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Abstract

In this paper, we consider the problem of actively learning a
linear classifier through query synthesis where the learner can
construct artificial queries in order to estimate the true deci-
sion boundaries. This problem has recently gained a lot of in-
terest in automated science and adversarial reverse engineer-
ing for which only heuristic algorithms are known. In such
applications, queries can be constructed de novo to elicit in-
formation (e.g., automated science) or to evade detection with
minimal cost (e.g., adversarial reverse engineering). We de-
velop a general framework, called dimension coupling (DC),
that 1) reduces a d-dimensional learning problem to d−1 low-
dimensional sub-problems, 2) solves each sub-problem effi-
ciently, 3) appropriately aggregates the results and outputs a
linear classifier, and 4) provides a theoretical guarantee for
all possible schemes of aggregation. The proposed method
is proved resilient to noise. We show that the DC frame-
work avoids the curse of dimensionality: its computational
complexity scales linearly with the dimension. Moreover, we
show that the query complexity of DC is near optimal (within
a constant factor of the optimum algorithm). To further sup-
port our theoretical analysis, we compare the performance of
DC with the existing work. We observe that DC consistently
outperforms the prior arts in terms of query complexity while
often running orders of magnitude faster.

1 Introduction

In contrast to the passive model of supervised learning,
where all the labels are provided without any interactions
with the learning mechanism, the key insight in active learn-
ing is that the learning algorithm can perform significantly
better if it is allowed to choose which data points to la-
bel. This approach has found far-reaching applications, in-
cluding the classical problems in AI (e.g., classification
(Tong and Koller 2002), information retrieval (Tong and
Chang 2001), speech recognition (Hakkani-Tur, Riccardi,
and Gorin 2002)) as well as the modern ones (e.g., inter-
active recommender systems (Karbasi, Ioannidis, and Mas-
soulie 2012), optimal decision making (Javdani et al. 2014)),
and optimal information gathering (Chen et al. 2015). In all
the above applications, the unlabeled data are usually abun-
dant and easy to obtain, but training labels are either time-
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consuming or expensive to acquire (as they require asking
an expert).

Throughout this paper, our objective is to actively learn an
unknown halfspace H∗ = {x ∈ R

d ∶ ⟨h∗, x⟩ > 0} via query
synthesis (a.k.a. membership queries), where ⟨⋅, ⋅⟩ denotes
the standard inner product of the Euclidean space and h∗ is
the unit normal vector of the halfspace we want to learn. We
would like to note that learning the halfspace H∗ is math-
ematically equivalent to learning its unit normal vector h∗;
therefore we focus on learning h∗ hereinafter. In addition,
it should be noted that using the kernel trick we can easily
extend the halfspace learning to more complex (e.g., non-
linear) decision boundaries (Shawe-Taylor and Cristianini
2004).

The hypothesis spaceH, which consists of all possibilities
of unit normal vectors, is the unit sphere Sd−1 = {x ∈ R

d ∶∥x∥ = 1}, where ∥ ⋅ ∥ denotes the standard Euclidean norm.
In active learning of halfspaces via query synthesis, the

algorithm is allowed to query whether any point x in R
d

resides in the true halfspace. When the algorithm queries
x, the true outcome is sign(⟨h∗, x⟩) ∈ {1,−1}. When
sign(⟨h∗, x⟩) = 1, it means that x ∈ H∗; otherwise, x ∉ H∗.
We should note here that the only information we obtain
from a query is the sign of the inner product rather than the
value. For example, the queries of the form sign(⟨h∗, ei⟩),
where ei is the ith standard basis vector, will only reveal the
sign of the ith component of h∗ (and nothing further about
its value).

In the noiseless setting, we observe the true outcome of
the query, i.e. sign ⟨h∗, x⟩ ∈ {1,−1}. In the noisy setting, the
outcome is a flipped version of the true sign with indepen-
dent flip probability ρ. That is, denoting the outcome by y
we have y ∈ {−1,1} and Pr[y ≠ sign ⟨h∗, x⟩] ≜ ρ < 1/2.

