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Abstract

We study, to the best of our knowledge, the first Bayesian al-
gorithm for unimodal Multi–Armed Bandit (MAB) problems
with graph structure. In this setting, each arm corresponds to
a node of a graph and each edge provides a relationship, un-
known to the learner, between two nodes in terms of expected
reward. Furthermore, for any node of the graph there is a path
leading to the unique node providing the maximum expected
reward, along which the expected reward is monotonically
increasing. Previous results on this setting describe the be-
havior of frequentist MAB algorithms. In our paper, we de-
sign a Thompson Sampling–based algorithm whose asymp-
totic pseudo–regret matches the lower bound for the consid-
ered setting. We show that—as it happens in a wide number
of scenarios—Bayesian MAB algorithms dramatically out-
perform frequentist ones. In particular, we provide a thorough
experimental evaluation of the performance of our and state–
of–the–art algorithms as the properties of the graph vary.

Introduction

Multi–Armed Bandit (MAB) algorithms (Auer, Cesa-
Bianchi, and Fischer 2002) have been proven to provide ef-
fective solutions for a wide range of applications fitting the
sequential decisions making scenario. In this framework, at
each round over a finite horizon T , the learner selects an ac-
tion (usually called arm) from a finite set and observes only
the reward corresponding to the choice she made. The goal
of a MAB algorithm is to converge to the optimal arm, i.e.,
the one with the highest expected reward, while minimiz-
ing the loss incurred in the learning process and, therefore,
its performance is measured through its expected pseudo–
regret, defined as the difference between the expected re-
ward achieved by an oracle algorithm always selecting the
optimal arm and the one achieved by the considered algo-
rithm. We focus on the so–called Unimodal MAB (UMAB),
introduced in (Combes and Proutiere 2014a), in which each
arm corresponds to a node of a graph and each edge is asso-
ciated with a relationship specifying which node of the edge
gives the largest expected reward (providing thus a partial
ordering over the arm space). Furthermore, from any node
there is a path leading to the unique node with the maxi-
mum expected reward along which the expected reward is
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monotonically increasing. While the graph structure may be
(not necessarily) known a priori by the UMAB algorithm,
the relationship defined over the edges is discovered dur-
ing the learning. In the present paper, we propose a novel
algorithm relying on the Bayesian learning approach for a
generic UMAB setting.

Models presenting a graph structure have become more
and more interesting in last years due to the spread of
social networks. Indeed, the relationships among the en-
tities of a social network have a natural graph structure.
A practical problem in this scenario is the targeted adver-
tisement problem, whose goal is to discover the part of
the network that is interested in a given product. This task
is heavily influenced by the graph structure, since in so-
cial networks people tend to have similar characteristics to
those of their friends (i.e., neighbor nodes in the graph),
therefore interests of people in a social network change
smoothly and neighboring nodes in the graph look similar
to each other (McPherson, Smith-Lovin, and Cook 2001;
Crandall et al. 2008). More specifically, an advertiser aims
at finding those users that maximize the ad expected rev-
enue (i.e., the product between click probability and value
per click), while at the same time reducing the amount of
times the advertisement is presented to people not interested
in its content.

Under the assumption of unimodal expected reward, the
learner can move from low expected rewards to high ones
just by climbing them in the graph, preventing from the need
for an exploration over all the graph nodes. This assumption
reduces the complexity in the search for the optimal arm,
since the learning algorithm can avoid to pull the arms cor-
responding to some subset of non–optimal nodes, reducing
thus the regret. Other applications might benefit from this
structure, e.g., recommender systems which aims at coupling
items with those users are likely to enjoy them. Similarly,
the use of the unimodal graph structure might provide more
meaningful recommendations without testing all the users
in the social network. Finally, notice that unimodal prob-
lems with a single variable, e.g., in sequential pricing (Jia
and Mannor 2011), bidding in online sponsored search auc-
tions (Edelman and Ostrovsky 2007) and single–peak pref-
erences economics and voting settings (Mas-Collel, Whin-
ston, and Green 1995), are graph–structured problems in
which the graph is a line.
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Frequentist approaches for UMAB with graph structure
are proposed in (Jia and Mannor 2011) and (Combes and
Proutiere 2014a). Jia and Mannor (2011) introduce the
GLSE algorithm with a regret of order O(

√
T log(T )).

