
Spectral Clustering with Brainstorming
Process for Multi-View Data

Jeong-Woo Son, Junkey Jeon, Alex Lee, Sun-Joong Kim
{jwson, jkjeon, lhjalex, kimsj}@etri.re.kr

Smart Platform Research Department, Electronics and Telecommunications Research Institute
218 Gajeong-ro, Yuseong-gu, Deajeon, Korea

Abstract

Clustering tasks often requires multiple views rather than a sin-
gle view to correctly reflect diverse characteristics of the clus-
ter boundaries. The cluster boundaries estimated using a single
view are incorrect in general, and those incorrect estimation
should be compensated by helps of other views. If each view
is independent to other views, incorrect estimations will be
mostly revised as the number of views grow. However, on the
contrary, as the number of views grow it is almost impossible
to avoid dependencies among views, and such dependencies
often delude correct estimations. Thus, dependencies among
views should be carefully considered in multi-view clustering.
This paper proposes a new spectral clustering method to deal
with multi-view data and dependencies among views. The
proposed method is motivated by the brainstorming process.
In the brainstorming process, an instance is regarded as an
agenda to be discussed, while each view is considered as a
brainstormer. Through the discussion step in the brainstorming
process, a brainstormer iteratively suggests their opinions and
accepts others’ different opinions. To compensate the biases
caused by information sharing between brainstormers with
dependent opinions, those having independent opinions are
more encouraged to discuss together than those with depen-
dent opinions. The conclusion step makes a compromise by
merging or concatenating all opinions. The clustering is finally
done after the conclusion. Experimental results in three tasks
show the effectiveness of the proposed method comparing
with ordinary single and multi-view spectral clusterings.

Introduction
The spectral clustering is derived from a non-linear data
embedding scheme, called the spectral embedding (Luxburg
2007). In the spectral embedding, instances are mapped onto
the space spanned by eigenvectors obtained from the graph
Laplacian of the data. The spectral embedding has an ability
to distinguish instances sampled from non-convex clusters.
This advantage makes the spectral clustering to be one of the
most widely-used techniques among unsupervised machine
learning techniques (Verma and Meila 2003).

The original spectral clustering has been modified and
expanded to handle multi-view data (Feng et al. 2016;
Xia et al. 2014). In various tasks such as video processing
and text clustering, an instance is often represented with
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multiple aspects; for example, videos have images as well
as audio features, while text documents can have several
multi-lingual translations. Those multi-view representations
reflect various characteristics of cluster boundaries. Several
approaches have been proposed (Bickel and Scheffer 2004;
Chaudhuri et al. 2009) to utilize complementary informa-
tion in different views. Min-disagreement (Wang, Weng, and
Yuan 2014) is a typical method that constructs a common vec-
tor for which all views agree, while information propagation
(Kumar and Daumé III 2011) suggests a way to explicitly
share complementary information in each view.

Clusters appeared in a real world often represented with
multiple aspects, and to find them correctly, a human should
use diverse viewpoints to check information from each view-
point. multi-view data clustering aims to realize this situation.
When multiple representations are constructed for data, mul-
tiple views have to be independent each other. Since they
need to reflect different aspects of cluster boundaries. How-
ever, it is hard to avoid dependencies among views in real
world problems, and in that case, multiple views often delude
correct estimations. Thus, dependencies among views should
be carefully considered in multi-view clustering.

This paper proposes a novel extension of spectral cluster-
ing for multi-view data; especially the proposed method is de-
signed to handle data with three or more views. The proposed
method forces the information of each view to be shared
by using the brainstorming process. In the brainstorming
process, views are regarded as brainstormers with different
perspectives, while an instance is considered as an agenda.
When an agenda and brainstormers are given, the brainstorm-
ing process starts to discuss about the agenda. Through the
discussion on the agenda, a brainstormer iteratively suggests
their opinions and accepts others’ different opinions. The
biases caused by information sharing between brainstorm-
ers with dependent opinions is compensated by encouraging
to discuss brainstormers with independent opinions. While
brainstormers with dependent opinions are prevented from
discussions for opinion sharing. By encouraging information
sharing between less dependent views, dilution of valuable
information is prevented. After the discussion, we suggest
two ways to draw a conclusion: merging and concatenation.
Merging tries to make a compromise that maximally satisfies
the all brainstormers, while concatenation just collect all the
opinions.
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We have evaluated the proposed method with three
datasets: synthetic data with three views, Reuter multilin-
gual data with five views, BBC data with four views. In all
experiments, the proposed method achieves the best perfor-
mances comparing with five ordinary spectral clustering.

