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Abstract

In order to grapple with the conundrum in the scalability of
kernel-based learning algorithms, the method of approximat-
ing nonlinear kernels via random feature maps has attracted
wide attention in large-scale learning systems. Specifically,
the associated sampling procedure is one critical component
that dictates the quality of random feature maps. However,
for high-dimensional features, the standard Monte Carlo sam-
pling method has been shown to be less effective in producing
low-variance random samples. In consequence, it demands
constructing a large number of features to attain the de-
sired accuracy for downstream use. In this paper, we present
a novel sampling algorithm powered by moment matching
techniques to reduce the variance of random features. Our ex-
tensive empirical studies and comparisons with several highly
competitive peer methods verify the superiority of the pro-
posed algorithm in Gram matrix approximation and general-
ization errors in regression. Our rigorous theoretical proofs
justify that the proposed algorithm is guaranteed achieving
lower variance than the standard Monte Carlo method in high
dimensional settings.

1 Introduction

Kernel methods have evoked remarkable repercussions in
machine learning tasks, ranging from regression to classifi-
cation to image reconstruction (Schölkopf and Smola 2002).
As kernel methods allow malleable generalization of algo-
rithms developed in explicit linear feature spaces to implicit
nonlinear feature spaces, nonlinear structures of data can be
efficaciously explored. Specifically, the well-known kernel
trick allows us to circumvent operating in high (often infi-
nite) dimensional nonlinear feature spaces through directly
exploiting nonlinear kernel functions (Aizerman, Braver-
man, and Rozoner 1964). By reaping benefits of obviating
explicitly computing coordinates in those high-dimensional
feature spaces, computational costs are dramatically saved.
While algorithms in high-dimensional feature spaces in-
evitably encounter the curse of dimensionality, the classical
Representation Theorems guarantee the existence of finite-
dimensional solutions to associated optimization problems
even in infinite-dimensional feature spaces (Argyriou, Mic-
chelli, and Pontil 2009). However, this solution to the curse
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of dimensionality renders the curse of support, i.e., that
kernel-based learning algorithms scale poorly with the num-
ber of training samples (Bengio, Delalleau, and Roux 2005).
For example, out-of-sample evaluation requires computing
the kernel measures between a new data point and all the
training data. Hence, it becomes the tradeoff between gener-
alization accuracy and computational costs.

In order to eradicate the challenge in the scalability of ker-
nel methods, intensive research has been conducted over re-
cent years. The seminal paper by (Rahimi and Recht 2007)
provides one solution to this difficulty via a randomized con-
struction of low-dimensional approximate feature maps. De-
note k(x,y) = 〈Ψ(x),Ψ(y)〉H as a kernel function, which
is an inner product of the associated feature map Ψ: Rd →
H, with two data points x, y ∈ R

d and a Hilbert space H.
The essence of randomized feature construction is to embed
the original nonlinear feature space H into a relatively low-
dimensional Euclidean space while incurring an arbitrarily
small distortion in the inner product values. Mathematically,
the explicit randomized feature map from the d-dimensional
data to an m-dimensional Euclidean inner product space can
be represented as Z : Rd → C

m, and the kernel value can
be approximately evaluated by the inner product between
the transformed data pair, i.e., k(x,y) ≈ 〈Z(x),Z(y)〉Cm ,
where C

m denotes an m-dimensional complex Euclidean
space with the inner product 〈α,β〉Cm =

∑m
j=1 αjβ

∗
j , with

vectors α = (α1, . . . , αm)� and β = (β1, . . . , βm)�. Its
theoretical foundation builds upon the classical Bochner’s
theorem that links a continuous shift-invariant kernel to a
unique probability density (Bochner 1933), thereby allow-
ing random sampling to play a critical role in defining ran-
dom feature maps. Thus, the performance of this construc-
tion predominately relies on the quality of the elected sam-
pling procedure. Yet, that procedure has been relatively less
acknowledged, highlighted and studied. Consequently, ap-
proximating the kernel up to sufficient accuracy generally
demanding a large sample size m to perform well has fatally
affected the applicability and popularization of the method
of random features (Hamid et al. 2014; Huang et al. 2014).