However, GLSE performs better than classical bandit al-
gorithms only when the number of arms is Θ(T ). Combes
and Proutiere (2014a) present the OSUB algorithm—based
on KLUCB—achieving asymptotic regret of O(log(T )) and
outperforming GLSE in settings with a few arms. To the
best of our knowledge, no Bayesian approach has been pro-
posed for unimodal bandit settings, included the UMAB
setting we study. However, it is well known that Bayesian
MAB algorithms—the most popular is Thompson Sampling
(TS)—usually suffer of same order of regret as the best fre-
quentist one (e.g., in unstructured settings (Kaufmann, Ko-
rda, and Munos 2012)), but they outperform the frequentist
methods in a wide range of problems (e.g., in bandit prob-
lems without structure (Chapelle and Li 2011) and in ban-
dit problems with budget (Xia et al. 2015)). Furthermore, in
problems with structure, the classical Thompson Sampling
(not exploiting the problem structure) may outperform fre-
quentist algorithms exploiting the problem structure. For this
reason, in this paper we explore Bayesian approaches for the
UMAB setting. More precisely, we provide the following
original contributions:

• we design a novel Bayesian MAB algorithm, called UTS
and based on the TS algorithm;

• we derive a tight upper bound over the pseudo–regret for
UTS, which asymptotically matches the lower bound for
the UMAB setting;

• we describe a wide experimental campaign showing bet-
ter performance of UTS in applicative scenarios than
those of state–of–the–art algorithms, evaluating also how
the performance of the algorithms (ours and of the state
of the art) varies as the graph structure properties vary.

Related work

Here, we mention the main works related to ours. Some
works deal with unimodal reward functions in continu-
ous armed bandit setting (Jia and Mannor 2011; Combes
and Proutiere 2014b; Kleinberg, Slivkins, and Upfal 2008).
In (Jia and Mannor 2011) a successive elimination al-
gorithm, called LSE, is proposed achieving regret of
O(

√
T log T ). In this case, assumptions over the minimum

local decrease and increase of the expected reward is re-
quired. Combes and Proutiere (2014b) consider stochastic
bandit problems with a continuous set of arms and where
the expected reward is a continuous and unimodal func-
tion of the arm. They propose the SP algorithm, based
on the stochastic pentachotomy procedure to narrow the
search space. Unimodal MABs on metric spaces are stud-
ied in (Kleinberg, Slivkins, and Upfal 2008).

An application–dependent solution to the recommenda-
tion systems which exploits the similarity of the graph in
social network in targeted advertisement has been proposed
in (Valko et al. 2014). Similar information has been con-
sidered in (Caron and Bhagat 2013) where the problem of

cold–start users (i.e., new users) is studied. Another type
of structure considered in sequential games is the one of
monotonicity of the conversion rate in the price (Trovò et al.
2015). Interestingly, the assumptions of monotonicity and
unimodality are orthogonal, none of them being a special
case of the other, therefore the results for monotonic setting
cannot be used in unimodal bandits. In (Alon et al. 2013;
Mannor and Shamir 2011), a graph structure of the arm feed-
back in an adversarial setting is studied. More precisely,
they assume to have correlation over rewards and not over
the expected values of arms.

Problem Formulation

A learner receives in input a finite undirected graph MAB
setting G = (A,E), whose vertices A = {a1, . . . , aK} with
K ∈ N correspond to the arms and an edge (ai, aj) ∈ E
exists only if there is a direct partial order relationship be-
tween the expected rewards of arms ai and aj . The leaner
knows a priori the nodes and the edges (i.e., she knows
the graph), but, for each edge, she does not know a priori
which is the node of the edge with the largest expected re-
ward (i.e., she does not know the ordering relationship). At
each round t over a time horizon of T ∈ N the learner se-
lects an arm ai and gains the corresponding reward xi,t. This
reward is drawn from an i.i.d. random variable Xi,t (i.e., we
consider a stochastic MAB setting) characterized by an un-
known distribution Di with finite known support Ω ⊂ R

(as customary in MAB settings, from now on we consider
Ω ⊆ [0, 1]) and by unknown expected value μi := E[Xi,t].
We assume that there is a single optimal arm, i.e., there ex-
ists a unique arm ai∗ s.t. its expected value μi∗ = maxi μi

and, for sake of notation, we denote μi∗ with μ∗.
Here we analyze a graph bandit setting with unimodality

property, defined as:
Definition 1. A graph unimodal MAB (UMAB) setting G =
(A,E) is a graph bandit setting G s.t. for each sub–optimal
arm ai, i �= i∗ it exists a finite path p = (i1 = i, . . . , im =
i∗) s.t. μik < μik+1

and (aik , aik+1
) ∈ E for each k ∈

{1, . . . ,m− 1}.

