
. Similarly, the i-th diagonal element gii of

G can be regularized as 1

2
√

‖((XTW−Y)�C)i‖22+ζ
. It can be ver-

ified that the derived algorithm minimizes the following problem:∑n
i=1

√‖((XTW −Y)�C)i‖22 + ζ + λ
∑d

i=1

√‖wi‖22 + ζ,
which is apparently reduced to Eq. (10) when ζ → 0.
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Algorithm 1 An iterative algorithm to solve the optimiza-
tion problem in Eq. (10).
Input: X ∈ R

d×n, Y ∈ R
n×m and C ∈ R

n×m.
Output: W ∈ R

d×m.
1: Initialize W0 as a random matrix, t = 0.
2: while not converging do
3: update diagonal matrix Dt+1 where the i-th diagonal

element is 1
2‖wi

t‖2
.

4: update diagonal matrix Gt+1 where the i-th diagonal
element is 1

2‖((XTWt−Y)�C)i‖2
.

5: for k ← 1 to m do
6: Uk = diag(ck).
7: (wt+1)k = (λDt+1 +XUkGt+1UkX

T )−1

8: ·(XUkGt+1Uk)yk.
9: end for

10: t = t+ 1.
11: end while

Complexity Analysis

In Algorithm 1, step 3 and step 4 calculate the diagonal el-
ements which are computationally trivial, so the complexity
mainly depends on the matrix multiplication and inversion
in step 7. By using sparse matrix multiplication and avoid-
ing dense intermediate matrices, the complexity of updat-
ing each (wt+1)k is O(d2(n + d)). Thus the complexity of
the proposed algorithm is O(Ttmd2(n+ d)), where t is the
number of iterations, and T is the number of discretized val-
ues of F-measure. Empirical results show that the conver-
gence of Algorithm 1 is rapid and t is usually less than 50.
Besides, T is usually less than 20. Therefore, the proposed
algorithm is quite efficient.

Experiments

Extensive experiments are conducted on synthetic, multi-
class and multi-label datasets. For multi-class classification,
we use two datasets: handwritten digit dataset USPS2 and
face image dataset YaleB2. For multi-label classification,
we use MSVCv23 and TRECVID20054 datasets. Follow-
ing the previous works (Kong and Ding 2014; Kong et al.
2012), the 384-dimensional color moment features are ex-
tracted on MSRC, and the 512-dimensional GIST features
on TRECVID. For each dataset, we randomly select 1/3
of the training samples for validation to tune the hyper-
parameters. For datasets that do not have a separate test set,
the data is first split to keep 1/4 for testing. A summary of
multi-class and multi-label datasets is shown in Table 1.

During the training process, the parameter λ in our
method is optimized in the range of {10−6, 10−5, . . . , 106},
and the number of selected features is set as
{20, 30, . . . , 120}. To fairly compare all different fea-
ture selection methods, classification experiments are
conducted on all datasets using 5-fold cross validation SVM

2http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
3http://research.microsoft.com/en-us/projects/

objectclassrecognition/
4http://www-nlpir.nist.gov/projects/tv2005/

Table 1: Information of multi-class and multi-label datasets.
Datasets Classes Samples Features

Multi-class USPS 10 9258 256
YaleB 38 2414 1024

Multi-label MSRC 23 591 384
TRECVID 39 3721 512

with linear kernel and parameter C = 1. We repeat the
experiments 10 times with random seeds for generating the
validation sets. Both mean and standard deviation of the
accuracy and F1-measures are reported.

Synthetic Data

To demonstrate the advantage of cost-sensitive feature selec-
tion over traditional cost-blind feature selection, a toy exper-
iment is performed to show the influence of the costs on the
selected features. We construct a two-dimensional binary-
class synthetic dataset based on two different uniform distri-
butions, as shown in Figure 4. The ratio of majority class to
minority class is 3 : 1. In this experiment, majority class is
treated as the positive class, and minority class as the nega-
tive class.

For a given linear classifier, each coefficient of its pro-
jection vector w corresponds to one feature weight such as
w1 for x1, then the features with larger coefficients will be
selected. The projection vector w varies with the costs as-
signed to both classes. In Figure 4(a), the cost of majority
class is larger than the cost of minority class when r < 1.
In Figure 4(b), the costs for both classes are the same when
r = 1. In this case, the cost-sensitive feature selection de-
generates to the cost-blind feature selection. When r > 1,
as shown in Figure 4(c), the cost of majority class is smaller
than the cost of minority class. It is worth noting that the
weight of feature x1 is larger than the weight of feature
x2, which is different from the first two examples. There-
fore, different features will be selected from different cost-
sensitive feature selection problems.