Related Work
Spectral clustering is a unsupervised machine learning tech-
nique with a well-defined theoretical basis (Ng, Jordan, and
Weiss 2002). Spectral clustering can reveal clusters of ar-
bitrary forms from data by using a spectral embedding, a
non-linear data embedding based on a graph Laplacian and
its eigenvectors. As a way to utilize the strength of spectral
clustering in various fields, there have been proposed a num-
ber of variations of spectral clustering for multi-view data
(Li et al. 2015; Xia et al. 2014).

Previous works can be categorized mainly into two groups:
min-disagreement and information sharing. Studies in min-
disagreement aim to construct a single representation with
which all views can maximally agree (Zhou and Burges 2007).
For example, (Xia et al. 2010) proposed Multi-view Spectral
Embedding (MSE) to merge graph Laplacians from multiple
views by using a weighted summation. Since weights are es-
timated to minimize distances between graphs from multiple
views, MSE can be considered as a min-disagreement as well.
Co-Regularized Multi-view Spectral Clustering (CoRMSC)
proposed by (Kumar, Rai, and Daumé III 2011) estimates
unified eigenvectors for multi-view data. Unified eigenvec-
tors are constructed by minimizing weighted distances to
eigenvectors of each view. Min-disagreement is appropriate
to reduce noise in each view by extracting common infor-
mation in all multiple views. On the other hand, it expects
that complementary information in views to be shared in
constructing single representation implicitly.

Explicit preservation of complementary information can
be found in information sharing. Co-EM based clustering
(Bickel and Scheffer 2004) defines class labels as a latent
variable for data. The latent variables are obtained by clus-
tering data with one view in E-step. Then the latent variables
are shared to the other view in M-step. Co-trained Multi-view
Spectral Clustering (CMSC) (Kumar and Daumé III 2011)
adopts a co-training approach which learn a classifier by
sharing selected label information in multiple views. CMSC
adopts indirect sharing of clustering results by using eigen-
vectors obtained in each view. In CMSC, a set of eigenvectors
obtained from a view is passed to the other view. Each similar-
ity matrix is mapped onto delivered eigenvectors to reflect the
information from others. Then, a similarity matrix for a view
is reconstructed by back-projection. Information sharing has
an advantage to preserve the complementary characteristics
in different views.

Most of multi-view spectral clustering methods basically
assume the independence among views. However, the as-
sumption can be easily broken in many real-world situations,
since it is natural to have different dependencies among views
when an instance is represented with three or more views. In
this case, dependencies in views often contaminate the final
result by ignoring unique information in each view.

Co-trained Multi-view Spectral Clustering
The proposed method is basically motivated from Co-trained
Multi-view Spectral Clustering (CMSC) (Kumar and Daumé
III 2011). Hence, this section describes CMSC briefly. CMSC
adopts a co-training approach to share information among
views. Let a data set D with n instances be given (|D| = n).
With two views v1 and v2, the i-th instance xi is represented
as xi = (xi,1, xi,2). Thus, two similarity graph K1 ∈ R

n×n

and K2 ∈ R
n×n are constructed with v1 and v2 respec-

tively. The i-th column in K1 represents the similarities
between xi,1 and others. The graph Laplacians L1 and L2

are given as D
−1/2
1 K1D

−1/2
1 and D

−1/2
2 K2D

−1/2
2 , where

Dv is a diagonal matrix with diagonal entries given by
Dv,ii =

∑n
j=1 Kv,ij .

