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Abstract

This paper proposes a one-step spectral clustering method by
learning an intrinsic affinity matrix (i.e., the clustering result)
from the low-dimensional space (i.e., intrinsic subspace) of
original data. Specifically, the intrinsic affinity matrix is learnt
by: 1) the alignment of the initial affinity matrix learnt from
original data; 2) the adjustment of the transformation ma-
trix, which transfers the original feature space into its intrin-
sic subspace by simultaneously conducting feature selection
and subspace learning; and 3) the clustering result constraint,
i.e., the graph constructed by the intrinsic affinity matrix has
exact c connected components where c is the number of clus-
ters. In this way, two affinity matrices and a transformation
matrix are iteratively updated until achieving their individual
optimum, so that these two affinity matrices are consistent
and the intrinsic subspace is learnt via the transformation ma-
trix. Experimental results on both synthetic and benchmark
datasets verified that our proposed method outputted more ef-
fective clustering result than the previous clustering methods.

Introduction

Spectral clustering has drawn growing concern due to find-
ing the cluster membership of the data by considering the in-
herent structure among data points to naturally reflect the re-
lationships of the data (Wang et al. 2011; Lu et al. 2012). The
previous spectral clustering is a two-step strategy, i.e., first
learning an affinity matrix to measure the similarity among
data points (i.e., the affinity matrix learning step) and then
conducting a k-means clustering on the resulting affinity
matrix to output final clustering result (i.e., the k-means
clustering step). Usually, the affinity matrix (i.e., similarity
graph) learning step, i.e., transferring the finding of cluster
membership to an optimal graph partition problem, is the
most key step of spectral clustering (Nie and Huang 2016;
Wang and Siskind 2003). Representation methods have been
well-known as the most popular methods for the affinity ma-
trix learning, by assuming that each data point may be rep-
resented by other data points (Peng, Zhang, and Yi 2013;
Zhu et al. 2013). Specifically, representation methods use the
resulting representation coefficient to measure the similarity
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among data points, i.e., large coefficient indicates close re-
lationship between two data points while small coefficient
indicates distant relationship.

Representation methods for the construction of the affin-
ity matrix include global representation methods (Lu et al.
2012; Liu et al. 2013) and local representation methods (Ng
et al. 2002; Luo et al. 2011; Nie et al. 2016). Global rep-
resentation methods represent each data point by all data
points, such as the low-rank representation method (Liu et
al. 2013) and the least square representation method (Lu et
al. 2012; Peng, Zhang, and Yi 2013). Local representation
methods represent each data point by its nearest neighbors,
with the assumption that high-dimensional data usually lie
on a low-dimensional space, i.e., an intrinsic subspace. For
example, a global representation method in (Elhamifar and
Vidal 2013) and a local representation method in (Nie et al.
2016) used an �1-norm sparse model and a k Nearest Neigh-
bor (kNN) graph, respectively, to conduct the affinity matrix.
In a nutshell, the previous representation methods conduct
the affinity matrix learning step by sharing a common strat-
egy, i.e., representing each data point by other data points
with different criteria.

However, the previous spectral clustering methods still
have drawbacks to be overcome. First, the affinity matrix
learning is sensitive to the data quality. The previous spec-
tral clustering methods (Ng et al. 2002; Lu et al. 2012;
Liu et al. 2013; Elhamifar and Vidal 2013) learn the affin-
ity matrix from original data, which are often corrupted by
noise and outliers, thus unavailable to correctly disclose the
similarity among data points. Second, the k-means method
is well-known as sensitive to the initialization of cluster-
ing centers (Ng et al. 2002). Lastly, even though each step
achieves their individual optimum, the two-step strategy eas-
ily leads to suboptimal result since individual optimum can-
not ensure the global optimum of the two-step strategy.