Since the length of the selected vector x will not affect
the outcome of the query, we only query the points on the
unit sphere Sd−1 = {x ∈ R

d ∶ ∥x∥ = 1}. Hence, we term
X = Sd−1 as the query space.

Given ε, δ > 0, we would like to seek an active learning al-
gorithm that (i) adaptively selects vectors x1, x2, . . . ∈ X , (ii)
observes the (noisy) responses to each query sign⟨h∗, xi⟩,
(iii) and outputs, using as few queries as possible, an esti-
mate ĥ of h∗ such that ∥ĥ − h∗∥ < ε with probability at least
1 − δ.
Our main contribution in this paper is to develop a noise
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resilient active learning algorithm that has access to noisy
membership queries. To the best of our knowledge, we are
the first to show a near-optimal algorithm that outperforms
in theory and practice the naive repetition mechanism and
the recent spectral heuristic methods (Alabdulmohsin, Gao,
and Zhang 2015). Specifically, we develop a framework,
called Dimension Coupling (DC), with the following guar-
antees. Its query complexity is Õ(d(log 1

ε
+ log 1

δ
))1 and its

computational complexity is Õ(d(log 1
ε
+log 1

δ
)2). In partic-

ular, in the noiseless setting (ρ = 0), both its computational
complexity and query complexity are Õ(d log 1

ε
). Note that

in both settings the computational complexity scales linearly
with the dimension. Moreover, the query complexity in both
settings is near-optimal. Our empirical experiments demon-
strate that DC runs orders of magnitude faster than the ex-
isting methods.
The rest of the paper is structured as follows. In Sec-

tion 2, we start with investigating this problem in the 2-
dimensional case and present an algorithm called DC2. Then
in Section 3 we generalize it to the d-dimensional case and
present a general framework called DC. Empirical results
are shown in Section 4. We extensively review related liter-
ature in Section 5. All proofs are provided in the extended
version (Chen, Hassani, and Karbasi 2016).

2 DC2: Solving the 2-Dimensional Problem

To gain more intuition before studying the general d-
dimensional problem, it might be beneficial to study a spe-
cial case where the dimension is two. In other words, we
study in this section how to learn the normalized pro-
jection of the true unit normal vector h∗ ∈ R

d onto
span{e1, e2}, where e1, e2 ∈ R

d are two orthonormal vec-
tors and span{e1, e2} is the linear subspace spanned by e1
and e2. We should note here that the underlying space is still
d-dimensional (i.e., Rd) but our goal is not to learn h∗ per se
but its normalized projection onto a 2-dimensional subspace.
Formally, given two orthonormal vectors e1, e2 we denote

the (normalized) projection of h∗ onto span{e1, e2} by h⊥,
i.e.,

h⊥ = ⟨h∗, e1⟩ e1 + ⟨h∗, e2⟩ e2
∥⟨h∗, e1⟩ e1 + ⟨h∗, e2⟩ e2∥2 . (1)

Our objective is to find a unit vector ê ∈ span{e1, e2} such
that ∥ê − h⊥∥ < ε. In fact, we require the latter to hold with
probability at least 1 − δ.
We should emphasize that noise, characterized by inde-

pendent flip probability ρ, is generally present. In the 2-
dimensional problem, one may propose to use the simple
binary search (a detailed discussion with examples is pre-
sented in the extended version) to find a unit vector ê that
resides ε-close to h⊥. To make it noise-tolerant, when the
binary search algorithm queries a point, say xi, we query
it R times to obtain R noisy versions of sign ⟨h∗, xi⟩ and
view the majority vote of the noisy versions as the true out-
come (Kääriäinen 2006; Karp and Kleinberg 2007; Nowak
2011). We call this method repetitive querying. However, its

1We use the Õ notation to ignore logarithmic factors. In Sec-
tion 5, the Õ notation also ignores terms dependent on δ.

Algorithm 1 DC2

Input: orthonormal vectors e1, e2, estimation error at most
ε, success probability at least 1 − δ.

Output: a unit vector êwhich is an estimate for the normal-
ized orthogonal projection of h∗ onto span{e1, e2}.