CMSC modifies the graph structure from one view by us-
ing the clustering result from the other view. Conceptually,
the modification is performed to reduce similarities between
nodes in different clusters and to amplify similarities be-
tween nodes belong to the same cluster. This modification is
indirectly performed by using eigenvectors of L1 and L2.

The similarities described in the matrix K1 is modified
as follows. Let U2 ∈ R

n×m be the matrix obtained by col-
lecting the first m eigenvectors of the graph Laplacian L2,
for some m much smaller than n. After that, columns of K1

are projected into the column space of U2, and then recon-
structed back as similarity vectors using the back-projection.
Similarly, K2 is modified by the same procedure using m
eigenvectors of L1. This procedure can be simply described
as

S1 = sym(U2U
T
2 K1),

S2 = sym(U1U
T
1 K2),

where S1 and S2 are reconstructed similarity graphs for v1
and v2 respectively, and sym( · ) denotes symmetrization
of square matrices (sym(A) := A+AT

2 ). This modification
process is performed iteratively; at the t-th iteration, the
graph Laplacians L1 and L2 are constructed from S1, S2 at
the previous step. That is,

S
(t)
1 = sym

(
U

(t−1)
2 (U

(t−1)
2 )TK1

)
,

S
(t)
2 = sym

(
U

(t−1)
1 (U

(t−1)
1 )TK2

)
,

where S
(t)
1 , S

(t)
2 are the outputs at the t-th iteration, and

U
(t)
1 , U

(t)
2 are the matrices consisting of m eigenvectors of

the graph Laplacians of S(t)
1 , S

(t)
2 , respectively.

When there are three or more views, the reconstruction
procedure just described is given as follows:

S(t)
v = sym

⎛
⎝∑

i�=v

(
U

(t)
i (U

(t−1)
i )T

)
Kv

⎞
⎠ .

As shown in this equation, all views have equal importance
for each other, because they are assumed to be independent
as usual in co-training. However, in most real-world tasks,
this assumption can be easily broken and views have depen-
dencies with different strengths.
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Brainstorming Process for Spectral Clustering
A spectral clustering with the brainstorming process is de-
signed to deal with three or more views with different de-
pendencies. Let a data set D (|D| = n) be given and each
instance xi in D is represented with respect to a set of views,
V = {vj}|V |j=1, |V | ≥ 3. Information sharing among these
views is modeled with a simple brainstorming process.

The brainstorming process is a face-to-face meeting gener-
ally held by humans to derive an elegant ideas from diverse
perspectives. The proposed method adopts the central idea
in the brainstorming process by regarding xi as an agenda
to be discussed, while V as brainstormers. When an agenda
and brainstormers are prepared, the brainstorming process is
started from the discussion.

Discussion in Brainstorming Process
For agenda xi, all brainstormers vj ∈ V suggest their ideas
based on their own perspective. These are the initial vector
representations xi,1, xi,2, . . . , xi,|V | of xi. For a simple de-
scription, xi is used to denote similarity vector between the
i-th instance and others. After presenting all the opinions at
the first stage, a brainstormer vj tries to accept the others’
ideas to improve his/her opinion.

In the discussion, vj needs to pick valuable opinions from
V¬j := V \ {vj}. A strong dependency between vj and vk ∈
V¬j means these two brainstormers have similar opinions.
Thus, the information given by vk should be meaningless to
vj , since vk cannot change vj . The brainstorming process in
the proposed method measures the “value” of an opinion as
how less it correlates with vj .