Recently, the illuminating paper by (Yang et al.
2014a) demonstrates one effective way of replacing
pseudo-random numbers by quasi-random numbers to im-
prove the sampling efficiency, i.e., reducing the sample
size to achieve the desired accuracy. However, quasi-
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random numbers often perform markedly poorly in high-
dimensional sampling (Niederreiter 1992). Its convergence
rate O((logm)d/m) indicates its use only for problems of
moderately high dimension d, with the suggested upper limit
at 40 dimensions (Glasserman 2003). In other words, its ad-
vantages over pseudo-random numbers in enjoying a faster
convergence rate gradually disappear in high dimensions.

To cope with those challenges, in this paper, we pro-
pose an algorithm to advance the efficiency of random fea-
tures approximation to shift-invariant kernels via a moment
matching sampling method. For validation, we provide de-
tailed theoretical proofs and empirical comparisons with
six state-of-the-art sampling methods across four standard
benchmarks. Specifically, using the Gaussian kernel as the
notable representative, we prove that to attain the same ac-
curacy the proposed algorithm is guaranteed requiring fewer
features than the standard Monte Carlo sampling method in
(Rahimi and Recht 2007). Further, theoretically and empir-
ically, we show that different from the quasi-Monte Carlo
sampling based method in (Yang et al. 2014a) the effective-
ness of the new algorithm remains robust in high dimen-
sions. Furthermore, our empirical experiments illustrate the
superiority of the proposed approach in the approximation of
Gram matrices with comparable downstream generalization
errors. Additionally, the new method is easy to implement
and to combine with other random feature construction tech-
niques without necessitating extensive structural changes.

2 Background and Related Work

In this section, we first recount the Monte Carlo method,
and then describe the backbone and the recent research of
the kernel approximation by random feature maps.

Monte Carlo Method

In this part, we offer an overview of the Monte Carlo
method. More discussions about methodology and applica-
tions can be found in (Caflisch 1998).

Given a function f(u) with u being a uniform random
variable over [0, 1]d, i.e., u ∼ U [0, 1]d, the expectation of
f(u) can be estimated by the average of m simulation trials:

E[f ] =

∫
[0,1]d

f(u)du ≈ 1

m

m∑
j=1

f(uj), (1)

where {uj}mj=1 are uniform random samples from U [0, 1]d.
The central limit theorem states that the root mean square er-
ror of this approximation decays at a rate of Op(m

−1/2). Al-
though the slow convergence rate has weakened its competi-
tiveness in low-dimensional problems, being independent of
dimensions, such a convergence rate promotes its vast use in
high-dimensional applications.

To address its shortcoming of having a slow error decay,
researchers appeal to designing effective variance reduction
methods for specific applications (Caflisch 1998). A variety
of variance reduction methods, such as the method of con-
trol variates, importance sampling, moment matching and
antithetic sampling, are necessarily armed by Monte Carlo
algorithms in practical systems (Glasserman 2003). Those

methods bolster the computational efficiency of the associ-
ated numerical methods by devising low-variance samples
as to achieve the same level of accuracy with fewer samples.
While they cannot speed up the convergence rate by chang-
ing the factor m−1/2, they have demonstrated substantial
benefits in practice by reducing the commonly large multi-
plicative factor (Niederreiter 1992). Therefore, Monte Carlo
algorithms along with variance reduction techniques remain
among the topmost choices in practice.

Related Work

In this part, we recapitulate the algorithm of generating ran-
dom feature maps. First, the classical Bochner’s theorem
characterizes the class of positive definite functions:
Theorem 0 ((Bochner 1933)). A complex-valued continu-
ous function g : Rd → C is positive definite if and only if it
is the Fourier transform of a finite nonnegative Borel mea-
sure μ on R

d, i.e., for any x ∈ R
d,

g(x) =

∫
Rd

e−ix�w dμ(w). (2)

A kernel function is called shift-invariant if it satisfies
k(x,y) = g(x − y) for some complex-valued positive def-
inite function g on R

d. By assuming that μ(·) is a proba-
bility measure with the probability density function p(·), a
scaled shift-invariant kernel, such as Gaussian kernel, can be
rewritten as a characteristic function for a unique probability
density. Namely, for two data points x, y ∈ R

d,

k(x,y) = g(x− y) =

∫
Rd

e−i(x−y)�wp(w) dw, (3)

where the probability density function p(w) is the inverse
Fourier transform of k(·). For the Gaussian kernel k(x,y) =
exp(−‖x−y‖2