1: Set p0(h) to be uniform, i.e., ∀h ∈ S1 ∶ p0(h) = 1/2π.
2: for m = 1 to Tε,δ do

3: Find a vector xm ∈ S1 which is a solution to the fol-
lowing equation: ∫S1 sign ⟨x,h⟩pm−1(h)dh = 0. If
there are multiple solutions, choose one arbitrarily.

4: Ask from the oracle the value of sign ⟨xm, h∗⟩.
5: Based on the (noisy) response obtained from the ora-

cle, update the distribution pm−1(h) to pm(h).
6: end for
7: return ê = argmaxh∈S1 pTε,δ

(h).

query complexity is O(log(1/ε)(log log(1/ε) + log(1/δ)),
which is suboptimal both theoretically (proof in the ex-
tended version) and empirically (referred to as REPETITIVE-
DC in Section 4).
As a result, instead, we will present a Bayesian algorithm

termed DC2 that solves this 2-dimensional problem with
query complexity O(log(1/ε) + log(1/δ)). Recall that any
unit vector inside span{e1, e2}, e.g., h⊥, can equivalently be
represented as a pair (c1, c2) on the two-dimensional unit
circle S1 (e.g., h⊥ = c1e1+c2e2 and c21+c22 = 1). To simplify
notation, we use a point (c1, c2) ∈ S1 and its corresponding
unit vector c1e1 + c2e2 interchangeably. In this setting, it is
easy to see that for any x ∈ span{e1, e2}

sign ⟨x,h∗⟩ = sign ⟨x,h⊥⟩ . (2)

We take a Bayesian approach. In the beginning, when no
queries have been performed, DC2 assumes no prior infor-
mation about the vector h⊥. Therefore, it takes the uniform
distribution on S1 (with pdf p0(h) = 1

2π
) as its prior belief

about h⊥. After performing each query, the posterior (belief)
about h⊥ will be updated according to the observation. We
let pm(h) denote the (pdf of the) posterior after perform-
ing the first m queries. In this manner, DC2 runs in total of
Tε,δ rounds, where in each round a specific query is selected
and posed to the oracle. The number Tε,δ will be specified
later (see Theorem 1). Upon the completion of round Tε,δ ,
the algorithm returns as its final output a vector ê ∈ S1 that
maximises the posterior pdf pTε,δ

(h). If there are multiple
such maximisers, it picks one arbitrarily. We now proceed
with a detailed description of DC2 (a formal description is
provided in Algorithm 1).
As shown in Algorithm 1, at each round, say roundm+1,

the algorithm maintains and updates the distribution pm that
encodes its current belief in the true location of h⊥. We
should note here that these distributions can be stored ef-
ficiently and as a result the vector xm+1 can be computed
efficiently. Indeed, (the pdf of) pm is piecewise constant on
the unit circle (see Figure 1). More precisely, at any round
m, there are at most 2m points u1, u2,⋯, u2m that are or-
dered clock-wise on the unit-circle and pm is constant when
restricted to each of the sectors [ui, ui+1). The piecewise
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constant property of the pdf of pm can be established by
induction on m. Recall that the initial distribution p0 is uni-
form and thus piecewise constant. The Bayesian update step
(line 5 of Algorithm 1) preserves this property when the al-
gorithm updates the distribution pm(h) to pm+1(h). We will
show why this is true when we discuss the Bayesian update
step in detail.
At roundm+ 1, in order to find xm+1 (see line 3 of Algo-

rithm 1), DC2 first finds a line that passes through the centre
of S1 and cuts S1 into two “halves” which have the same
measure with respect to pm. Note that finding such a line
can be done in O(m) steps because pm has the piecewise
constant property. Once such a line is found, it is then easy
to see that xm+1 can be any of the two points orthogonal
to the line. As a result, DC2 at round m + 1 can find xm+1
in O(m) operations. We denote the half-circle containing
xm+1 by R+ and the other half by R−. We refer to Figure 1
for a schematic illustration.
The key step in Algorithm 1 is the Bayesian update (line