This definition assures that if one is able to identify a non–
decreasing path in G of expected rewards, she be able to
reach the optimum arm, without getting stuck in local op-
tima. Note that the unimodality property implies that the
graph G is connected and therefore we consider only con-
nected graphs from here on.

A policy U over a UMAB setting is a procedure able to
select at each round t an arm ait by basing on the history ht,
i.e., the sequence of past selected arms and past rewards
gained. The pseudo–regret RT (U) of a generic policy U over
a UMAB setting is defined as:

RT (U) := Tμ∗ − E

[
T∑

t=1

Xit,t

]
, (1)

where the expected value E[·] is taken w.r.t. the stochasticity
of the gained rewards Xit,t and of the policy U.

Let us define the neighborhood of arm ai as N(i) :=
{j|(ai, aj) ∈ E}, i.e., the set of each index j of the arm aj
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connected to the arm ai by an edge (ai, aj) ∈ E. It has been
shown in (Combes and Proutiere 2014a) that the problem of
learning in a UMAB setting presents a lower bound over the
regret RT (U) of the following form:
Theorem 1. Let U be a uniformly good policy, i.e., a policy
s.t. RT (U) = o(T c) for each c > 0. Given a UMAB setting
G = (A,E) we have:

lim inf
T→∞

RT (U)

log(T )
=

∑
i∈N(i∗)

μ∗ − μi

KL(μi, μ∗)
, (2)

where KL(p, q) = p log
(

p
q

)
+ (1− p) log

(
1−p
1−q

)
, i.e., the

Kullaback–Leibler divergence of two Bernoulli distributions
with means p and q, respectively.

This result is similar to the one provided in (Lai and
Robbins 1985), with the only difference that the summa-
tion is restricted to the arms laying in the neighborhood
of the optimal arm N(i∗) and reduces to it when the op-
timal arm is connected to all the others (i.e., N(i∗) ≡
{1, . . . ,K}) or the graph is completely connected (i.e.,
N(i) ≡ {1, . . . ,K}, ∀i). We would like to point out that
by relying on the assumption of having a single maximum
of the expected rewards, we also assure that the optimal arm
neighborhood N(i∗) is uniquely defined and, thus, the lower
bound inequality in Equation 2 is well defined.

The UTS algorithm

We describe the UTS algorithm and we show that its regret
is asymptotically optimal, i.e., it asymptotically matches the
lower bound of Theorem 1. The algorithm is an extension
of the Thompson Sampling (Thompson 1933) that exploits
the graph structure and the unimodal property of the UMAB
setting. Basically, the rationale of the algorithm is to apply a
simple variation of the TS algorithm to only the arms asso-
ciated with the nodes that compose the neighborhood of the
arm with the highest empirical mean reward, called leader.

The UTS pseudo–code

The pseudo–code of the UTS algorithm is presented in Algo-
rithm 1. The algorithm receives in input the graph structure
G, the time horizon T , and a Bayesian prior πi for each ex-
pected reward μi. At each round t, the algorithm computes
the empirical expected reward for each arm (Line 3):

μ̂i,t :=

⎧⎨
⎩

Sit

Ti,t
if Ti,t > 0

0 otherwise
,

where Si,t =
∑t−1

h=1 Xi,h1{U(h) = ai} is the cumulative
reward of arm ai up to round t and Ti,t =

∑t−1
h=1 1{U(h) =

ai} is the number of times the arm ai has been pulled up
to round t.1 After that, UTS selects the arm denoted as the
leader al(t) for round t, i.e., the one having the maximum
empirical expected reward:

al(t) = argmax
ai∈A

μ̂i,t. (3)

1We here denote with 1{·} the indicator function.

