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Abstract

Gaussian graphical models (GGMs) are widely used for sta-
tistical modeling, because of ease of inference and the ubiqui-
tous use of the normal distribution in practical approximations.
However, they are also known for their limited modeling abili-
ties, due to the Gaussian assumption. In this paper, we intro-
duce a novel variant of GGMs, which relaxes the Gaussian
restriction and yet admits efficient inference. Specifically, we
impose a bipartite structure on the GGM and govern the hidden
variables by truncated normal distributions. The nonlinearity
of the model is revealed by its connection to rectified linear
unit (ReLU) neural networks. Meanwhile, thanks to the bipar-
tite structure and appealing properties of truncated normals,
we are able to train the models efficiently using contrastive
divergence. We consider three output constructs, accounting
for real-valued, binary and count data. We further extend the
model to deep constructions and show that deep models can
be used for unsupervised pre-training of rectifier neural net-
works. Extensive experimental results are provided to validate
the proposed models and demonstrate their superiority over
competing models.

Introduction

Gaussian graphical models (GGMs) have been widely used in
practical applications (Honorio et al. 2009; Liu and Willsky
2013; Meng, Eriksson, and Hero 2014; Oh and Deasy 2014;
Su and Wu 2015a; 2015b) to discover statistical relations
of random variables from empirical data. The popularity of
GGMs is largely attributed to the ubiquitous use of normal-
distribution approximations in practice, as well as the ease
of inference due to the appealing properties of multivariate
normal distributions. On the downside, however, the Gaus-
sian assumption prevents GGMs from being applied to more
complex tasks, for which the underlying statistical relations
are inherently non-Gaussian and nonlinear. It is true for many
models that, by adding hidden variables and integrating them
out, a more expressive distribution can be obtained about the
visible variables; such models include Boltzmann machines
(BMs) (Ackley, Hinton, and Sejnowski 1985), restricted BMs
(RBMs) (Hinton 2002; Hinton, Osindero, and Teh 2006;
Salakhutdinov and Hinton 2009), and sigmoid belief net-
works (SBNs) (Neal 1992). Unfortunately, this approach does
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not work for GGMs since the marginal distribution of visi-
ble variables always remains Gaussian no matter how many
hidden variables are added.

Many efforts have been devoted to enhancing the repre-
sentational versatility of GGMs. In (Frey 1997; Frey and
Hinton 1999), nonlinear Gaussian belief networks were
proposed, with explicit nonlinear transformations applied
on random variables to obtain nonlinearity. More recently,
(Su et al. 2016) proposed to employ truncated Gaussian
hidden variables to implicitly introduce nonlinearity. An
important advantage of truncation over transformation is
that many nice properties of GGMs are preserved, which
can be exploited to facilitate inference of the model. How-
ever, the models all have a directed graphical structure, for
which it is difficult to estimate the posteriors of hidden
variables due to the “explaining away” effect inherent in
directed graphical models. As a result, mean-field varia-
tional Bayesian (VB) analysis was used. It is well known
that, apart from the scalability issue, the independence as-
sumption in mean-field VB is often too restrictive to capture
the actual statistical relations. Moreover, (Su et al. 2016)
is primarily targeted at supervised learning. We notice that
there are also other means of introducing nonlinearities
into GGM (Radosavljevic, Vucetic, and Obradovic 2014;
Elidan 2010), but they are out of the scope of this paper.

We consider an undirected GGM with truncated hidden
variables. This serves as a counterpart of the directed model
in (Su et al. 2016), and it is particularly useful for unsuper-
vised learning. Conditional dependencies are encoded in the
graph structure of undirected graphical models. We impose
a bipartite structure on the graph, such that it contains two
layers (one hidden and one visible) and only has inter-layer
connections, leading to a model termed a restricted truncated
GGM (RTGGM). In RTGGM, visible variables are condition-
ally independent given the hidden variables, and vice versa.
By exploiting the conditional independencies as well as the
appealing properties of truncated normals, we show that the
model can be trained efficiently using contrastive divergence
(CD) (Hinton 2002). This makes a striking contrast to the
directed model in (Su et al. 2016), where the conditionally-
independent properties do not exist and inference is done
based on mean-field VB approximation.