In this paper, we propose a one-step spectral learning
method to learn an intrinsic affinity matrix from the intrin-
sic subspace. Moreover, the intrinsic affinity matrix is ac-
tually the clustering result without conducting the k-means
clustering step. Different from the previous spectral cluster-
ing methods learning a fixed affinity matrix from original
data, our proposed method learns the intrinsic affinity ma-
trix by: 1) the alignment of the initial affinity matrix learnt
from the original feature space. The motivation is that these
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two affinity matrices have different illustrations in real ap-
plications due to the influence of noise and outliers, but they
measure the similarity of the same data. Thus this paper pro-
poses to first learn them individually and then align them to
be consistent. 2) the adjustment of the transformation ma-
trix, which transfers the original feature space into the intrin-
sic subspace by simultaneously conducting feature selection
and subspace learning. The resulting intrinsic subspace is
interpretable and robust, and thus enabling to learn the real
similarity among data points, i.e., yielding an optimal intrin-
sic affinity matrix. 3) the clustering result constraint, i.e., the
graph constructed by the intrinsic affinity matrix ideally has
c connected components where c is the number of clusters.
The clustering result constraint removes the k-means clus-
tering step to result in one-step spectral clustering, and thus
enabling to output optimal clustering result. Since these two
affinity matrices and the transformation matrix are unknown,
we propose to iteratively update one of them by fixing the
others. As a result, all of them achieve their individual opti-
mum. That is, the intrinsic subspace spanned by the transfor-
mation matrix is approximately found. Moreover, the intrin-
sic affinity matrix is consistent to the initial affinity matrix
as well as is the final clustering result.

Compared to the previous two-step spectral clustering
methods, we conclude the contributions of our proposed
method as follows. First, unlike the previous methods learn-
ing either a fixed affinity matrix (Ng et al. 2002; Elhamifar
and Vidal 2013) or a dynamic affinity matrix (Liu et al. 2013;
Lu et al. 2012), from original data, this paper learns a dy-
namic intrinsic affinity matrix from the intrinsic subspace
which removes the influence of noise and outliers. More-
over, the learnt intrinsic affinity matrix is consistent to the
initial affinity matrix. Furthermore, we couple the learning
of these two affinity matrices with the learning of the intrin-
sic subspace to achieve their individual optimum. Second,
our proposed method conducts a one-step spectral cluster-
ing by only learning the affinity matrix (i.e., the clustering
result) without the k-means clustering step, which is sensi-
tive to its initialization and used in two-step spectral clus-
tering. Moreover, our one-step strategy can obviously avoid
the suboptimal issue of the previous two-step spectral clus-
tering.

Method

Notation

In this paper, we denote matrices as boldface uppercase let-
ters, vectors as boldface lowercase letters, and scalars as
normal italic letters; We also denote the i-th row and j-th
column of a matrix X = [xij ] as xi and xj , and its Frobe-

nius norm and �2,1-norm as ||X||F =
√∑

i

∑
j x

2
i,j , and

||X||2,1 =
√∑

j x
2
i,j ; We further denote the transpose, the

trace, the rank, and the inverse, of a matrix X, as XT , tr(X),
rank(X), and X−1, respectively.

Initial affinity matrix learning

Let X = [x1,x2, ...,xn] ∈ R
d×n be the d-dimensional fea-

ture matrix, where n is the number of data points, we can

use either global representation methods or local represen-
tation methods to construct the affinity matrix G of graph
G = (V,E), where V and E, respectively, represent the set
of vertices (i.e., data points) and the set of the edges. Since
the local representation methods linearly represent each data
point by its nearest neighbors to remove the influence of dis-
tant data points (especially outliers) (Roweis and Saul 2000;
Yu, Zhang, and Gong 2009), the local representation meth-
ods have been demonstrated more robust than global rep-
resentation methods for the construction of the affinity ma-
trix. Different from that the previous global representation
methods learn a fixed affinity matrix from the original fea-
ture space (Ng et al. 2002), this paper devises a new local
representation method to dynamically learn an initial affin-
ity matrix from the original feature space (this subsection)
and an intrinsic affinity matrix from the intrinsic subspace
in Section 2.3.