2

2σ2 ), the associated d-dimensional normal prob-
ability density is p(w) ∼ Nd(0,Σ) with the diagonal co-
variance matrix being Σ = σ−2Id ∈ R

d×d. By denoting the
data matrix as X ∈ R

n×d, the corresponding Gram matrix
of the kernel function k(·) can be denoted as K ∈ C

n×n

with its element Klh defined as Klh = k(xl,xh), for any
l, h = 1, . . . , n. Hence, the kernel function (3) can be ap-
proximately computed via averaging over m simulation tri-
als:

k(x,y) ≈ EMC ≡ 〈Z(x),Z(y)〉Cm , (4)
where the m-dimensional random feature map Z(x) is de-
fined as a row vector:

Z(x) =
1√
m
(e−ix�w1 , . . . , e−ix�wm) ∈ C

1×m, (5)

and the random numbers {wj}mj=1 are sampled from p(w).
Apparently, the standard Monte Carlo estimator EMC is un-
biased, i.e., E(EMC) = k(x,y). Denote its variance as
VMC ≡ Var(EMC).

Next, to sample random numbers from the d-dimensional
multivariate normal probability density p(w) ∼ Nd(0,Σ),
the inverse transform sampling method is a common choice
(Glasserman 2003). Specifically, given a d-dimensional uni-
form random variable u, we take the inverse transform of
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the cumulative density function of a standard normal dis-
tribution on each element of the vector, which produces a
standard normal random variable Φ−1(u) ∼ Nd(0, Id). Af-
ter scaling, we obtain the desired random variable as w =
σ−1Φ−1(u) ∼ Nd(0,Σ). Accordingly, the kernel function
in equation (3) is equivalent to

k(x,y) =

∫
[0,1]d

e−i(x−y)�σ−1Φ−1(u) du. (6)

Combining equations (1), (4) and (6) generates the random
feature maps proposed in the pioneering work by (Rahimi
and Recht 2007). Replacing pseudo-random numbers by
quasi-random numbers in equation (1) together with equa-
tions (6) and (4) depicts the algorithm in (Yang et al. 2014a).

Further, besides the Gaussian kernel, various types of
kernels have been studied for random feature maps. Dot-
product and polynomial kernels are approximated in (Kar
and Karnick 2012; Pham and Pagh 2013; Hamid et al. 2014;
Pennington, Yu, and Kumar 2015). Histogram intersection
kernels are investigated by (Maji and Berg 2009) and are
further generalized to a class of additive homogeneous ker-
nels in (Vedaldi and Zisserman 2012). The premise of shift-
invariant kernels is relaxed and generalized to a larger class
of group invariance in (Li, Ionescu, and Sminchisescu 2010).

Furthermore, to speed up the approximation process, ef-
forts have been expended on extending the seminal work. An
accelerated implementation of the randomized algorithm via
Walsh-Hadamard transformations is proposed in (Le, Sarlós,
and Smola 2013). One way to construct data-dependent
random features is considered in (Chen et al. 2015). A
sparse random feature algorithm of obtaining models with-
out growing linearly with the number of random features is
proposed in (Yen et al. 2014). The complex basis function is
shown having the lowest embedding variance among several
representations of Fourier basis functions in (Sutherland and
Schneider 2015). The relation between random features and
quadrature rules in integrals is explored in (Bach 2015). The
performance of random features and the Nyström method
is compared in (Yang et al. 2012). Naturally, the success
of this randomized feature map approach enriches its ver-
satility and promotes its development in a wide range of
applications (Dai et al. 2014; Avron and Sindhwani 2015;
Yang et al. 2014b; Lopez-Paz et al. 2014).

3 Methodology

In this section, we first describe the proposed moment
matching sampling algorithm, then offer a theoretical un-
derpinning to support its effectiveness, and finally provide
detailed discussions.

Moment Matching

In order to accurately approximate kernel (3), a potent sam-
pling method should be able to reduce sampling variance,
thereby requiring constructing fewer features for down-
stream use. To this end, we propose to apply moment match-
ing to enhance the quality of sampling.

Specifically, the proposed moment matching sampling
algorithm is composed of three pivotal steps. First, like

Algorithm 1 Random Features with Moment Matching
1: Inputs: Data X; Parameters σ, m.
2: Draw m d-dimensional uniform samples {uj}mj=1;
3: Generate m d-dimensional normal samples by the in-

verse transform: {wj}mj=1 with wj = σ−1Φ−1(uj);
4: Compute the sample mean μ̂ of {wj}mj=1 and the square

root matrix Â of the sample covariance matrix of {wj−
μ̂}mj=1: μ̂ = 1

m

∑m
j=1 wj and ÂÂ� = Cov(wj − μ̂);