Although the variables in an RTGGM are conditionally
independent, their marginal distributions are flexible enough
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to model many interesting data. Truncated real observations
(e.g., nonnegative) are naturally handled by the RTGGM.
We also develop three variants of the basic RTGGM, ap-
propriate for modeling real, binary or count data. It is
shown that all variants can also be trained efficiently by
the CD algorithm. Furthermore, we extend two-layer RTG-
GMs to deep models, by stacking multiple RTGGMs to-
gether, and show that the deep models can be trained in
a layer-wise manner. To evaluate the performance of the
proposed models, we have also developed methods to es-
timate their partition functions, based on annealed impor-
tance sampling (AIS) (Salakhutdinov and Murray 2008;
Neal 2001). Extensive experimental results are provided to
validate the advantages of the RTGGM models.

Related Work

The proposed RTGGM is a new member of the GGM fam-
ily, and it is also closely related to the RBM (Hinton 2002).
One of the main differences between the two models is their
inherent nonlinearities. In an RTGGM, the visible and hid-
den variables are related through smoothed ReLU functions,
while they are related by sigmoid functions in an RBM. The
ReLU is used extensively in neural networks and has achieved
tremendous success due to its training properties (Jarrett et al.
2009). In light of this, there have been many efforts devoted
to bringing the ReLU into the RBM formalism. For example,
(Nair and Hinton 2010) proposed to replace binary hidden
units with a rectified Gaussian approximation. Although an
ReLU-like nonlinearity is induced, the proposed model is
only specified by two conditional distributions, while lack-
ing an appropriately defined joint distribution. On the other
hand, (Ravanbakhsh et al. 2016) proposed to use Exponential
Family Harmoniums (EFH) (Welling, Rosen-Zvi, and Hin-
ton 2004) and Bregman divergence to incorporate different
monotonic nonlinearities into the RBM. The model preserves
a joint-distribution description, but their conditional distribu-
tions are complicated and do not admit exact and efficient
sampling. To overcome this, they need to approximate the
conditional distributions as Gaussian and then sample from
the approximate distributions. In contrast to the above mod-
els, the proposed RTGGM not only maintains an explicit
joint distribution, but also preserves simple conditional dis-
tributions (truncated normals), allowing exact and efficient
sampling. Moreover, because of the explicit joint distribution
and the easily-sampled conditional distributions, we are able
to estimate the partition function of the RTGGM, for perfor-
mance evaluation. However, it is not clear how to estimate
the partition function for models in (Nair and Hinton 2010;
Ravanbakhsh et al. 2016). Interestingly, we also note that the
smoothed ReLU associated with the proposed RTGGM share
some similarities with the leaky ReLU (He et al. 2015), as
both have small nonzero slopes for negative inputs.

Formulation of Restricted-Truncated

Gaussian Graphical Models

Basic Model

Let x ∈ R
n and h ∈ R

m denote the visible and hidden
variables, respectively. The joint probability distribution of
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Figure 1: μT (ξ, 0.1) vs σ(ξ) = (1+e−ξ)−1 and ReLU(ξ) =
max(0, ξ).

an RTGGM is defined as

p(x,h;Θ) =
1

Z
e−E(x,h)

I(x ≥ 0)I(h ≥ 0), (1)

where I(·) is the indicator function, E(x,h) is an energy
function defined as

E(x,h) � 1

2

(
xT diag(a)x+ hT diag(d)h

−2xTWh− 2bTx− 2cTh
)
, (2)

Z is the partition function, the superscripted T denotes ma-
trix transpose, and Θ � {W, a,d,b, c} collects all model
parameters. The joint distribution in (1) can be equivalently
written as

p(x,h;Θ) = NT

(
[xT ,hT ]T

∣∣μ,P−1
)
, (3)

where NT (·) represents the truncated normal distribution
whose nonzero probability density concentrates in the pos-

itive orthant, P �
[

diag(a) −W
−WT diag(d)

]
� 0 and μ �

P−1

[
b
c

]
. Because of the diagonal matrices diag(a) and

diag(d) in (2), we have the conditional distributions as

p(x|h;Θ) =

n∏
i=1

NT

(
xi

∣∣∣∣ 1ai [Wh+ b]i,
1

ai

)
, (4)

p(h|x;Θ) =
m∏
j=1

NT

(
hj

∣∣∣∣ 1dj [WTx+ c]j ,
1

dj

)
, (5)

where [z]i and zi both represent the i-th element of vector
z. Equations (4) and (5) show that the visible variables are
conditionally independent given the hidden variables, and
vice versa.