The construction of an affinity matrix actually finds a sim-
ilarity measurement among data points. With the local repre-
sentation assumption, i.e., each data point is only connected
with its nearest neighbors, we expect that close data points
have large similarity while distant data points have small or
even zero similarity. Thus, we propose to minimize the fol-
lowing objective function:

min
G

n∑
i,j

gi,j‖xi − xj‖22, s.t., G ∈ C, (1)

where the initial affinity matrix G = [g1, ...,gn] ∈
R

n×n, C = {∀i|cTi 1 = 1, ci,i = 0, ci,j ≥ 0 if j ∈
N(i), otherwise 0.}, 1 and N(i), respectively, represent an
all-ones vector and the set of nearest neighbors of the i-th
data point. The constraint cTi 1 = 1 in C enables to result in
shift invariant similarity. Eq. (1) leads to small or even zero
value of gi,j while xi and xj are far apart, and large value of
gi,j while xi and xj are close.

It is noteworthy that similar objective function can be
found in (Nie and Huang 2016), which used a global rep-
resentation method to learn the affinity matrix by represent-
ing each data point by all data points, while Eq. (1) uses
a local representation method to learn the representation of
each data point by its nearest neighbors, where the number
of nearest neighbors can be tuned by cross-validation meth-
ods. Besides, (Nie and Huang 2016) conducted a two-step
clustering analysis, while the goal of Eq. (1) is to conduct
one-step spectral clustering.

Intrinsic affinity matrix learning

The previous methods (e.g., (Belkin and Niyogi 2001;
He and Niyogi 2003)) assume that the affinity matrix con-
structed in the original feature space represents the real simi-
larity among data points, and thus can be transferred to guide
the predictions of the original feature matrix X, i.e.,

min
Y

n∑
i,j

gi,j‖yi − yj‖22, s.t., G ∈ C, (2)

where the i-th vector yi of the prediction matrix Y is the
prediction of xi. In Eq. (2), a fixed similarity gi,j between
the i-th data point xi and the j-th data point xj learnt from
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the original feature space is used to guide the predictions of
yi and yj (Belkin and Niyogi 2001; He and Niyogi 2003).
However, this assumption usually does not hold since the
real distribution of the data are often highly complex.

It is apparent that the affinity matrices generated in dif-
ferent feature spaces have different illustrations due to the
influence of noise and outliers. Thus, there is no guaran-
tee that the affinity matrix learnt from the original feature
space can effectively guide the clustering process in the in-
trinsic subspace. Unlike the previous methods learning a
fixed affinity matrix, this paper proposes to learn an ini-
tial affinity matrix from original data and an intrinsic affin-
ity matrix from the intrinsic subspace of original data. The
motivation is that different feature spaces result in differ-
ent affinity matrices, which also meets the goal of spectral
clustering methods, i.e., finding an intrinsic subspace of the
original feature space since original data actually lie on a
low-dimensional space (Vidal 2011; Zhu et al. 2012). By
denoting W ∈ R

d×d′
(where d′ ≤ d) as the transforma-

tion matrix mapping original data X to its intrinsic subspace
spanned by WTX, we design to learn an intrinsic affinity
matrix S = [s1, ..., sn] ∈ R

n×n in the intrinsic subspace
via:

min
S,W

n∑
i,j

si,j‖WTxi −WTxj‖22 + γ‖W‖2,1,
s.t., WTXXTW = Id′ ,S ∈ C,

(3)

where Id′ ∈ R
d′×d′

and γ, respectively, are an identity
matrix and a tuning parameter. The penalty ‖W‖2,1 con-
ducts feature selection by outputting the row sparsity on
W to remove the noisy/redundant features of X, while the
orthogonal constraint on the scatter matrix WTXXTW
actually conducts subspace learning to transfer original d-
dimensional feature space into a statistically uncorrelated
d′-dimensional space.

The literature (Gu, Li, and Han 2011; Zhu et al. 2016) has
demonstrated that subspace learning enables to output ro-
bust models and feature selection outputs interpretable mod-
els. Therefore, Eq. (3) simultaneously conducts subspace
learning (via the orthogonal constraint on the scatter matrix)
and feature selection (via the the row sparsity on W), and
thus achieving robust and interpretable models for finding
the ideally intrinsic subspace (via W), where the intrinsic
affinity matrix S is yielded. Unfortunately, we have no prior
knowledge on either the dimensions of the intrinsic subspace
or the intrinsic affinity matrix. As a consequence, Eq. (3) is
unavailable to output the optimal result for either the intrin-
sic affinity matrix or the intrinsic subspace. In this paper,
we propose two solutions to address this issue, i.e., coupling
the intrinsic affinity matrix with the initial affinity matrix
(please see Section 2.4) and regarding the intrinsic affinity
matrix as the clustering results by ideally expecting that the
graph constructed by the intrinsic affinity matrix has exact
c connected components where c is the number of clusters
(please see Section 2.5).