5). Once a noisy response to the query sign ⟨xm+1, h∗⟩ is
obtained (line 4)), the probability distribution pm will be
updated to pm+1 in the following way. First, consider the
event that the outcome of sign ⟨xm+1, h∗⟩ is +1. We have
pm(sign ⟨xm+1, h∗⟩ = +1) = (1−ρ) pm(R+)+ρ pm(R−) =
1/2, and similarly pm(sign ⟨xm+1, h∗⟩ = −1) = 1/2. There-
fore, by Bayes theorem we obtain the following update rules
for pm+1. If we observe that the outcome of sign ⟨xm+1, h∗⟩
is +1, then for h ∈ R+ we have pm+1(h) = 2(1 − ρ)pm(h)
and for h ∈ R− we have pm+1(h) = (2ρ)pm(h). Also, if
we observe that the outcome of sign ⟨xm+1, h∗⟩ is −1, then
for h ∈ R+ we have pm+1(h) = (2ρ)pm(h) and for h ∈ R−
we have pm+1(h) = 2(1−ρ)pm(h). Note that the factor of 2
here is due to the normalization. It is easy to verify that pm+1
is also a piecewise constant distribution (now on 2(m + 1)
sectors; see Figure 1).
Theorem 1 shows that after Tε,δ = O(log 1

ε
+ log 1

δ
)

rounds, with probability at least 1 − δ, DC2 outputs a unit
vector ê ∈ span{e1, e2} such that ∥ê − h⊥∥ < ε. Also, as
discussed above, the computational complexity of DC2 is
O(T 2

ε,δ), i.e., O((log 1
ε
+ log 1

δ
)2).

Theorem 1. When the independent flip probability is ρ, hav-
ing

Tε,δ ≥ M +max{T0, T1, T2, T3} = O(log 1

ε
+ log

1

δ
) (3)

is sufficient to guarantee that DC2 outputs with probabil-
ity at least 1 − δ a vector that is within a distance ε of h⊥.
Here, we have M = ⌈ 2 log 2

δ− log(4ρ(1−ρ)) ⌉, T0 = 8 log 2
δ

log(2(1−ρ)) , T1 =
8 log 1

8πε

log(2(1−ρ)) , T2 = 8
log(2(1−ρ)) (log(2M) + log( 4

log(2(1−ρ))))
and T3 = 24ρ log2 1−ρ

ρ

log2(2(1−ρ)) (log(M) + log(4
δ
)).

We would like to remark that when the independent flip
probability ρ is 0 (i.e., in the noiseless case), the algorithm
DC2 reduces to the binary search. If we let Tε,δ = ⌈log2 π

ε
⌉,

then DC2 outputs a vector that is within a distance ε of h⊥.
We present a detailed discussion with examples in the ex-
tended version.

Figure 1: Upon the completion of round m (left figure), the
distribution (pdf of) pm is constant over each of the sectors[ui, ui+1). In the next round (right figure), in order to find
xm+1, DC2 first finds a diagonal line (red line) which sepa-
rates two half-circles (R+ andR−) that each has measure 1/2
w.r.t pm. The vector xm+1 will then be one of the two points
on the unit circle that are orthogonal to this line. For updat-
ing pm to pm+1, we note that all the points inside R+ get the
same factor (either 2ρ or 2(1−ρ) depending on the outcome
of the query). The same is true for R−. Thus, pm+1 is again
a piecewise constant pdf but now on 2(m + 1) sectors.

A few comments are in order: The above guarantee for
DC2 holds with probability one and thus the parameter δ is
irrelevant in the noiseless setting. Furthermore, during each
round of DC2, the distribution pm can be represented by
only two numbers (the starting and ending points of the ver-
sion space after m rounds Rm, which is a sector), and the
vector xm can be computed efficiently (it is the orthogo-
nal vector to the midpoint of Rm). Therefore, assuming one
unit of complexity for performing the queries, DC2 can be
implemented with complexity O(Tε,δ), i.e., O(log(1/ε)).