By the properties of univariate truncated normal distribu-
tions (Johnson, Kotz, and Balakrishnan 1994), the conditional
expectation is given by E[hj |x] = μT (

1
dj
[WTx+ c]j ,

1
dj
),

where
μT (ξ, λ

2) � ξ + λφ(ξ/λ) /Φ(ξ/λ) (6)
is the mean of NT (x|ξ, λ2) and it serves as the nonlinear-
ity used in the RTGGM; φ(·) and Φ(·) are respectively the
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probability density function (pdf) and cumulative distribution
function (cdf) of the standard normal distribution. Shown
in Figure 1 is μT (ξ, λ

2) as a function of ξ for λ2 = 0.1,
along with the sigmoidal and ReLU activation function, for
comparison. It is observed that μT (·, 0.1) behaves similar to
the ReLU nonlinearity, and deviates significantly from the
sigmoidal nonlinearity used in RBMs.

Variants

Truncating the hidden variables in the RTGGM is essential to
maintain model expressiveness. In the basic RTGGM above,
the visible variables are also truncated to obtain symmetry,
but this is not necessary. The visible domain can be changed
to match the type of data in an application. Below we present
three variants of the basic RTGGM, which deal with real,
binary, and count data. In all cases, p(x|h;Θ) in (4) is mod-
ified, but p(h|x,Θ) remains as in (5), and thus the ReLU
nonlinearity is preserved.

Real-Valued Data The joint distribution in this case is
p(x,h;Θ) = 1

Z e−E(x,h)
I(h ≥ 0). The conditional distribu-

tion of the data changes to

p(x|h;Θ) =

n∏
i=1

N
(
xi

∣∣∣∣ 1ai [Wh+ b]i,
1

ai

)
. (7)

Binary Data When each component of x is in {0, 1}, the
quadratic term xT diag(a)x is dropped from the energy func-
tion E(x,h) and the domain restriction is changed from
I(x ≥ 0) to I(x ∈ {0, 1}n). The conditional in (4) becomes
p(x|h;Θ) =

∏n
i=1 p(xi|h;Θ), with

p(xi = 1|h;Θ) =
exp{[Wh+ b]i}

1 + exp{[Wh+ b]i} . (8)

Count Data Without loss of generality, we describe the
count data model in the context of topic modeling. Following
(Hinton and Salakhutdinov 2009), we employ N × 1 “one-
hot” vectors (a one-hot vector is a vector of all 0’s except for
a single 1) to represent the words in a vocabulary of size N .
A document of size K is then represented by a matrix X =
[x1, · · · ,xK ], where each column is a N × 1 one-hot vector.
We define an energy function E(X,h) � 1

2 (h
T diag(d)h−

2x̂TWh−2bT x̂−2KcTh) with x̂ �
∑K

k=1 xk understood
as a count vector. The energy function above reduces to that
of replicated softmax (Hinton and Salakhutdinov 2009) if
the quadratic term is dropped and h is restricted to h ∈
{0, 1}m. The conditional in (4) is accordingly modified to
p(X|h;Θ) =

∏N
i=1

∏K
k=1 p([xk]i|h;Θ), with

p([xk]i = 1|h;Θ) =
exp{[Wh+ b]i}∑N
j=1 exp{[Wh+ b]j}

. (9)

Model Training

When training an RTGGM one is concerned with find-
ing the Θ that maximizes the log-likelihood L̃(Θ;X ) =

∑
x∈X L(Θ;x) given the training data set X , where

L(Θ;x) = log
∫ +∞
0

p(x,h;Θ)dh is the contribution from
a single data sample, and

∫ +∞
0

dh is a shorthand for the
multiple integral with respect to (w.r.t.) the components in
h. It is known that ∂L(Θ;x)

∂Θ = E[∂E(x,h)
∂Θ ] − E[∂E(x,h)

∂Θ |x].
The first term involves expectation w.r.t. the model distri-
bution p(x,h), which is difficult due to the high variance
inherent in the model distribution. Fortunately, we can re-
sort to contrastive divergence (CD) to estimate the gradient.
Specifically, starting with x(0) = x, the Gibbs sampler gen-
erates a chain of samples, (x(0),h(1),x(1), . . . ,h(k),x(k)),
where h(t) ∼ p(h|x(t−1);Θ) and x(t) ∼ p(x|h(t);Θ). The
contrastive divergence uses the first and last sample of x in
the chain, i.e., x(0) (which is a datum) and x(k), to from an
estimate of the expected gradient,

∂L(Θ;x)

∂Θ
≈ E

[
∂E(x,h)

∂Θ

∣∣∣x(k)

]
− E

[
∂E(x,h)

∂Θ

∣∣∣∣x(0)

]
.