Algorithm 1 UTS

1: Input: UMAB setting G = (V,E), Horizon T , Priors
{πi}Ki=1

2: for t ∈ {1, . . . , T} do
3: Compute μ̂i,t for each i ∈ {1, . . . ,K}
4: Find the leader al(t)
5: if Ll(t),t mod |N+(l(t))| = 0 then
6: Collect reward xl(t),t

7: else
8: Draw θi,t from πi,t for each i ∈ N+(l(t))
9: Collect reward xit,t where it = argmaxi θi,t

Once the leader has been chosen, we restrict the selection
procedure to it and its neighborhood, considering only arms
with indexes in N+(l(t)) := N(l(t)) ∪ {l(t)}. Denote with
Li,t :=

∑t−1
h=1 1{l(h) = i} the number of times the arm ai

has been selected as leader before round t. If Ll(t),t is a
multiple of |N+(l(t))|, then the leader is pulled and re-
ward xl(t),t is gained (Line 6).2 Otherwise, the TS algorithm
is performed over arms ai s.t. i ∈ N+(l(t)) (Lines 8–9).

Basically, under the assumption of having a prior πi, we
can compute the posterior distribution πi,t for μi after t
rounds, using the information gathered from the rounds in
which ai has been pulled. We denote with θi,t a sample
drawn from πi,t, called Thompson sample. For instance, for
Bernoulli rewards and by assuming uniform priors we have
that πi,t = Beta(1+Si,t, 1+Ti,t−Si,t), where Beta(α, β)
is the beta distribution with parameters α and β. Finally,
the UTS algorithm pulls the arm with the largest Thomp-
son sample θi,n and collects the corresponding reward xit,t.
See (Kaufmann, Korda, and Munos 2012) for further details.

Remark 1. Assuming that the UTS algorithm receives in
input the whole graph G is unnecessary. The algorithm just
requires an oracle that, at each round t, is able to return
the neighborhood N(l(t)) of the arm which is currently the
leader al(t). This is crucial in all the applications in which
the graph is discovered by means of a series of queries and
the queries have a non–negligible cost (e.g., in social net-
works a query might be computationally costly). Finally,
we remark that the frequentist counterpart of our algorithm
(i.e., the OSUB algorithm) requires the computation of the
maximum node degree γ := maxi |N(i)|, thus requiring at
least an initial analysis of the entire graph G.

Finite–time analysis of UTS

Theorem 2. Given a UMAB setting G = (A,E), the ex-
pected pseudo–regret of the UTS algorithm satisfies, for ev-
ery ε > 0:

RT (UTS) ≤ (1 + ε)
∑

i∈N(i∗)

μ∗ − μi

KL(μi, μ∗)
[log(T ) + log log(T )] + C̃,

where C̃ > 0 is a constant depending on ε, the number of
arms K and the expected rewards {μ1, . . . , μK}.

2We here denote with | · | the cardinality operator.
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Sketch of proof. (The complete version of the proof is re-
ported in (Paladino et al. 2016).) At first, we remark that a
straightforward application of the proof provided for OSUB
is not possible in the case of UTS. Indeed, the use of fre-
quentist upper bounds over the expected reward in OSUB
implies that in finite time and with high probability the
bounds are ordered as the expected values. Since we are us-
ing a Bayesian algorithm, we would require the same assur-
ance over the Thompson samples θi,t, but we do not have
a direct bound over P(θi,t > θi′,t) where ai′ is the optimal
arm in the neighborhood N+(i). This fact requires to follow
a completely different strategy when we analyze the case in
which the leader is not the optimal arm.

The regret of the UTS algorithm RT (UTS) can be divided
in two parts: the one obtained during those rounds in which
the optimal arm a∗ is the leader, called R1, and the sum-
mation of the regrets in the rounds in which the leader is the
arm ai �= a∗, called Ri. R1 is obtained when i∗ is the leader,
thus, the UTS algorithms behaves like Thompson Sampling
restricted to the optimal arm and its neighborhood N+(i∗),
and the regret upper bound is the one derived in (Kaufmann,
Korda, and Munos 2012) for the TS algorithm.
Ri is upper bounded by the expected number of rounds

the arm ai has been selected as leader E[Li,T ] over the
horizon T . Let us consider L̂i,T defined as the number
of rounds spent with ai as leader when restricting the
problem to its neighborhood N+(i). E[L̂i,T ] is an upper
bound over E[Li,T ], since there is nonzero probability that
the UTS algorithm moves in another neighborhood. Since
i �= i∗ and the setting is unimodal, there exists an opti-
mal arm ai′ , i