3 Dimension Coupling Based Framework

In Section 2, we devise an algorithm, called DC2

(e1, e2, ε, δ), that takes as input two orthonormal vec-
tors e1, e2, uses noisy responses to queries of the form
sign ⟨x,h∗⟩, and outputs with probability at least 1−δ a vec-
tor ê with the following three properties:

ê ∈ span{e1, e2}, ∥ê∥ = 1, ∥ê −
⟨h∗,e1⟩e1+⟨h

∗,e2⟩e2
∥⟨h∗,e1⟩e1+⟨h∗,e2⟩e2∥

∥ < ε.

In other words, the unit vector ê is within a distance ε
to the (normalized) projection of h∗ onto the subspace
span{e1, e2}. In the current section, we explain a framework
DC that estimates h∗ using at most d−1 calls to DC2 (a for-
mal description will be given in Algorithm 2 later).
Let us begin our discussion with a motivating example.

Let {e1, e2, . . . , ed} be an orthonormal basis of Rd. Suppose
that h∗ has the form h∗ = ∑d

i=1 ciei, where {ei}di=1 is an arbi-
trarily chosen orthonormal basis for Rd. We assume w.l.o.g.
that h∗ is normalized (i.e., ∑d

i=1 c2i = 1). Our objective is
then to learn the coefficients {ci}di=1 within a given precision
by using the noisy responses to the selected sign queries.
The key insight here is that this task can be partitioned in
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ĥ = DC2(ê12, ê34)

ê12 = DC2(e1, e2)

e1 e2

ê34 = DC2(e3, e4)

e3 e4

(a) Scheme 1: a balanced full binary tree

ĥ = DC2(ê123, e4)

ê123 = DC2(ê12, e3)

ê12 = DC2(e1, e2)

e1 e2

e3

e4

(b) Scheme 2: an unbalanced full binary tree

Figure 2: Two possible divide-and-conquer schemes for a 4-
dimensional problem. Each scheme can be represented by a
full binary tree of 4 leaf nodes.

a divide-and-conquer fashion into many smaller tasks, each
involving a few dimensions. The final answer (the values of{ci}di=1) will then be obtained by aggregating the answers of
these subproblems.
In Figure 2, we present two possibilities of divide-and-

conquer schemes for a 4-dimensional problem. In fact, each
scheme corresponds to a full binary tree of 4 leaf nodes.
Assume h∗ = c1e1 + c2e2 + c3e3 + c4e4, where ei’s are the

standard basis vectors for R4. Define e12 = c1e1+c2e2√
c21+c22

, e34 =
c3e3+c4e4√

c23+c24
. Note here that e12 is the (normalized) orthogo-

nal projection of h∗ onto span{e1, e2} and e34 is the (nor-
malized) orthogonal projection of h∗ onto span{e3, e4}.
Consider the following procedure to learn h∗: first find
out what e12 and e34 are, and then use the relation h∗ =√
c21 + c22e12+

√
c23 + c24e34 to find h

∗ based on the orthonor-
mal vectors e12, e34. By this procedure, the original “four-
dimensional” problem has been broken into three “two-
dimensional” problems.
This procedure is illustrated in Figure 2a. We first call

DC2(e1, e2) to obtain an estimate ê12 for e12; then we call
DC2(e3, e4) to obtain an estimate ê34 for e34; finally we
call DC2(ê12, ê34) to obtain an estimate ĥ for h∗. Another
unbalanced scheme is illustrated in Figure 2b.
For general d, the idea is similar: We break the problem

into at most d − 1 “two-dimensional” problems that each
can be solved efficiently. Again, each divide-and-conquer

scheme corresponds to a full binary tree of d leaf nodes.
Consider the decomposition h∗ = ∑d

i=1 ciei. Without loss
of generality, suppose that the first two leaf nodes to be com-
bined are e1 and e2. We can write

h∗ = d∑
i=1

ciei = ĉ12
c1e1 + c2e2√

c21 + c22
+ d∑

i=3
ciei, (4)