(10)
Note that p(h|x;Θ) is always a truncated normal distribution
as shown in (5), while p(x|h;Θ) is constituted according to
(4), (7), (8), or (9), depending on the type of data x. For the
basic RTGGM, we have ∂E(x,h)

∂wij
= xihj , ∂E(x,h)

∂ai
= 1

2x
2
i ,

∂E(x,h)
∂bi

= xi,
∂E(x,h)

∂cj
= hj , and ∂E(x,h)

∂dj
= 1

2h
2
j . It can

be seen that, to estimate ∂L(Θ;x)
∂Θ , one only needs to know

the conditional expectations E[hi|x = x(s)] and E[h2
i |x(s)]

for s = 0, k. It follows from (6) that E
[
hj |x(s)

]
=

μT (
[WTx(s)+c]j

dj
, 1
dj
). To compute E

[
h2
j |x(s)

]
, we use the

formula E
[
h2
j |x(s)

]
= E

[
hj |x(s)

]2
+ Var[hj |x(s)], where

Var
[
hj |x(s)

]
=

1

dj

(
1− βj

φ (βj)

Φ (βj)
− φ2 (βj)

Φ2 (βj)

)
(11)

according to (Johnson, Kotz, and Balakrishnan 1994) with
βi � [WTx(s)+c]j√

dj

. The gradients for the variant RTGGM

models can be estimated similarly. With these estimated gra-
dients, the model parameters Θ can be updated using stochas-
tic optimization algorithms.

One challenge in training RTGGMs is how to efficiently
sample from truncated normal distributions. Fortunately, be-
cause the variables in an RTGGM are conditionally inde-
pendent, we only need to sample from univariate truncated
normals, and such sampling has been investigated extensively.
Many efficient algorithms have been proposed (Chopin 2011;
Robert 1995). Another challenge is how to efficiently calcu-
late the ratio φ(μ)

Φ(μ) in (6) and (11). Direct calculation is ex-
pensive due to the integration involved in Φ(μ). To compute
it cheaply, we adopt the approach in (Su et al. 2016), taking
into consideration the approximations based on asymptotic
expansions of the Gaussian hazard function.

Partition Function Estimation

To evaluate model performance, we desire the partition func-
tion Z. By exploiting the bipartite structure in an RTGGM
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as well as the appealing properties of truncated normals,
we use annealed importance sampling (AIS) (Salakhut-
dinov and Murray 2008; Neal 2001) to estimate Z. We
here only focus on the RTGGM with binary data; de-
tails for the other data types are provided in the Supple-
mentary Material. The joint distribution of the RTGGM
for binary data can be represented as p(x,h;Θ) =

1
Z e
− 1

2

(
‖D 1

2 h‖2−2xTWh−2bTx−2cTh
)
I(x ∈ {0, 1}n)I(h ≥

0). After integrating out the hidden variable h, we obtain
p(x;Θ) = 1

Z p∗(x;Θ), where

p∗(x;Θ) � eb
Tx ×

m∏
j=1

1√
dj

Φ

(
[WTx+c]j√

dj

)

φ

(
[WTx+c]j√

dj

) . (12)

Since p∗(x;Θ) is in closed-form, we only need calculate the
partition function Z to obtain p(x;Θ).