′ �= i among those in the neighborhood N(i)
s.t. μi′ = maxi|ai∈N(i) μi and μ̂i,t ≥ μ̂i′ . Thus:

Ri ≤ E[L̂i,T ] =

T∑
t=1

E

[
1{μ̂i,t = max

aj∈N+(i)
μ̂j,t}

]

=

T∑
t=1

P

(
μ̂i,t ≥ max

aj∈N+(i)
μ̂j,t

)
≤

T∑
t=1

P
(
μ̂i,t ≥ μ̂i′,t

)

=
T∑

t=1

P

(
μ̂i,t − μi − Δi

2
− μ̂i′,t + μi′ −

Δi

2
≥ 0

)

≤
T∑

t=1

P

(
μ̂i,t − μi − Δi

2
≥ 0

)
︸ ︷︷ ︸

Ri1

+

T∑
t=1

P

(
μ̂i′,t − μi′ +

Δi

2
≤ 0

)
︸ ︷︷ ︸

Ri2

,

where Δi = maxi′|ai∈N(i) μi′ − μi is the expected loss in-
curred in choosing ai instead of its best adjacent one ai′ .

Ri1 can be upper bounded by a constant by relying
on conditional probability definition and the Hoeffding in-
equality (Hoeffding 1963). Specifically, we rely on the fact
that the leader is chosen at least

⌊
Ll(t),t

|N+(l(t))|
⌋

times. Upper
bounding Ri2 by a constant term requires the use of Propo-
sition 1 in (Kaufmann, Korda, and Munos 2012), which lim-
its the expected number of times the optimal arm is pulled
less than tb times by TS, where b ∈ (0, 1) is a constant, and

Table 1: Results concerning R%(U,OSUB) in the setting
with K = 17 and K = 129 and a line graph.

K

17 129

KLUCB 3.08 ± 0.05 6.51 ± 0.07

TS 1.34 ± 0.07 2.68 ± 0.05

UTS 0.52 ± 0.07 0.76 ± 0.15

the use of a technique already used on Ri1. Summing up the
regret over i �= i∗ and considering the three obtained bounds
concludes the proof.

Experimental Evaluation

In this section, we compare the empirical performance of the
proposed algorithm UTS with the performance of a num-
ber of algorithms. We study the performance of the state–
of–the–art algorithm OSUB (Combes and Proutiere 2014a)
to evaluate the improvement due to the employment of
Bayesian approaches w.r.t. frequentist approaches. Further-
more, we study the performance of TS (Thompson 1933)
to evaluate the improvement in Bayesian approaches due
to the exploitation of the problem structure. For complete-
ness, we study also the performance of KLUCB (Garivier
and Cappé 2011), being a frequentist algorithm that is opti-
mal for Bernoulli distributions.

Figures of merit Given a policy U, we evaluate the aver-
age and 95%–confidence intervals of the following figures
of merit:

• the pseudo–regret RT (U) as defined in Equation 1; the
lower RT (U) the better the performance;

• the regret ratio R%(U1,U2) = RT (U1)
RT (U2)

showing the ratio
between the total regret of policy U1 after T rounds and
the one obtained with U2; the lower R%(U1,U2) the larger
the relative improvement of U1 w.r.t. U2.

Line graphs We initially consider the same experimen-
tal settings, composed of line graphs, that are studied
in (Combes and Proutiere 2014a). They consider graphs with
K ∈ {17, 129} arms, where the arms are ordered on a line
from the arm with smallest index to the arm with the largest
index and with Bernoulli rewards whose averages have a tri-
angular shape with the maximum on the arm in the middle of
the line. More precisely, the minimum average is 0.1, asso-
ciated with arms a1 and a17 when K = 17 and with arms a1
and a129 with K = 129, while the maximum average reward
is μ∗ = 0.9, associated with arm a9 when K = 17 and with
arm a65 with K = 129. The averages decrease linearly from
the maximum one to the minimum one.