The proposed method extracts opinions from V¬j by treat-
ing it as a single virtual brainstormer. The construction of
this virtual brainstormer is based on dependencies with vj .
More precisely, for xi,j , the opinion of vj for the agenda xi,
the opinion of the virtual brainstormer is defined as

xi,¬j =
∑
k �=j

wi,kxi,k,

where wi,k’s are parameters that need to be estimated.
By using a correlation coefficient, the weight vector

Wi,¬j := (wi,k)k �=j ∈ R
|V |−1 is estimated to minimize

the dependency between xi,j and xi,¬j ; that is,

W ∗
i,¬j = arg min

Wi,¬j∈R|V |−1

〈xi,j − x̄i,j , xi,¬j − x̄i,¬j〉2

+C|Wi,¬j |2
= arg min

Wi,¬j∈R|V |−1

〈b, AWi,¬j〉2 + C|Wi,¬j |2,

where b = xi,j − x̄i,j , and A = Xi,¬j − X̄i,¬j . Here,
Xi,¬j :=

[
xi,1 · · · x̂i,j · · · xi,|V |

] ∈ R
n×(|V |−1) is

the matrix formed by aggregating xi,k’s except xi,j , while
x̄i,j , X̄i,¬j are sample averages of xi,j , Xi,¬j , respectively.
The C ≥ 0 is a user parameter for L2-regularizer term
C|Wi,¬j |2. We tested no-, L1-, and L2-regularizers for all
experimental data and obtained the best performance with
L2-regularizer in all tasks. With L2-regularizer, W ∗

i,¬j tends

to consider all views fairly and it can prevent propagation of
incorrect information caused by noise.

Note that all the entries of xi,j’s should be inside the in-
terval [0, 1], because they are similarities. The opinion xi,¬j
of the virtual brainstormer must have the same property. To
keep this property, the above optimization problem is under
the following two constraints:

∀k �= j, 0 ≤ wi,k ≤ 1,∑
k �=j

wi,k = 1.

After constructing xi,¬j for all xi ∈ D and vj ∈ V , a
pair of similarity graphs Kj and K¬j can be obtained for all
views. That is, for each brainstormer, corresponding virtual
brainstormer who has the minimum dependency on him/her
is constructed. The information propagation between a brain-
stormer and his/her virtual brainstormer is performed by
using a method similar to that of CMSC. From K¬j , the
graph Laplacian L¬j = D

−1/2
¬j K¬jD

−1/2
¬j as well as its first

m eigenvectors U¬j ∈ R
n×m can be obtained. Then the

adjusted similarity matrix is constructed as

Sj = sym(U¬jUT
¬jKj).

After the discussion is done, for each vj ∈ V the ma-
trix Sj is obtained. Then the same procedure is repeated:
for each vj ∈ V , obtain the first m eigenvectors from the
graph Laplacian of the matrix Sj , and then update Sj using
the above equation. After iterating over this procedure sev-
eral times, the conclusion is drawn from the final opinions
U1, U2, . . . , U|V |.

Conclusion in Brainstorming Process
There are two ways to draw a conclusion: merging and
concatenation. In general brainstorming process, after suffi-
ciently long discussions, the chairman generates a conclusion.
If there were enough discussions to share information among
brainstormers, he/she tries to make a compromise for which
all the brainstormers agree. This is the merging. The concate-
nation corresponds to the case when the chairman just pass
all the opinions to the next stage.

The merging process is explained first. The i-th row of Uj

can be considered as a non-linear transformation of xi into
the space spanned by vj . Thus, we may consider UjU

T
j as a

kind of similarity matrix. Then the compromised similarity
matrix K∗ can be written as

K∗ =
|V |∑
j=1

UjU
T
j θj ,

where θj = diag(θ1,j , · · · , θn,j) ∈ R
n×n is a diagonal

matrix consists of instance-wise weights for vj , and it is
estimated to minimize the total disagreement. Then the com-
promised opinion U∗ can be obtained as

U∗ = arg max
U∈Rn×m

tr(UTL∗U), s.t. UTU = I, (1)

where L∗ is the graph Laplacian obtained from K∗ and tr( · )
is the matrix trace; this is an instance of the ordinary spectral
clustering with a single view data.
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The weights Θ := (θi,j) ∈ R
n×|V | are chosen to

minimize the total disagreement, which is defined as
tr
(∑|V |

j=1(U
∗ − Uj)(U

∗ − Uj)
T θj

)
. With the same rea-

son in the discussion step, taking this together with an
L2-regularization into consideration, the optimization prob-
lem (1) turns into:

(Θ∗, U∗)

= arg max
Θ∈Rn×|V |,U∈Rn×m

tr(UTL∗U)

−
⎛
⎝tr

⎛
⎝

|V |∑
j=1

(U − Uj)(U − Uj)
T θj

⎞
⎠+

C|Θ|2
2

⎞
⎠

with the constraints

UTU = I,

∀(i, j), 0 ≤ θi,j ≤ 1, (2)

∀i,
|V |∑
j=1

θi,j = 1. (3)

This optimization problem can be solved by iterating over the
following two steps after initializing θi,j =

1
|V | for all i, j:

• Fix Θ and find U that maximizes tr(UTL∗U) under the
constraint UTU = I .

• Fix U and find Θ that minimizes

tr

⎛
⎝ |V |∑

j=1

(U − Uj)(U − Uj)
T θj

⎞
⎠+

C

2
|Θ|2

under the constraints (2) and (3).

The merging process is similar to the Co-Regularized Multi-
view Spectral Clustering (CoRMSC) proposed by (Kumar,
Rai, and Daumé III 2011). However, in CoRMSC, Θ∗ is
defined as view-wise weights not as instance-wise and is
given manually.

The concatenation process just produce the final opinion
U∗ ∈ R

n×(m×|V |) by column-wise vector concatenation of
U1, · · · , U|V |. After constructing U∗, a clustering method
such as k-means clustering is applied to determine actual
clusters. All optimization problems considered in this paper
are kinds of simple constrained quadratic optimizations. Thus,
solutions of these optimizations can be easily obtained with
ordinary quadratic programmings (Griva, Nash, and Sofer
2009).

Experiments
Experimental Setting
The evaluation of the proposed method is performed with
three datasets: synthetic, Reuter multilingual, and BBC
datasets. All the experiments are performed with the same
setting in (Kumar and Daumé III 2011). Synthetic data is gen-
erated from two clusters. Each cluster is composed of three
Gaussian components that means an instance is represented
as three views. The first cluster is generated with means of

Table 1: Performances on the synthetic dataset
Method ARI MI Hom Com

Singleview 0.809 0.714 0.714 0.714
KernelSum 0.886 0.819 0.819 0.820
KernelProd 0.898 0.826 0.826 0.826

MSE 0.891 0.823 0.824 0.824
CMSC 0.917 0.853 0.853 0.853

CoMSC 0.899 0.817 0.817 0.817
SCB Concat 0.933 0.877 0.877 0.877
SCB Merge 0.913 0.852 0.852 0.852

μ1 = (1, 1), μ2 = (1, 2), and μ3 = (1, 1), while the second
one is defined with means of μ1 = (3, 4), μ2 = (2, 2), and
μ3 = (3, 3). Covariances of the first cluster are defined as

Σ1 =

(
1.0 0.5
0.5 1.5

)
, Σ2 =

(
1.0 −0.2
−0.2 1.0

)
,

Σ3 =

(
1.2 0.2
0.2 1.0

)
,

while those for the second cluster are

Σ1 =

(
0.3 0.2
0.2 0.6

)
, Σ2 =

(
0.6 0.1
0.1 0.5

)
,

Σ3 =

(
1.0 0.4
0.4 0.7

)
.

For each cluster, five hundreds instances are randomly sam-
pled (n = 1, 000).

Reuter multilingual dataset is composed of documents
from six categories (Amini, Usunier, and Goutte 2009), and
a document is written in English, French, German, Italian,
and Spanish for the same content. Thus, the instance in
Reuter multilingual data has totally five views. In experi-
ments, we determine the clustering performances with three
to five views (English, French, German + Italian + Spanish).
For each cluster, two-hundred instances are randomly sam-
pled (n = 1, 200). The vector representation of an instance is
constructed with Latent Semantic Analysis (Hofmann 1999)
with 100-dimension. BBC dataset contains 2,225 news arti-
cles in five categories (Greene and Cunningham 2006). The
dataset supports clustering with three and four views that
are generated by segmenting documents into three and four
fragments.