Following the AIS procedure (Salakhutdinov and
Murray 2008; Neal 2001), we define two distribu-
tions pA(x,h

A) = 1
ZA

e−EA(x,hA) and pB(x,h
B) =

1
ZB

e−EB(x,hB), where EA(x,h
A) � 1

2 (‖diag
1
2 (d)hA‖2 −

2bTx) and EB(x,h
B) � 1

2 (‖diag
1
2 (d)hB‖2−2xTWhB−

2bTx − 2cThB). By construction, p0(x,h
A,hB) =

pA(x,h
A) and pK(x,hA,hB) = pB(x,h

B). The parti-
tion function of pA(x,h

A) is given by ZA =
∏n

i=1(1 +

eb
A
i )

∏m
j=1

1√
dj

Φ(0)
φ(0) , and the partition function of pB(x,hB)

can be approximated as (Neal 2001)

ZB ≈
∑M

i=1 w
(i)

M
ZA, (13)

where w(i) is constructed from a Markov chain that gradually
transits from pA(x,h

A) to pB(x,h
B), with the transition

realized via a sequence of intermediate distributions,

pk(x,h
A,hB)=

1

Zk
e−(1−βk)EA(x,hA)−βkEB(x,hB), (14)

where 0 = β0 < β1 < . . . < βK = 1. In particular, the
Markov chain (x

(0)
i ,x

(1)
i , . . . ,x

(K)
i ) is simulated as x(0)

i ∼
p0(xi,h

A,hB), (hA,hB) ∼ p1(h
A,hB |xi

(0)), x
(1)
i ∼

p1(xi|hA,hB), · · · , (hA,hB) ∼ pK(hA,hB |xi
(K−1)) and

x
(K)
i ∼ pK(xi|hA,hB). From the chain, a coefficient is

constructed as w(i) =
p∗
1(x̃i

(0)

p∗
0(x̃i

(0))

p∗
2(x̃i

(1))

p∗
1(x̃i

(1))
· · · p∗

K(x̃i
(K−1))

p∗
K−1(x̃i

(K−1))
,

where

p∗k(x) = e(1−βk)b
ATx

m∏
j=1

1√
(1− βk)dj

Φ (0)

φ (0)

× eβkb
Tx

m∏
j=1

1√
βkdj

Φ

(√
βk[W

Tx+c]j√
dj

)

φ

(√
βk[WTx+c]j√

dj

) . (15)

Assuming M independent Markov chains simulated in this
way, one obtains {w(i)}Mi=1. Note that the Markov chains

RTGGM 
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(a) Deep RTGGM (b) Illustration of layer-by-layer training 

Figure 2: (a) A deep RTGGM with three hidden layers. (b)
Layer-wise training of three two-layer RTGGMs.

can be efficiently simulated, as all involved variables are
conditionally independent.

Extension to Deep Models

The RTGGMs discussed so far consist of a visible layer and
a hidden layer. These two-layer models, like RBMs, can
be used to construct deep models. A deep RTGGM with L
hidden layers, constructed by stacking L two-layer RTGGMs,
can be defined by the following joint distribution,

p(hL,· · · ,h1,x)=p(hL,hL−1) · · · p(h1|h2)p(x|h1), (16)

where p(hL,hL−1) is the joint distribution
of a two-layer RTGGM and p(h�−1|h�) =∏M�−1

i=1 NT ([h�−1]i| 1

a
(�)
i

[W(�)h� + b(�)]i,
1

a
(�)
i

) is the

associated conditional distribution. The bottom layer p(x|h1)
could be defined by truncated normal, normal, binary or
count distributions, depending on the data type. A deep
RTGGM with three hidden layers is illustrated in the left
panel of Figure 2.

Similar to a DBN constructed from RBMs (Hinton, Osin-
dero, and Teh 2006), a deep RTGGM can be trained in a
layer-wise fashion. Specifically, we first train the bottom
layer by simply treating it as an RTGGM, using the CD-
based ML algorithm described above. We then compute the
conditional expectation E[h1|x] from the already-trained bot-
tom RTGGM and use E[h1|x] as data to train the second
layer from the bottom, again treating it as a RTGGM. The
layer-wise training procedure proceeds until the top layer is
reached, as illustrated in the right panel of Figure 2. Similar to
the proofs in (Hinton, Osindero, and Teh 2006), we can prove
that the variational lower bound is guaranteed to increase as
more layers are added under the layer-wise training.