For both the experiments, we average the regret over 100
independent trials of length T = 105. We report Rt(U) for
each policy U as t varies in Fig. 1(a), for K = 17, and in
Fig. 1(b), for K = 129. The UTS algorithm outperforms all
the other algorithms along the whole time horizon, provid-
ing a significant improvement in terms of regret w.r.t. the
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Figure 1: Results for the pseudo–regret Rt(U) in line graphs
settings with K = 17 (a) and K = 129 (b) as defined
in (Combes and Proutiere 2014a).

state–of–the–art algorithms. In order to have a more pre-
cise evaluation of the reduction of the regret w.r.t. OSUB
algorithm, we report R%(U,OSUB) in Tab. 1. As also con-
firmed below by a more exhaustive series of experiments, in
line graphs the relative improvement of performance due to
UTS w.r.t. OSUB reduces as the number of arms increases,
while the relative improvement of performance due to UTS
w.r.t. TS increases as the number of arms increases.

Erdős-Rényi graphs To provide a thorough experimental
evaluation of the considered algorithms in settings in which
the space of arms has a graph structure, we generate graphs
using the model proposed by Erdős and Rényi (1959), which
allows us to simulate graph structures more complex than a
simple line. An Erdős-Rényi graph is generated by connect-
ing nodes randomly: each edge is included in the graph with
probability p, independently from existing edges. We con-
sider connected graphs with K ∈ {5, 10, 20, 50, 100, 1000}
and with probability p ∈ {1, 1

2 ,
log(K)

K , �}, where p = 1
corresponds to have a fully connected graph and therefore
the graph structure is useless, p = 1

2 corresponds to have
a number of edges that increases linearly in the number of
nodes, p = log(K)

K corresponds to have a few edges w.r.t. the
nodes, and we use p = � to denote line graphs (these line
graphs differ from those used for the experimental evalua-
tion discussed above for the reward function, as discussed in
what follows). We use different values of p in order to see
how the performance of UTS changes w.r.t. the number of
edges in the graph; we remark that such an analysis is unex-
plored in the literature so far. The optimal arm is chosen ran-
domly among the existing arms and its reward is given by a
Bernoulli distribution with expected value 0.9. The rewards
of the suboptimal arms are given by Bernoulli distributions
with expected value depending on their distance from the
optimal one. More precisely, let d∗i be the shortest path from
the i–th arm to the optimal arm and let:

d∗max = max
i∈{1,...,K}

d∗i

be the maximum shortest path of the graph. The expected
reward of the i–th arm is:

μi = 0.9− d∗i
(0.9− 0.1)

d∗max

,

Table 2: Results concerning RT (U) (T = 105) in the setting
with Erdős-Rényi graphs.