where in the last step we have taken ĉ12 ≜ √
c21 + c22. Now,

note that ê12 ≜ c1e1+c2e2√
c21+c22

is the normalized orthogonal

projection of h∗ onto span{e1, e2}. Hence, by using DC2

(e1, e2, ε, δ) we can obtain, with probability at least 1 − δ, a
good approximation ê12 (within a distance ε) of this projec-
tion. Therefore, for small enough ε we have h∗ ≈ ĉ12ê12 +
∑d

i=3 ciei. Since h∗ is now expressed (approximately) in
terms of d − 1 orthonormal vectors {ê12, e3, e4, . . . , ed}, we
have effectively reduced the dimensionality of problem from
d to d − 1. The idea is then to repeat the same procedure as
in (4) to the newly obtained representation of h∗. Hence, by
repeating this procedure d − 1 times in total we will reach a
vector which is the final approximation of h∗.

We present this general method in Algorithm 2.

Algorithm 2 Dimension Coupling (DC)

Input: an orthonormal basis E = {e1, e2, . . . , ed} of Rd.
Output: a unit vector ĥ which is an estimate for h∗.
1: for j ← 1 to d − 1 do
2: Replace any two vectors e′ and e′′ in E with the vec-

tor DC2 (e′, e′′, ε, δ).
3: end for
4: Let ĥ be the only remaining vector in E.
5: return ĥ

Theorem 2. For DC (outlined in Algorithm 2) and any of
its divide-and-conquer scheme represented by a full binary
tree, we have:

1. DC will call the two-dimensional subroutine DC2 d − 1
times.

2. Provided that the output of DC2 is with probability 1 − δ
within distance ε of the true value and ε ≤ 5/18, DC en-
sures an estimation error of at most 5ε(d − 1) with prob-
ability at least 1 − δ(d − 1).

As a result of Theorem 2, if we desire the framework DC
to estimate h∗ within distance ε̃ and with probability at least
1 − δ̃, then it is enough to fix the corresponding parameters
of DC2 to ε = ε̃

5(d−1) and δ = δ̃
d−1 .

Theorem 2 indicates that DC requires Õ(d(log 1
ε
+log 1

δ
))

queries, since each call to DC2 needs O(log 1
ε
+ log 1

δ
)

queries. Recall that the computational complexity of DC2

is O((log 1
ε
+ log 1

δ
)2). Hence, DC has computational com-

plexity Õ(d(log 1
ε
+log 1

δ
)2). As a special case, if in absence

of noise, both the query complexity and time complexity of
DC are Õ(d log 1

ε
).

1801



Number of Queries
50 100 150 200

E
s
ti

m
a
ti

o
n

 E
rr

o
r

10
-3

10
-2

10
-1

10
0

Random
Uncertainty
Bagging
Spectral
DC

(a) Noiseless (d = 25)
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(b) Noiseless (d = 50)
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(c) Execution time (noiseless)
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(e) Noisy (d = 50)
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Figure 3: Figures 3a and 3b show the estimation error in the noiseless setting as we increase the number of queries, for d = 25
and 100, respectively. Figure 3c shows the corresponding execution times. Figure 3d and 3e show the scatter plots of the
execution time and the estimation error of different methods for d = 25,50 and the noise level ρ = 0.1. We allow each algorithm
to use a budget of 800 and 1800 queries in Figure 3d and 3e, respectively. Figure 3f presents the estimation error of DC and
REPETITIVE-DC as we increase the number of queries for d = 1000 and noise levels ρ = 0.01,0.1,0.2.

4 Empirical Results

In this section, we extensively evaluate the performance of
DC against the following baselines:
RANDOM-SAMPLING: Queries are generated by sam-

pling uniformly at random from the unit sphere Sd−1.
UNCERTAINTY-SAMPLING: Queries are sampled uni-

formly at random from the orthogonal complement of w,
where w is the vector learned by linear SVM.

QUERY-BY-BAGGING: The bag size is set to 20 and 1000
queries are generated at each iteration. The query with the
largest disagreement is picked (Abe and Mamitsuka 1998).

SPECTRAL: The version space is approximated by the
largest ellipsoid consistent with all previous query-label
pairs. Then, at each iteration a query is selected to approxi-
mately halve the ellipsoid (Alabdulmohsin, Gao, and Zhang
2015).