Besides serving as a generative model, the deep RTGGM
can also be used to pretrain a feedforward neural network so
as to improve its performance. It is known that, due to the
sigmoidal nonlinearity inherent in RBMs, when we use the
unsupervised learning result of a DBN to initialize sigmoidal
feed-forward neural networks, remarkable improvements are
observed, especially in the case of scarce labeled data (Hinton
and Salakhutdinov 2006). Due to the similarity between the
nonlinearity in RTGGMs and ReLU(·), we can also use
the deep RTGGM learned unsupervisedly to initialize ReLU
feedforward neural networks.
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Experiments

We report experimental results of the RTGGM models on
various publicly available data sets, including binary, count
and real-valued data, and compare them to competing models.
For all RTGGM models considered below, we use x(0) and
x(25) to get a CD-based gradient estimate and then use RM-
Sprop to update the model parameters, with the RMSprop
delay set to 0.95.

Binary Data

The binarized versions of MNIST and Caltech 101 Silhou-
ettes data sets are considered. MNIST contains 28× 28 im-
ages of ten handwritten digits, with 60,000 and 10,000 im-
ages in the training and testing sets, respectively. Caltech 101
Silhouettes is a set of 28×28 images for the polygon outlines
of objects, of which 6364 are used for training and 2307 for
testing (Marlin et al. 2010). Two RTGGMs, with 100 and
500 hidden nodes, are trained and tested. The learning rate is
set to 10−4 and the precision di is set to 5. Log-probabilities
are estimated based on 100,000 inverse temperatures βk, uni-
formly spaced in [0, 1]. The final estimate is an average over
100 independent AIS runs.

Tables 1 and 2 summarize the average test log-probabilities
on MNIST and Caltech 101 Silhouettes. For comparison,
the corresponding results of competing models are also pre-
sented. It is seen from Table 1 that the RTGGM with 500
hidden nodes achieves the best performance, significantly
outperforming the RBM with the same number of hidden
nodes as well as the deep SBN and DBN models. Simi-
lar results are observed in Table 2 for the Caltech 101 Sil-
houettes. The performance gain may be largely attributed
to the smooth ReLU nonlinearity brought by truncation,
as well as less approximations made in training. The im-
portance of truncation is also revealed in the results of
restricted GGMs (RGGM), in which we do not truncate
the hidden variables but only impose bipartite structure on
GGMs. It can be seen from both Tables 1 and 2 that, with-
out the truncation, RGGMs perform poorly compared to all
models. Note that the models in (Nair and Hinton 2010;
Ravanbakhsh et al. 2016) are not included here, because their
log-probability cannot be computed, as explained earlier.

To demonstrate that the RTGGM is able to capture impor-
tant statistical relations, we show in Figure 3 samples drawn
from the RTGGM trained on MNIST, using a Gibbs sampler
with 50000 burn-in samples. We see that the generated digits
exhibit large variability and look very similar to real hand-
written digits. Moreover, we also use the RTGGM to recover
the missing values of an image. It is demonstrated in Figure
3 that, with only the upper-half part of an image presented,
the RTGGM can recover the lower-half part reasonably well.
The recovery is mostly correct except that “2” is mistaken for
“0” in the upper subfigure and “7” is mistaken for “0” in the
lower subfigure. However, we notice that the two cases are
extremely difficult, in which it would be difficult even for a
human to recognize the images based on only the upper-half
parts. Finally, we demonstrate in Figure 4 the images drawn
from the RTGGM trained on Caltech 101 Silhouettes, using
Gibbs sampling with 50,000 burn-in samples. Again, it can

Model Dim Test log-prob.

RBM� 500 −86.3
SBN◦ 10-100-200-300-400 −85.4
DBN� 2000-500 −86.2
RGGM 500 −90.2

RTGGM 100 −89.3
RTGGM 500 −83.2

Table 1: Average test log-probability on MNIST. (�) results
reported in (Salakhutdinov and Murray 2008) ; (◦) results re-
ported in (Bornschein and Bengio 2015); (
) results reported
in (Hinton, Osindero, and Teh 2006).

Model Dim Test log-prob.

RBM� 500 −114.7
RBM� 4000 −107.7
SBN◦ 10-50-100-300 −113.3
RGGM 500 −350.9

RTGGM 100 −127.8
RTGGM 500 −105.1

Table 2: Average test log-probability on Caltech 101Silhou-
ettes. (�) results reported in (Cho, Raiko, and Ilin 2013); (◦)
results reported in (Bornschein and Bengio 2015).

be seen that the generated images resemble the training data,
showing that the generative model has faithfully captured the
features of the training data.