The consistency of two affinity matrices

With the motivation of that: 1) the initial affinity matrix G
is learnt from original data and thus may be influenced by

noise and outliers. As a result, the quality of G cannot be
guaranteed; 2) both G and S are used to measure the simi-
larity of the same data points, so their difference, measured
by the summation of element-wise similarity, should be as
small as possible; and 3) we have no prior knowledge on
the dimensions of the intrinsic subspace W, in this paper,
we allow S to be progressively refined by G, aiming at sup-
pressing possible noise and outliers to find the approximate
intrinsic dimensions of X, i.e., W. To do this, we couple
the estimation of G with the estimation of S by designing a
dynamic affinity matrix learning model as follows:

min
G,S,W

n∑
i,j

gi,j(‖xi − xj‖22 + α‖WTxi −WTxj‖22)

+ β
n∑

i=1

‖gi − si‖22 + γ‖W‖2,1,
s.t., WTXXTW = Id′ ,G ∈ C,S ∈ C,

(4)

where α and β are tuning parameters, and the constraint
n∑

i=1

‖gi − si‖22 is used to preserve the consistency between

G and S.
In Eq. (4), by fixing two of three variables, i.e., G, S, and

W, the remaining one can be optimized. After the iteration
optimization, S is aligned to G by the adjustment of W,
while W is optimized by the adjustment of G and S, and
thus the intrinsic dimensions of X (via W) is approximately
approached. As a consequence, the construction of both G
and S are with the high quality of the data (controlled by
W), so they become the ideal affinity matrices of X. This
is different from the previous spectral clustering methods,
such as learning a fixed local representation affinity matrix
in (Elhamifar and Vidal 2013; He and Niyogi 2003; Ng et al.
2002), learning a fixed global representation affinity matrix
in (Liu et al. 2013; Lu et al. 2012), and learning a dynamic
global representation affinity matrix in (Nie et al. 2016; Nie
and Huang 2016), from original data.

It is noteworthy that Eq. (4) solves the first issue of learn-
ing affinity matrix on the quality of the data, but does not
touch the last two issues of spectral clustering methods on
explicitly yielding the clustering result, i.e., the removal of
the k-means clustering step and the suboptimal clustering
result of the two-step strategy.

One-step spectral clustering

In graph theory, if an n-vertex graph S has exactly c con-
nected components, where any two vertices are connected
to each other by paths, then we can permutate its affinity
matrix (constructed by these n data points) to a new matrix.
In the resulting new matrix, the data points in the same con-
nected components are put together to form a block. As a
result, the resulting matrix becomes a block diagonal matrix
with c blocks (where c is the number of clusters) (Mohar
et al. 1991). That is, the data points in the same blocks can
be regarded as having the same cluster membership, and n
data points form c clusters. In this case, we can say that the
matrix has an explicit clustering result.

In our case, if we want the intrinsic affinity matrix S to
have explicit clustering result, then the graph constructed
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by S should have exactly c connected components, which
is called ‘clustering result constraint’ (K for short) in this
paper. To do this, we first follow the literature (Chung 1997;
Mohar et al. 1991) to have Theorem 1 as follows:

Theorem 1. The number of connected components of the
graph S is equal to the multiplicity of 0 as an eigenvalue of
the Laplacian matrix L1.