REPETITIVE-DC: In the noisy setting, one easy way to
apply DC is to query each pointR times and use the majority
rule to determine its label; i.e., the combination of repetitive
querying (Section 2) and the DC framework (Section 3).
Our metrics to compare different algorithms are: a) esti-

mation error, b) query complexity, and c) execution time. In
particular, as we increase the number of queries we measure
the average estimation errors and execution times for all the
baselines (with 90% confidence intervals). By nature, in ac-
tive learning via query synthesis, all data points and queries

are generated synthetically. For all the baselines, we used the
fastest available implementations in MATLAB.

Noiseless setting: Figures 3a and 3b (with dimension
d = 25 and 50, respectively) show that in terms of estima-
tion error, DC outperforms all other baselines, and signifi-
cantly outperforms RANDOM-SAMPLING, UNCERTAINTY-
SAMPLING and QUERY-BY-BAGGING. Note that the esti-
mation errors are plotted in log-scales. In terms of execu-
tion times, we see in Fig. 3c that DC runs three orders
of magnitude faster than other baselines. Training an SVM
at each iteration for RANDOM-SAMPLING, UNCERTAINTY-
SAMPLING and QUERY-BY-BAGGING comes with a huge
computational cost. Similarly, SPECTRAL requires solving a
convex optimization problem at each iteration; thus its per-
formance drastically deteriorates as the dimension increases,
which makes it infeasible for many practical problems.

Noisy setting: We set the noise level to ρ = 0.1 and com-
pare the performance of DC against RANDOM-SAMPLING,
UNCERTAINTY-SAMPLING, QUERY-BY-BAGGING, and
REPETITIVE-DC. As mentioned in (Alabdulmohsin, Gao,
and Zhang 2015), and we have also observed in our experi-
ments, SPECTRAL does not work even for small amounts of
noise as it incorrectly shrinks the version space and misses
the true linear separator; therefore it is excluded here. We
see again in Figures 3d and 3e (for d = 25 and 50) that
DC significantly outperforms all other methods in terms of
estimation error. More precisely, using the same number of

1802



queries, the estimation error of DC is around two orders
of magnitude smaller than other baselines. We can also
observe from these two figures that DC still runs around 100
times faster than RANDOM-SAMPLING, UNCERTAINTY-
SAMPLING, and QUERY-BY-BAGGING. Clearly, DC has a
higher computational cost than REPETITIVE-DC, as DC
performs a Bayesian update after each query. Finally, as we
increase the dimension to d = 1000, RANDOM-SAMPLING,
UNCERTAINTY-SAMPLING, and QUERY-BY-BAGGING be-
come significantly slower. Hence, in Figure 3f we only show
how the estimation error (for noise levels ρ = 0.01,0.1,0.2)
decreases for DC and REPETITIVE-DC with more queries.
It can be observed from Figure 3f that consuming the same
number of queries, DC can achieve an estimation error
from one order (when the noise intensity is very small) to
three orders of magnitude (when the noise intensity is 0.2)
smaller than that of REPETITIVE-DC.

5 Related Work

The sample complexity of learning a hypothesis was tra-
ditionally studied in the context of probably approximately
correct (PAC) learning (Valiant 1984). In PAC learning the-
ory, one assumes that a set of hypotheses H along with a
set of unlabeled data points X are given, where each data
point x ∈ X is drawn i.i.d. from some distribution D. Clas-
sical PAC bounds then yield the sample complexity (i.e., the
number of required i.i.d. examples) from D to output a hy-
pothesis h ∈ H that will have estimation error at most ε with
probability at least 1 − δ, for some fixed ε, δ > 0. Here, the
estimation error is defined as ε = Prx∼D[h(x) ≠ h∗(x)],
where h∗ is the unknown true hypothesis. In the realizable
case of learning a halfspace, i.e., when h∗ ∈ R