Count Data

Two publicly available corpora are considered: 20News-
Groups and Reuters Corpus Volume. The two corpora are
preprocessed as in (Hinton and Salakhutdinov 2009). An
RTGGM with 50 hidden nodes is trained, using the same set-
ting as in the previous experiment for the learning rate. The
perplexity is evaluated over 50 held-out documents, based on
the setting used in (Hinton and Salakhutdinov 2009). For each
document, we obtain the test log-probability as an average
over 100 AIS runs, each using 100,000 inverse temperatures
βk.

Table 3 shows the average test perplexity per word for the
RTGGM. For comparison, we also report the perplexities of
LDA with 50 and 200 topics, as well as those of the replicated
softmax model (RSM) (Hinton and Salakhutdinov 2009) with
50 topics. The RSM is a variant of the RBM that handles
count data and it is constructed similarly as the RTGGM for
count data. As seen from Table 3, for both corpora, RTGGM-
50 performs better than RSM-50 and LDA models. This
further demonstrates the performance gains brought about by
the smooth ReLU nonlinearity in RTGGMs.

Unsupervised Pre-training of ReLU Neural
Networks

As described previously, deep RTGGMs can be used to pre-
train multi-layer ReLU neural networks, by exploiting the un-
labeled information. In this task, MNIST and NORB datasets
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Figure 3: (Left) Samples from the MNIST data set. (Middle) Samples drawn from the RTGGM with 500 hidden nodes. (Right)
In each sub-figure, the first row shows the samples from the testing data set, the second row shows the occluded digits presented
to the RTGGM, and the bottom row shows the recovered digits. The grayscale values indicate the probabilities.
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Figure 4: (Left) Samples drawn from Caltech 101 Silhouettes data set. (Middle) Samples drawn from the RTGGM with 500
hidden nodes. (Right) The average test log-probability of the RTGGM with 500 hidden nodes, as a function of learning epoch.

Data set LDA-50� LDA-200� RSM-50� RTGGM-50

20news 1091 1058 953 915
Reuters 1437 1142 988 934

Table 3: Average test perplexity per word, on 20newsgroup
and Reuters. (�) cited from (Hinton and Salakhutdinov 2009).

are considered, where MNIST is the same as in previous
experiments. NORB is a dataset of images from 6 classes
on cluttered background, partitioned into 291,600 training
and 58,230 testing images. We pre-process these images as
in (Nair and Hinton 2010). We first train a 1000-1000-1000
deep RTGGM on the unlabeled data, and then use the learned
model parameters to initialize a deep ReLU neural network
of the same size, which is further trained with the provided
labels using RMSprop, with a learning rate of 10−5. The
test accuracy is reported in Table 4. For comparison, we also
report the results with no pre-training or pre-trained using
the rectified-RBM (Nair and Hinton 2010). It is seen from
Table 4 that the results of pre-training with the RTGGM per-
forms the best. Note that this is an extension of (Hinton and
Salakhutdinov 2006), where the RBM was used to pretrain a
sigmoid-based neural network; here we use an RTGGM to
pretrain a ReLU-based neural network.

Conclusions

We have introduced a novel variant of the GGM, called re-
stricted truncated GGM (RTGGM), to enhance its represen-
tational abilities while preserving its nice (simple inference)

Data set Without pre-train With pre-train

rectified-RBM RTGGM

MNIST 1.43% 1.33% 1.17%

NORB 16.88% 16.43% 16.12%

Table 4: Average classification errors achieved by the multi-
layer ReLU neural network without pre-training, pre-trained
by the method in (Nair and Hinton 2010) (referred to as
“rectified-RBM” in the table), and pre-trained by the deep
RTGGM.

properties. The new model is obtained by truncating the vari-
ables of an undirected GGM and imposing a bipartite struc-
ture on the truncated GGM. It is shown that the truncation
brings strong nonlinear representational power to the model,
while the bipartite structure enables the model to be trained
efficiently using contrastive divergence. Three variants of
the RTGGM have been developed to handle real, binary and
count data. The two-layer RTGGM has further been extended
to produce deep models with multiple hidden layers. Methods
have also been developed to estimate the partition function
used in evaluating the unsupervised learning performance.
Extensive experimental results have demonstrated the supe-
rior performance of RTGGMs in unsupervised learning of
many types of data, as well as in unsupervised pre-training
of feedforward ReLU neural networks.
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