The proposed method is compared with five ordinary spec-
tral clustering algorithms: Singleview - a spectral clustering
with the most informative view, KernelSum - a spectral clus-
tering with a similarity matrix based on a summation of
similarities from all views, KernelProd - similar to Kernel-
Sum except that it uses a production to merge similarities,
MSE - multi-view spectral embedding proposed by (Xia et
al. 2010), this is a method on min-disagreement, CMSC - a
multi-view spectral clustering described in Section , CoMSC
- Co-Regularized Multi-view Spectral Clustering proposed
by (Kumar, Rai, and Daumé III 2011), SCB Concat - and
SCB Merge - the proposed method with the concatenation
and merging for the discussion respectively.
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Table 2: Performances on Reuter multilingual dataset
Method ARI MI Hom Com Comp. Time (sec)

Three views

Singleview 0.226 (0.011) 0.285 (0.011) 0.294 (0.011) 0.309 (0.017) 3.120
KernelSum 0.245 (0.027) 0.302 (0.028) 0.310 (0.028) 0.331 (0.030) 3.146
KernelProd 0.180 (0.004) 0.236 (0.003) 0.245 (0.003) 0.260 (0.003) 3.111

MSE 0.127 (0.058) 0.194 (0.069) 0.205 (0.067) 0.280 (0.064) 3.139
CMSC 0.159 (0.014) 0.232 (0.014) 0.242 (0.014) 0.275 (0.026) 32.834
CoMSC 0.206 (0.034) 0.269 (0.039) 0.277 (0.038) 0.282 (0.037) 5.260

SCB Concat 0.307 (0.011) 0.359 (0.016) 0.367 (0.016) 0.375 (0.016) 171.050
SCB Merge 0.311 (0.015) 0.366 (0.015) 0.374 (0.015) 0.379 (0.015) 1227.426

Four views

Singleview 0.193 (0.017) 0.252 (0.027) 0.261 (0.027) 0.281 (0.032) 3.943
KernelSum 0.198 (0.012) 0.264 (0.015) 0.272 (0.014) 0.294 (0.019) 3.957
KernelProd 0.171 (0.010) 0.235 (0.015) 0.244 (0.015) 0.270 (0.017) 3.903

MSE 0.124 (0.046) 0.191 (0.050) 0.201 (0.050) 0.253 (0.061) 4.070
CMSC 0.172 (0.046) 0.249 (0.052) 0.258 (0.051) 0.291 (0.048) 40.415
CoMSC 0.222 (0.013) 0.294 (0.019) 0.303 (0.019) 0.312 (0.022) 5.166

SCB Concat 0.302 (0.015) 0.355 (0.017) 0.363 (0.017) 0.369 (0.018) 229.773
SCB Merge 0.309 (0.009) 0.369 (0.015) 0.376 (0.014) 0.381 (0.016) 1386.856

Five views

Singleview 0.188 (0.020) 0.246 (0.028) 0.255 (0.028) 0.273 (0.030) 4.845
KernelSum 0.228 (0.035) 0.296 (0.032) 0.304 (0.032) 0.324 (0.038) 4.884
KernelProd 0.124 (0.008) 0.179 (0.008) 0.189 (0.008) 0.242 (0.005) 4.843

MSE 0.159 (0.059) 0.233 (0.075) 0.242 (0.073) 0.282 (0.073) 4.993
CMSC 0.183 (0.021) 0.254 (0.023) 0.263 (0.023) 0.290 (0.023) 50.613
CoMSC 0.227 (0.008) 0.291 (0.010) 0.300 (0.010) 0.304 (0.010) 5.198

SCB Concat 0.303 (0.009) 0.355 (0.011) 0.363 (0.010) 0.368 (0.012) 292.555
SCB Merge 0.311 (0.012) 0.371 (0.013) 0.379 (0.013) 0.387 (0.015) 1560.699