5: Generate the truly uncorrelated m d-dimensional stan-
dard normal samples by moment matching: {ŵj}mj=1

with ŵj = Â−1 (wj − μ̂);
6: Generate the desired samples {w̃j}mj=1: w̃j = σ−1ŵj ;
7: Form the random feature maps:

Q(x) = m−1/2(e−ix�w̃1 , . . . , e−ix�w̃m);
8: Output: Q(x) : Rd → C

m.

equation (6), m uncorrelated multivariate normal distributed
samples with covariance matrix Σ are produced by the in-
verse transform {wj}mj=1 with wj = σ−1Φ−1(uj). Second,
the truly uncorrelated standard normal distributed samples
are constructed. For a finite number of samples, the sample
mean of {wj}mj=1 would not exactly be zero and the corre-
sponding sample covariance would not be the same as the
desired covariance matrix Σ. Hence, by viewing {wj}mj=1
as weakly correlated samples, we apply a moment match-
ing method by reversing the procedure of generating corre-
lated normal distributed samples from uncorrelated normal
distributed samples {ŵj}mj=1 with ŵj = Â−1(wj − μ̂),
where μ̂ = m−1

∑m
j=1 wj is the sample mean, and ÂÂ� =

Cov(wj − μ̂) is the square root decomposed sample covari-
ance matrix of the centered samples {wj−μ̂}mj=1. Thus, the
new covariance matrix of {ŵj}mj=1 is Cov(ŵj) = Id. Third,
in our particular case with the target covariance Σ = σ−2Id,
the desired correlated random samples are generated by
{w̃j} with w̃j = σ−1ŵj , where the covariance matrix of
the new samples matches Σ:

Cov(w̃j) = Cov(σ−1ŵj) = σ−2Cov(ŵj) = Σ. (7)

In sum, with the proposed moment matching method the
Gaussian kernel is approximated by

k(x,y)≈EMM ≡ 1

m

m∑
j=1

e−ic�w̃j =〈Q(x),Q(y)〉Cm (8)

with
Q(x)=

1√
m
(e−ix�w̃1 , . . . , e−ix�w̃m), (9)

where we denote the moment matching estimator as EMM

and have the set of updated samples {w̃j}mj=1 with w̃j =

σ−1Â−1(Φ−1(uj) − μ̂). Denote its variance as VMM ≡
Var(EMM ). Algorithm 1 summarizes the proposed proce-
dure of constructing random feature maps Q(x).

Theoretical Analysis

In this part, we show that to attain the same approxima-
tion accuracy the moment matching estimator EMM re-
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(a) YP90 (b) QM274 (c) MNIST300 (d) LR500

Figure 1: Errors of approximated Gram matrices in the Frobenuis norm by different sample sizes (log-log).

quires fewer features than the standard Monte Carlo estima-
tor EMC so that the computing for downstream uses such as
classification and regression will be cheaper. Detailed proofs
are given in the long version of this work. Let us denote by
P→ the convergence in probability, and denote by c ≡ x− y
the coefficient from data.
Definition 1. The random vector sequence {Xj}mj=1 is uni-
formly tight means that for every ε > 0 there is a constant
M such that supj P (‖ Xj ‖> M) < ε.

Definition 2. Let {Xj}mj=1 be a sequence of random vec-
tors. Let {Rj}mj=1 be a sequence of strictly positive number
indexed by j. The following statements give the definitions of
op and Op: Xj = op(1) if and only if Xj

P→ 0; Xj = Op(1)
if and only if {Xj}mj=1 is uniformly tight.

First, the unbiased control variate estimator based on the
first two moments ECV can be constructed as:

ECV ≡ 1

m

m∑
j=1

(e−ic�wj − β1(−ic�wj − 0)

− β2(−1

2
c�wjw

�
j c+

1

2
c�Σc)),

(10)

where β1 and β2 are the control coefficients optimally deter-
mined later. Clearly, E(ECV ) = k(x,y). Denote the vari-
ance of ECV as VCV ≡ Var(ECV ), the symbol ⊗ as the
Kronecker product, and the symbol vec(·) as the vectoriza-
tion operator which converts a matrix into a column vector.
Theorem 1. The control variate estimator (10) can be
rewritten as