p

1 1/2 log(K)/K �

K

5

KLUCB 34 ± 0.4 50 ± 1.5 52 ± 3.7 56 ± 2.2

TS 18 ± 0.2 23 ± 0.6 24 ± 1.3 25 ± 0.7

OSUB 34 ± 0.3 32 ± 7.2 35 ± 5.8 31 ± 4.1

UTS 17 ± 0.1 15 ± 2.4 16 ± 2.2 14 ± 1.3

1
0

KLUCB 77 ± 0.5 107 ± 5.5 127 ± 11.2 159 ± 7.0

TS 40 ± 0.2 50 ± 2.0 56 ± 3.8 67 ± 2.5

OSUB 77 ± 0.3 76 ± 8.1 57 ± 5.6 70 ± 8.1

UTS 39 ± 0.2 35 ± 3.2 27 ± 2.1 34 ± 2.4

2
0

KLUCB 163 ± 0.7 217 ± 6.2 262 ± 16.2 386 ± 21.3

TS 84 ± 0.5 102 ± 2.3 117 ± 5.7 157 ± 6.9

OSUB 163 ± 0.8 148 ± 14.9 86 ± 14.6 124 ± 11.7

UTS 83 ± 0.3 70 ± 6.0 44 ± 4.8 65 ± 8.8

5
0

KLUCB 420 ± 0.7 560 ± 15.0 686 ± 30.5 1132 ± 49.2

TS 217 ± 0.5 262 ± 4.4 303 ± 10.0 454 ± 19.9

OSUB 420 ± 1.0 382 ± 35.6 162 ± 13.9 240 ± 15.8

UTS 216 ± 0.7 182 ± 14.2 89 ± 5.5 156 ± 30.1

1
0
0

KLUCB 846 ± 2.0 1134 ± 17.8 1313 ± 59.7 2327 ± 63.5

TS 436 ± 1.1 528 ± 4.9 586 ± 18.4 973 ± 31.8

OSUB 846 ± 2.7 786 ± 39.0 226 ± 27.1 369 ± 10.7

UTS 437 ± 0.5 372 ± 15.2 141 ± 9.1 290 ± 42.3

1
0
0
0

KLUCB 8505 ± 12.2 11247 ± 60.1 12024 ± 464.7 10640 ± 291.5

TS 4391 ± 3.4 5262 ± 23.0 5478 ± 151.3 6554 ± 115.2

OSUB 8493 ± 13.6 7761 ± 153.4 1151 ± 45.0 1165 ± 20.7

UTS 4388 ± 5.2 3718 ± 62.9 1000 ± 14.2 1165 ± 41.8

i.e., the arm with d∗max has a value equal to 0.1 and the ex-
pected rewards of the arms along the path from it to the opti-
mal arm are evenly spaced between 0.1 and 0.9. We generate
10 different graphs for each combination of K and p and we
run 100 independent trials of length T = 105 for each graph.
We average the regret over the results of the 10 graphs.

In Tab. 2, we report RT (U) for each combination of pol-
icy U, K, and p. It can be observed that the UTS algorithm
outperforms all the other algorithms, providing in every case
the smallest regret except for K = 1000 and p = �. Below
we discuss how the relative performance of the algorithms
vary as the values of the parameters K and p vary.

Consider the case with p = 1. The performance of UTS
and TS are approximately equal and the same holds for the
performance of OSUB and KLUCB. This is due to the fact
that the neighborhood of each node is composed by all the
arms, the graphs being fully connected, and therefore UTS
and OSUB cannot take any advantage from the structure of
the problem. We notice, however, that UTS and TS have not
the same behavior and that UTS always performs slightly
better than TS. It can be observed in Fig. 2 with K = 5
and p = 1 that the relative improvement is mainly at the
beginning of the time horizon and that it goes to zero as K
increases (the same holds for OSUB w.r.t. KLUCB). The
reason behind this behavior is that UTS reduces the explo-
ration performed by TS in the first rounds, forcing the algo-
rithm to pull the leader—chosen as the arm maximizing the
empirical mean—for a larger number of rounds.
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Figure 2: Results for the pseudo–regret Rt(U) in the setting
with K = 5 and p = 1.

Consider the case with p = 1
2 . In the considered ex-

perimental setting, the relative performance of the algo-
rithms does not depend on K. The ordering, from the best
to the worst, over the performance of the algorithms is:
UTS, TS, OSUB, and finally KLUCB. Surprisingly, even
the dependency of the following ratios on K is negligi-
ble: R%(UTS,TS) = 0.68 ± 0.03, R%(UTS,OSUB) =
0.47± 0.01, and R%(OSUB,KLUCB) = 0.68± 0.03. This
shows that the relative improvement due to UTS is con-
stant w.r.t. TS and OSUB as K varies. These results raise
the question whether the relative performance of OSUB and
TS would be the same, except for the numerical values, for
every p constant w.r.t. K. To answer to this question, we
consider the case in which p = 0.1, corresponding to the
case in which the number of edges is linear in K, but it is
smaller than the case with p = 1

2 . The results in terms of
RT (U), reported in Table 3 show that OSUB outperforms
TS for K ≥ 10, suggesting that, when p is constant in K,
OSUB may or may not outperform TS depending on the spe-
cific pair (p,K).

Consider the case with p = log(K)
K . The ordering over the

performance of the algorithms changes as K varies. More
precisely, while UTS keeps to be the best algorithm for ev-
ery K and KLUCB the worst algorithm for every K, the or-
dering between TS and OSUB changes. When K ≤ 10 TS
performs better than OSUB, instead when K ≥ 20 OSUB
outperforms TS, see Fig. 3. This is due to the fact that, with
a small number of arms, exploiting the graph structure is not
sufficient for a frequentist algorithm to outperform the per-
formance of TS, while with many arms exploiting the graph
structure even with a frequentist algorithm is much bet-
ter than employing a general-purpose Bayesian algorithm.
The ratio R%(UTS,TS) monotonically decreases as K in-
creases, from 0.66 when K = 5 to 0.19 when K = 1000,
suggesting that exploiting the graph structure provides ad-

Table 3: Results concerning RT (U) (T = 105) in the setting
with Erdős-Rényi graphs and p = 0.1.