Theorem 1 implies that “the graph S has c connected com-
ponents ⇔ the Laplacian matrix L has c zero eigenvalues”.
By rearranging the eigenvalues of L as an ascending-order
set of {λ1, ..., λn}, we relax the above constraint to the fol-

lowing: “L has c zero eigenvalues ⇔
c∑

i=1

λi → 0” according

to (Moslehian 2012). By following the Ky Fan’s theorem in
(Fan 1949), we have:

c∑
i=1

λi → 0 ⇔
{

min
W

tr(WTXLXTW),

s.t.,WTXXTW = Ic,
(5)

where W ∈ R
d×c (i.e., d′ = c) is the transformation ma-

trix and Ic ∈ R
c×c is an identity matrix. Thus we obtain

our final objective function for conducting one-step spectral
clustering as follows:

min
G,S,W

n∑
i,j

(‖xi − xj‖22gi,j + α‖WTxi −WTxj‖22si,j)

+ β
n∑

i=1

‖gi − si‖22 + γ‖W‖2,1,
s.t., WTXXTW = Ic,G ∈ C,S ∈ C,

(6)

Eq. (6) considers the optimization of S as a function of
G, W, and K, i.e., S = F(G,W,K) where F denotes a
function operator, as well as considers the optimization of
W directly influenced by S and indirectly influenced by G.
Specifically, G and W are used to help learn S with the high
quality of the data, while the clustering result constraint K
is used to directly make S as the clustering result. As a con-
sequence, although we have no prior knowledge on either S
or W, Eq. (6) makes conduct a one-step spectral clustering
to learn an intrinsic affinity matrix S from the intrinsic sub-
space W. That is, besides finding the intrinsic subspace (via
W) of the original feature space, Eq. (6) also enables the
resulting intrinsic affinity matrix S to 1) measure the real
similarity among data points in the intrinsic subspace, and
2) be the final clustering result.

Optimization

The objective function in Eq. (6) is not jointly convex with
respect to the three variables, i.e., S, W, and G. In this
paper, we employ the framework of Iteratively Reweighted
Least Square (IRLS) (Björck 1996) to solve Eq. (6), by it-
eratively optimizing each of the parameters (i.e., S, W, and
G) while fixing the remaining parameters.

1where L = P − S and P is a diagonal matrix with the i-th

element pi,i as pi,i =
n∑

j=1

si,j , i = 1, ..., n.

i) Update W by fixing S and G By fixing S and G, we
have the following objective function:

min
W

tr(WTXLXTW) + γ‖W‖2,1,
s.t., WTXXTW = Ic,

(7)

By setting XTW − Z = 0 and W − M = 0, we then
employ the framework of Alternating Direction Method of
Multipliers (ADMM) (Boyd et al. 2011) to optimize W with
the corresponding augmented Lagrangian as follows:

min
W,M,Z

tr(ZTLZ) + γ‖M‖2,1 + ρ1‖M−W +U‖2F
+ ρ2‖Z−XTW +V‖2F , s.t. ZTZ = Ic,

(8)

In each iteration of ADMM, the closed form solution of
the variables W, M, and Z, can be obtained by:⎧⎪⎨
⎪⎩

W = (ρ1Id + ρ2XXT )−1B,

mi = max{‖(W −U)i‖22 − γ
ρ1
, 0} (W−U)i

‖(W−U)i‖22 ,
Z = AAT ,

(9)

where B = ρ1(M+U)+ρ2X(Z+V), Id is an d×d identity
matrix, and (W−U)i represents the i-th row of W−U, i =
1, ..., d. The result of Singular Value Decomposition (SVD)
of (XTW − V)T (R−1)TR is denoted as AΩAT , where
R is a lower triangular matrix (i.e., RRT = L+ ρ2In) and
In denotes an n× n identity matrix.

ii) Update S by fixing W and G By fixing W and G, we
have the following objective function:

min
S

n∑
i,j

α‖WTxi −WTxj‖22si,j + β
n∑

i=1

‖gi − si‖22
s.t., S ∈ C.

(10)

We first calculate k nearest neighbors of each data point,
and then set the value of si,j as 0 if the j-th data point is
not one of k nearest neighbors of the i-th data point, oth-
erwise, the value of si,j can be solved by Karush–Kuhn–
Tucker (KKT) conditions, i.e.,

si,j =

{
ei,k+1−ei,j

kei,k+1−
∑k

v=1 ei,v
, j ≤ k,

0, j > k,
(11)

where ei = {ei,1, ..., ei,n} is the descend order of fi (where
fi,j = α

2 ||WTxi − WTxj ||22, i, j = 1, ..., n), and k is the
number of nearest neighbors of i-th data point, which can be
tuned by cross-validation methods.