The similarity matrix is constructed with Gaussian kernel.
In Gaussian kernel, we used the locality preserved kernel
(Zelnik-Manor and Perona 2004) for the synthetic and Reuter
multilingual datasets, while we give the standard deviation
100 for BBC dataset. MSE has a user parameter the size
of neighbor nodes. As addressed in (Xia et al. 2010), we
set it as 9 for the synthetic dataset and 5 for both Reuter
multilingual and BBC datasets. The performances of CoMSC
is obtained the best performances with the view weights from
0.1 to 0.9, while the summation of weights are kept 1.0. The
number of clusters is assumed to be known in all experiments,
Performances are determined with four measures: adjusted
rand index (ARI) (Vinh, Epps, and Bailey 2009), mutual
information (MI) (Romano et al. 2014), homogeneity (Hom),
and completeness (Com) (Rosenberg and Hirschberg 2007).
In all experiments, the user parameter C in both discussion
and conclusion steps is fixed as 1.0. Experimental results
are obtained by 10 trials for all datasets. For both Reuter
multilingual and BBC datasets, the computation times spent
to perform ten trials are additionally represented.

Experimental Results
Table 1 shows the results on the synthetic dataset. In this
experiment, methods with information propagation for multi-
view data show high performances around 0.90 of ARI,
while Singleview just achieves 0.809. There exist three meth-
ods whose Adjusted RI is over 0.90: CMSC, SCB Concat,
and SCB Merge. One of the proposed method SCB Concat
achieves the best performance with respect to all four mea-
sures. Even though SCB Merge adopts more complex method

than SCB Concat to combine vectors from views, it shows
performances similar with CMSC. This dataset is defined
with informative views for just two clusters. For such simple
dataset, the concatenation is enough to generate a compro-
mise representation, since merging and selection can elimi-
nate some information still kept in each view.

The experimental results on Reuter multilingual dataset
are shown in Table 2. In these experiments, each view is
generated with an whole document written in different lan-
guages. Thus, three views are enough to share information
on a document and there rarely exist information that can be
supplemented with additional views. It results in the stable
performances of experimental methods except KernelProd.

KernelProd achieves 0.180 of Adjusted RI with three
views, however it shows 0.124 with five views. KernelProd
constructs a similarity matrix with the productions of simi-
larities from all views. Even though a view suggests a high
similarity between a pair of certain instances, it could be
decreased when it does not agree with all other views.

Unlike the result in Table 1, CoMSC achieves better perfor-
mances with Reuter multilingual dataset. As we mentioned,
all views contain similar information in this dataset and thus,
it results in strong dependencies among views. CMSC propa-
gates incorrect information in this case. On the other hand,
CoMSC improve its performance by just reducing noise in
each view. These results might lead the conclusion that a
min-disagreement is somewhat better than an information
propagation in a real-world data. The experimental results
from the proposed method give a refutation for this conclu-
sion.
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Table 3: Performances on BBC dataset
Method ARI MI Hom Com Comp. Time (sec)

Three views

Singleview 0.214 (0.015) 0.307 (0.013) 0.314 (0.013) 0.328 (0.012) 2.196
KernelSum 0.256 (0.048) 0.331 (0.051) 0.337 (0.050) 0.346 (0.053) 2.243
KernelProd 0.587 (0.007) 0.601 (0.008) 0.605 (0.008) 0.617 (0.008) 2.267

MSE 0.141 (0.057) 0.262 (0.074) 0.269 (0.074) 0.408 (0.096) 2.359
CMSC 0.666 (0.045) 0.660 (0.030) 0.664 (0.030) 0.671 (0.028) 19.863
CoMSC 0.161 (0.027) 0.304 (0.024) 0.311 (0.024) 0.395 (0.037) 3.600