Multi-Class Datasets

On multi-class datasets, CSFS is compared with several pop-
ular and representative multi-class feature selection meth-
ods, such as ReliefF (Kononenko 1994), Information Gain
(IG) (Raileanu and Stoffel 2004), mRMR (Peng, Long, and
Ding 2005), F-statistic (Liu and Motoda 2012) and RFS (Nie
et al. 2010).

The multi-class classification results in terms of micro-
F1-measure and accuracy is shown in Figure 5. Table 2
shows the results of different feature selection methods on
their best dimensions. We observe that: (1) the proposed
CSFS is superior to other multi-class feature selection meth-
ods consistently in terms of the micro-F1-measure on both
USPS and YaleB datasets; (2) in terms of accuracy, CSFS
outperforms other methods on most of the feature subsets.

Multi-Label Datasets

On each multi-label dataset, CSFS is compared with five
competitive multi-label feature selection methods: multi-
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Figure 4: Illustration of how costs influence the feature weights on a two-dimensional synthetic dataset.
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Figure 5: Multi-class classification results using SVM in
terms of multi-class micro-F1-measure and accuracy.

Table 2: Multi-class micro-F1-measure (%± std) and accu-
racy (%± std) of multi-class feature selection methods.

Micro-F1-measure Accuracy
USPS YaleB USPS YaleB

ReliefF 87.25±0.71 39.09±6.55 98.13±1.39 94.22±0.34
IG 83.51±1.06 39.13±1.47 97.35±2.96 93.44±1.22

mRMR 88.30±0.87 49.80±9.44 98.23±0.76 95.00±0.85
F-statistic 88.36±0.84 42.64±1.13 98.20±1.69 92.78±2.70

RFS 89.54±0.62 48.68±8.54 98.50±0.95 95.56±1.51
CSFS 91.56±0.56 53.83±1.63 98.50±0.56 96.72±0.41

label ReliefF (MLReliefF) (Kong et al. 2012), multi-label
F-statistic (MLF-statistic) (Kong et al. 2012), information-
theoretic feature ranking (ITFR) (Lee and Kim 2015), non-
convex feature selection (NCFS) (Kong and Ding 2014) and
RFS (Nie et al. 2010). Particularly, RFS can be extended for
multi-label feature selection task (Kong and Ding 2014).

Figure 6 shows the classification results in terms of
multi-label micro-F1-measure and accuracy on MSRC and
TRECVID datasets. Table 3 shows the results of each feature
selection method on its best performing dimension. From
the results, we can observe that: (1) the methods using joint
sparse regularization, such as CSFS, NCFS and RFS, show
better performances than other feature selection methods
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Figure 6: Multi-label classification results using SVM in
terms of multi-label micro-F1-measure and accuracy.

Table 3: Multi-label micro-F1-measure (%± std) and accu-
racy (%± std) of multi-label feature selection methods.

Micro-F1-measure Accuracy
MSRC TRECVID MSRC TRECVID

MLReliefF 63.96±0.49 45.25±0.71 63.57±1.41 62.46±0.88
MLF-statistic 59.99±1.87 43.51±0.36 62.15±1.50 59.55±4.27

ITFR 63.24±1.07 47.23±0.59 65.70±0.32 60.46±3.75
NCFS 67.50±1.96 49.23±0.80 69.32±1.64 64.04±3.57
RFS 68.29±0.93 49.54±0.62 70.75±1.02 63.53±0.77

CSFS 70.88±0.77 51.56±0.56 72.32±0.46 65.42±0.43

that only use the statistical information of the original fea-
tures. This is because the projection matrices of these meth-
ods are determined at the same time during the optimization
procedure, corresponding features are selected to prevent
high correlation (Han and Kim 2015); (2) Our method out-
performs these methods significantly under the F-measure
criterion, and does not lead to obvious decrement to ac-
curacy. In particular, our method outperforms other meth-
ods by a relative improvement between 3%-10% in terms of
micro-F1-measure.
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Conclusion

In this paper, we proposed a cost-sensitive feature selec-
tion method by optimizing F-measure instead of accuracy
to tackle the class imbalance problem. Due to the neglect
of class imbalance issue, traditional feature selection meth-
ods such as regularized regression-based methods usually
select the feature subset by maximizing the classification
accuracy to choose the features. Thus the selected features
are biased towards the majority classes. Under the imbal-
anced classes setting, F-measure is a more suitable perfor-
mance measure than accuracy. Motivated by the reduction of
F-measure optimization to cost-sensitive classification, we
modify the classifiers of regularized regression-based fea-
ture selection into cost-sensitive by generating and assign-
ing different costs to each class. Features will be selected
according to the classifier with optimal F-measure. There-
fore, the selected features will fully represent for all classes.
Extensive experiments have been performed on synthetic,
multi-class and multi-label datasets. The results demonstrate
the effectiveness of our method.
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