iii) Update G by fixing W and S Similar to the optimiza-
tion of S, if the j-th data point is one of k nearest neighbors
of the i-th data point, the close-form solution of gi,j is:

gi,j =

{
e′i,k+1−e′i,j

ke′i,k+1−
∑k

v=1 e′i,v
, j ≤ k,

0, j > k,
(12)

where e′i = {e′i,1, ..., e′i,n} is the descend order of f ′i (where
f ′i,j = 1

2 ||xi − xj ||22, i = 1, ..., n), and k is the number of
nearest neighbors of i-th data point.
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Table 1: The information of the benchmark datasets
Datasets Data points Features Classes
Umist 165 3456 15
Wine 178 13 3
Ecoli 336 343 8
YaleB 640 2016 10
Jaffe 213 1024 10
Coil 1440 1024 20

Experimental analysis

We evaluate our one-step spectral clustering method and
eight clustering methods on both synthetic datasets and real
benchmark datasets, in terms of clustering ACCuracy (ACC)
and Normalized Mutual Information (NMI).

Experimental result on synthetic datasets

The first synthetic dataset includes 200 3-D data points
within 3 blocks, where the affinity matrix is 200 × 200 and
the block size is 50 × 50, 100 × 100, and 50 × 50. It is
noteworthy that the data points in the same block have the
same cluster membership. In our experiments, we randomly
generated noise with the noise level σ (0 ≤ σ ≤ 1) to the
data points in the blocks and outside of the blocks (i.e., out-
liers). The larger the value of σ, the larger the percentage of
the noise is. Figs. 1(a) and 1(c) visualized the affinity matri-
ces of two datasets with different noise levels, i.e., σ = 0.5
and σ = 0.9, respectively. Figs. 1(b) and 1(d) illustrated
the corresponding affinity matrices yielded by our method.
It was obvious that our method could output clearly sepa-
rated blocks. We then conducted clustering analysis using
our method and the classic clustering method Normalize Cut
(NCut) (Shi and Malik 2000) on these two datasets. The
ACC results of these two methods are 100% for the dataset
with a moderate noise level, i.e., σ = 0.5, but our method
(i.e., 95% for ACC) outperformed NCut (i.e., 85% for ACC)
on the dataset with the high noise level (i.e., σ = 0.9). This
indicated that these two methods were robust to noise but
our method was more robust than NCut.

Experimental result on benchmark datasets

Comparison methods The comparison methods include
three classic clustering methods (e.g., NCut, k-means (Har-
tigan and Wong 2013), and Ratio Cut (RCut) (Wang
and Siskind 2003)), two global representation methods
(e.g., Low-Rank Representation (LRR) (Liu et al. 2013), and
Constrained Laplacian Rank (CLR) (Nie et al. 2016)), and
one local representation method (e.g., Sparse subspace clus-
tering (SSC) (Elhamifar and Vidal 2013)). The brief descrip-
tion of the comparison methods in this paper is described as
follows:
• NCut identifies the data points into k disjoint vertex sets

so that the weights of the edges between the vertex sets are
minimum, while giving an graph measuring the similarity
among samples.

• k-means aims to partition all the data points into k clus-
ters/groups in which each data point belongs to the cluster
with the nearest mean. Since k-means is sensitive to the

initial values, we ran this algorithm 10 times and reported
their averaging result.

• RCut is a graph-based clustering method and was de-
signed to find partitions minimizing the ratio of the sums
of two different weights.

• LRR seeks the lowest rank representation among all the
other data points that can represent the data samples as
linear combinations of the bases in a given dictionary.

• CLR is a graph-based method by learning a graph with
exactly k connected components where k is the number
of clusters.

• SSC is based on the fact that each point in a union of
subspaces has a sparse representation with respect to a
dictionary formed by all other data points. It could cluster
data drawn from multiple low-dimensional linear or affine
subspaces embedded in a high-dimensional space.

Datasets The used datasets (shown in Table 1 for more
detail) include image datasets (such as Umist, Ecoli, YaleB,
Coil and Jaffe) and the datasets Wine is downloaded from
(Zhong and Fukushima 2007).

Umist (Graham and Allinson 1995) consists of 575 face
images of 20 people. Each of images covers a range of poses
from profile to frontal views and is disposed into 23 × 28
pixels.