SCB Concat 0.694 (0.001) 0.690 (0.002) 0.694 (0.002) 0.699 (0.002) 124.775
SCB Merge 0.711 (0.005) 0.701 (0.005) 0.704 (0.005) 0.708 (0.005) 636.651

Four views

Singleview 0.199 (0.010) 0.284 (0.014) 0.291 (0.014) 0.313 (0.016) 2.881
KernelSum 0.171 (0.024) 0.225 (0.028) 0.233 (0.028) 0.236 (0.028) 2.935
KernelProd 0.493 (0.005) 0.521 (0.004) 0.526 (0.004) 0.530 (0.004) 2.882

MSE 0.091 (0.016) 0.189 (0.031) 0.198 (0.030) 0.276 (0.068) 2.972
CMSC 0.666 (0.031) 0.658 (0.007) 0.661 (0.007) 0.667 (0.007) 25.459
CoMSC 0.110 (0.009) 0.257 (0.021) 0.265 (0.021) 0.378 (0.012) 4.548

SCB Concat 0.698 (0.003) 0.693 (0.004) 0.696 (0.004) 0.702 (0.004) 156.572
SCB Merge 0.703 (0.003) 0.699 (0.004) 0.702 (0.004) 0.708 (0.004) 780.531

The brainstorming process in the proposed method suc-
cessfully propagates information among views in this dataset.
In all experiments, SCB Concat and SCB Merge show better
performances than other methods. Especially, SCB Merge
indicates the efficiency of the merging in the conclusion by
showing about 0.310 of ARI. Since the difference between
performances of SCB Merge and SCB Concat is not signifi-
cant, SCB Concat can be an alternative for clustering with
less time or computational resources.

Table 3 shows experimental results on BBC dataset. Unlike
the results on Reuter multilingual dataset, BBC dataset is con-
structed by slicing a document into three or four fragments.
Thus, each view cannot contain information sufficient to esti-
mate entire cluster boundaries. In this situation, KernelProd
shows much better performance than both of Singleview and
KernelSum. KernelProd eliminates uncertain information on
views and this characteristic prevents its performance to be
decreased by insufficient views.

When the information is not insufficient, the proposed
methods and CMSC show much higher performances than
others. Furthermore, while the proposed methods and CMSC
show stable performances with BBC dataset, the performance
of other methods is decreased as the number of views are
increased from three to four. This result also proves that
the efficiency of an information propagation with insuffi-
cient views, since they adopt explicit information propaga-
tion step in common. Through all experiments, SCB Concat
and SCB Merge are superior to both CMSC and CoMSC
which give motivation to the proposed method. This result
can prove the effectiveness of the proposed method based on
the consideration of dependencies among multiple views.

Conclusion
This paper proposes a novel extension of spectral clustering.
Normally, multi-view data is handled under the assumption
of the independence among views. As a result, when there
exist dependencies among views, it can prevent information
sharing among independent views that contain truly valu-

able information for each other. To avoid this problem, the
proposed method adopts the brainstorming process.

In the brainstorming process, an instance and its multiple
views are regarded as an agenda and brainstormers, respec-
tively. The complementary information in different brain-
stormers is shared through the discussion and the opinions
are merged with the conclusion. The discussion forces a
brainstormer to adopt information from others who have
more different opinions. In other words, to compensate the
biases caused by information sharing between brainstormers
with dependent opinions, those having independent opinions
are more encouraged to discuss together than those with de-
pendent opinions. A compromise opinion is finally obtained
through the conclusion. In the conclusion, we suggest two
ways to merge opinions in a single representation. Concate-
nation is a simple and contemporary method for multi-view
data, while a linear model for merging is motivated from the
min-disagreement.

The evaluation of the spectral clustering with the brain-
storming process is performed with three datasets for clus-
tering: synthetic, Reuter multilingual, and BBC datasets. We
compared the proposed method with six ordinary spectral
clustering based on four performance measures. Through
experiments, our method always achieves the best perfor-
mances in all three datasets, and at least in these datasets, the
proposed method shows its effectiveness on multi-view data
clustering.
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