d perfectly
separates the data points into positive and negative labels, it
is known that with Õ(d/ε) i.i.d. samples one can find a lin-
ear separator with an estimation error ε. The main advantage
of using active learning methods, i.e., sequentially querying
data points, is to reduce the sample complexity exponential
fast, ideally to Õ(d log(1/ε)). In fact, a simple counting ar-
gument based on sphere packing shows that any algorithm
needs Ω(d log(1/ε)) examples to achieve an estimation er-
ror of ε (Dasgupta, Kalai, and Monteleoni 2009).
For d = 2 and when the distribution is uniform over the

unit sphere S1 it is very easy to see that the halving or bi-
section leads to Õ(log(1/ε)). By using the same halving
method, one can in principle extend the result to any dimen-
sion d. To do so, we need to carefully construct the version
space (i.e., the set of hypotheses consistent with the queries
and outcomes) at each iteration and then find a query that
halves the volume (in the uniform case) or the density (in the
general case if the distribution is known) (Dasgupta 2004).
Finding such a query in high dimension is very challenging.
One very successful approach that does not suffer from

the aforementioned computational challenge is pool-based
active learning (Settles 2010), where instead of ideally halv-
ing the space, effective approaximations are performed. No-
table algorithms are uncertainty sampling (Lewis and Gale
1994) and query-by-committee (QBC) (Freund et al. 1997).
In fact, our problem is closely related to learning homo-

geneous linear separators under the uniform distribution in
the pool-based setting. This problem is very well under-
stood and there exist efficient pool-based algorithms (Bal-
can, Broder, and Zhang 2007; Dasgupta, Kalai, and Mon-
teleoni 2005; Dasgupta and Hsu 2008). In particular, Das-
gupta et al. (Dasgupta, Kalai, and Monteleoni 2009) pre-
sented an efficient perceptron-based algorithm that achieve
a near-optimal query complexity. Similar results can be ob-
tained under log-concave distributions (Balcan and Long
2013). Most of the pool-based methods require to have ac-
cess to Õ(1/ε) number of unlabeled samples in each itera-
tion or otherwise they perform very poorly (Balcan, Broder,
and Zhang 2007; Dasgupta, Kalai, and Monteleoni 2009).
This means that in order to have exponential guarantee in
terms of sample complexity, we need to grow the pool size
exponentially fast (note that there is no need to store all of
these points). Moreover, with a few exceptions (Awasthi,
Balcan, and Long 2014; Balcan, Beygelzimer, and Langford
2006) pool-based learning of linear separators in the noisy
setting has been much less studied and the dependency of
sample complexity on noise is not very well understood.
An attractive alternative to the pool-based framework

is query synthesis where we have access to membership
queries (Angluin 1988)): a learner can request for any unla-
beled data instance from the input space, including queries
that the learner synthesizes from scratch. This way the pool
size limitation is entirely eliminated. In many recent appli-
cations, ranging from automated science (King et al. 2009),
to robotics (Cohn, Ghahramani, and Jordan 1996), and to ad-
versarial reverse engineering (Lowd and Meek 2005), query
synthesis is the appropriate model. For instance, in security-
sensitive applications (e.g., spam filters and intrusion detec-
tion systems) that routinely use machine learning tools, a
growing concern is the ability of adversarial attacks to iden-
tify the blind spots of the learning algorithms. Concretely,
classifiers are commonly deployed to detect miscreant ac-
tivities. However, they are attacked by adversaries who gen-
erate exploratory queries to elicit information that in re-
turn allows them to evade detection (Nelson et al. 2012).
In this work, we show how an adversary can use active
learning methods by making synthetically de novo queries
and thus identify the linear separator used for classification.
We should emphasize that in active learning via synthesized
queries the learning algorithm can query the label of any
points in order to explore the hypothesis space. In the noise-
less setting (if we ignore the dependency of the pool size on
Õ(log(1/ε))), one can potentially use the pool-based algo-
rithms (under the uniform distribution). Our main contribu-
tion in this paper is to develop a noise resilient active learn-
ing algorithm that has access to noisy membership queries.
To the best of our knowledge, we are the first to show a
near optimal algorithm that outperforms in theory and prac-
tice the naive repetition mechanism and the recent spectral
heuristic methods (Alabdulmohsin, Gao, and Zhang 2015).
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