Ecoli (Athitsos and Sclaroff 2005) contains 336 data sam-
ples drown from 8 groups and each of the samples has 343
features.

YaleB (Lee, Ho, and Kriegman 2005) has 16128 facial
images of 28 persons under 9 postures (center-light, happy,
w/no glasses, normal, sad, sleepy, surprised, and so on) and
64 illumination conditions. All the images are cut into 2016
dimensions. In our experiments, we used 64 images of the
first 10 people to test the clustering performance of all the
methods.

Coil (Rate and Retrieval 2011) consists of 1440 grid im-
ages of 20 objects and all the images are cut into 1024 fea-
tures where the backgrounds of all the images have been
discarded.

Jaffe (Nie, Wang, and Huang 2014) has totally 213 images
and each of 10 distinct persons with 7 facial expressions (6
basic facial expressions plus 1 neutral). Each image is pre-
processed into 256 pixels so that the number of the dimen-
sions of each image is 256.

Wine is the results of chemical analysis of wines grown
in the same region and is derived from 3 cultivars. It has 178
samples with 13 features.

Experimental analysis For fair comparison, we used the
self-tune Gaussian method to construct the initial affinity
matrix and set the number of k (in a range of {5, 10, 15}
) by following the setting of CLR for the methods (i.e., SSC,
LRR, RCut, and NCut); We repeated the experiments 100
times for the methods (i.e., k-means, RCut, and NCut) and
reported the average performance of the k-means to elimi-
nate the random error; We tuned all the parameters in a range
of {0.01, 1, 10, 100} to report the best performance for the
spectral clustering methods (i.e., SSC, LRR, CLR, and our
method).
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(a) Original graph (σ = 0.5) (b) Proposed graph (σ = 0.5) (c) Original graph (σ = 0.9) (d) Proposed graph (σ = 0.9)

Figure 1: Clustering result on a block diagonal synthetic data by our proposed method.

Table 2: Clustering accuracy (ACC) of all methods on benchmark datasets.
k-means RCut NCut CLR SSC LRR Proposed

Umist 43.65 59.13 59.13 69.22 63.22 64.00 79.83
Wine 53.65 71.03 71.03 72.47 65.17 71.01 72.47
Ecoli 35.21 48.04 47.44 50.86 47.02 46.61 53.27

ACC YaleB 29.38 33.59 33.75 30.16 36.56 31.56 45.94
Jaffe 74.21 96.24 96.24 81.69 82.63 81.60 96.71
Coil 73.82 79.58 79.44 85.35 80.63 85.14 94.72

Table 3: NMI of all methods on benchmark datasets.
k-means RCut NCut CLR SSC LRR Proposed

Umist 63.40 80.11 80.12 83.89 75.05 64.48 88.48
Wine 33.40 37.14 37.14 39.27 36.76 35.56 39.27
Ecoli 41.50 39.61 39.12 42.56 37.83 41.69 42.77

NMI YaleB 29.59 31.89 32.54 45.07 38.16 31.03 49.70
Jaffe 89.38 96.23 96.23 90.44 88.25 91.35 96.71
Coil 77.94 88.94 88.77 94.50 82.26 85.94 97.69

We reported all clustering result in Tables 2 and 3, which
showed that our method achieved the best performance,
compared to all the comparison methods. The reason is that
our method could learn a robust affinity matrix from the in-
trinsic subspace of the original feature space and thus result-
ing a one-step clustering to yield robust clustering result.

Conclusion

This paper proposed a novel one-step spectral clustering
method by learning the affinity matrix (also the cluster-
ing result) from the intrinsic subspace of the original fea-
ture space. Different from the previous two-step spectral
clustering methods, our proposed method directly outputs
the clustering result for avoiding the suboptimal issue of
the two-step strategy. Experimental result on both synthetic
datasets and benchmark datasets showed that our proposed
one-step spectral clustering method outperformed the com-
parison clustering methods.

In our future work, this framework will be extended to
conduct clustering on the datasets with incomplete data
since missing data are often found in real applications (Zhu
et al. 2007; Zhu, Suk, and Shen 2014).
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