K

5 10 20 50 100 1000

TS 25 66 162 278 519 4564

OSUB 29 64 126 144 266 2358

0 20 40 60 80 100
·103

0

2

4

6
·101

t

R
t
(U

)

KLUCB
TS
OSUB
UTS

(a)

0 20 40 60 80 100
·103

0

1

2

3
·102

t

R
t
(U

)

KLUCB
TS
OSUB
UTS

(b)

Figure 3: Results for the pseudo–regret Rt(U) in the setting
with K = 5 (a) and K = 20 (b) and p = log(K)

K .

vantages as K increases. Instead, the ratio R%(UTS,OSUB)
monotonically increases as K increases, from 0.45 when
K = 5 to 0.94 when K = 1000, suggesting that the im-
provement provided by employing Bayesian approaches re-
duces as K increases as observed above in line graphs.

Consider the case with p = �. As in the case discussed
above, OSUB is outperformed by TS for a small number of
arms (K ≤ 10), while it outperforms TS for many arms
(K ≥ 20). The reason is the same above. Similarly, the ra-
tio R%(UTS,TS) monotonically decreases as K increases,
from 0.58 when K = 5 to 0.18 when K = 1000, and the
ratio R%(UTS,OSUB) monotonically increases as K in-
creases, from 0.45 when K = 5 to 1.00 when K = 1000.
This confirms that the performance of UTS and the one of
OSUB asymptotically match as K increases when p = � (as
well as p = log(K)

K ). In order to investigate the reasons be-
hind such a behavior, we produce an additional experiment
with the line graphs of Combes and Proutiere (2014a) except
that the maximum expected reward is set to 0.108 when K =
17 and 0.165 when K = 129 (thus, given any edge with ter-
minals i and i+ 1, we have |μi − μi+1| = 0.001). What we
observe (details of these experiments and those described
below are in (Paladino et al. 2016)) is that, on average,
OSUB outperforms UTS at T = 105 suggesting that, when
it is necessary to repeatedly distinguish between three arms
that have very similar expected rewards, frequentist meth-
ods may outperform the Bayesian ones. This is no longer
true when T is much larger, e.g., T = 107, where UTS out-
performs OSUB (interestingly, differently from what hap-
pens in the other topologies, in line graphs with very small
|μi − μi+1|, the average RT (UTS) and RT (OSUB) cross a
number of times during the time horizon). Futhermore, we
evaluate how the relative performance of OSUB w.r.t. UTS
varies for |μi − μi+1| ∈ {0.001, 0.002, 0.005}, observing
it improves as |μi − μi+1| decreases. Finally, we evaluate
whether this behavior emerges also in Erdős-Rényi graphs
in which p = c

K where c is a constant (we use p = 5
K , 10

K )
and we observe that UTS outperforms OSUB, suggesting
that line graphs with very small |μi−μi+1| are pathological
instances for UTS.
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Conclusions and Future Work

In this paper, we focus on the Unimodal Multi–Armed Ban-
dit problem with graph structure in which each arm corre-
sponds to a node of a graph and each edge is associated
with a relationship in terms of expected reward between
its arms. We propose, to the best of our knowledge, the
first Bayesian algorithm for the UMAB setting, called UTS,
which is based on the well–known Thompson Sampling al-
gorithm. We derive a tight upper bound for UTS that asymp-
totically matches the lower bound for the UMAB setting,
providing a non-trivial derivation of the bound. Furthermore,
we present a thorough experimental analysis showing that
our algorithm outperforms the state–of–the–art methods.

In future, we will evaluate the performance of the algo-
rithms considered in this paper with other classes of graphs,
e.g., Barabási–Albert and lattices. Future development of
this work may consider an analysis of the proposed algo-
rithm in the case of time–varying environments, i.e., the
expected reward of each arm varies over time, assuming
that the unimodal structure is preserved. Another interesting
study may consider the case of a continuous decision space.
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