ECV =EMC+β1(ic
�μ̂)+

1

2
β2(c

�⊗c�)vec(Σ̂−Σ), (11)

and the optimal coefficients for the two controls that mini-
mize VCV are β∗

1 = e−
1
2c

�Σc and β∗
2 = e−

1
2c

�Σc.
Next, denote by E∗

CV the optimal control variate estima-
tor with the optimal coefficients β∗

1 and β∗
2 and V ∗

CV ≡
Var(E∗

CV ) the corresponding minimized variance. Because
the optimal control variate estimator is generally guaranteed
achieving variance reduction (Owen 2013), the optimal con-
trol variate estimator E∗

CV has lower variance than the stan-
dard Monte Carlo estimator EMC (4):
Corollary 1. For c �= 0,

V ∗
CV = VMC(1− ρ21 −

1

2
ρ22), (12)

where VMC = m−1(1−e−c�Σc), ρ21 =
e−c�Σc

1− e−c�Σc
c�Σc,

and ρ22 =
e−c�Σc

1− e−c�Σc
(c�Σc)2.

As shown in Corollary 1, the optimal control variate esti-
mator provably has lower variance than the standard Monte
Carlo estimator by a factor of 1 − ρ21 − 1

2ρ
2
2. On the other

hand, the proposed moment matching estimator EMM (8)
can be written in an asymptotic form:

Theorem 2. For the optimal coefficients β∗
1 and β∗

2 defined
in Theorem 1, the moment matching estimator (8) can be
rewritten as

EMM = EMC + β∗
1(ic

�μ̂)

+
1

2
β∗
2(c

� ⊗ c�)vec(Σ̂− Σ) + op(m
−1/2).

(13)

Therefore, comparing (13) and (11) implies that the mo-
ment matching estimator is asymptotically equivalent to the
optimal control variate estimator. The following corollary
summarizes the implication:

Corollary 2. The moment matching estimator (13) is
asymptotically equivalent to the control variate estimator
(11) with the optimal coefficients:

EMM = E∗
CV + op(m

−1/2). (14)

The variance of the moment matching estimator (13) is
asymptotically equivalent to that of the control variate es-
timator (11) with the optimal coefficients:

VMM = V ∗
CV + o(m−1). (15)

With Corollaries 1 and 2, we conclude that the proposed
moment matching estimator EMM provably has lower vari-
ance than the standard Monte Carlo estimator EMC . The
convergence rate m−1/2 is independent with the dimension
of input data d. As m increases, we will expect the moment
matching estimator EMM behaves similarly to the control
variate estimator E∗

CV , which is confirmed by our numeri-
cal results in Section 4 and the long version of this work.

Discussions

In general, the moment matching method achieves the im-
provement in approximation accuracy by ensuring the gen-
erated set of finite random samples exactly match the first
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(a) YP90 (b) QM274 (c) MNIST300 (d) LR500

Figure 2: Errors of approximated Gram matrices in the spectral norm by different sample sizes (log-log).

a few moments of the desired probability distribution. It
has been empirically shown to be efficacious in reducing
sampling variance in various financial and machine learn-
ing applications (Glasserman 2003; Gretton et al. 2006;
Owen 2013). However, limited theoretical work has existed
showing its effectiveness and its asymptotic properties in
any integral calculation. Thus, to the best of our knowledge,
those theoretical results, especially the linkages between two
estimators in Corollaries 1 and 2, have filled some void and
enriched the moment matching method on its own.

On the other hand, while other common variance reduc-
tion techniques, such as the methods of control variates, have
also been widely applied successfully, their approaches of
adding extra terms to adjust the finite sum approximation to
the integral are incompatible with the inner product frame-
work expressed by (4). In particular, as given in equation
(10), although the auxiliary control variate estimator ECV

can be used to approximate the kernel integral (3), it cannot
trivially produce random feature maps for downstream ap-
plications. In contrast, as shown in equation (9), the moment
matching estimator EMM is adaptive to the inner product
framework without changing the underlying structure.

In addition, the new method is cheap to implement and
easy to use. The extra computational cost mainly from the
square root decomposition is at the order of O(d3), which is
unaffected by the number of random samples or that of input
data. Also, as the Gaussian distribution is completely char-
acterized by its first two moments, matching the higher or-
der moments would generally be unnecessary. Structurally,
as the produced new random feature Q(x) merely replaces
the random samples {wj}mj=1 by {w̃j}mj=1, the new method
could be easily combined with other techniques thereafter to
further enhance the quality of the approximation.

4 Experiments

In this section, we describe the experimental settings, and
then demonstrate the performance of the Gram matrix ap-
proximation and downstream use in regression.

Data and Settings

Here we introduce the benchmarks, the competing methods,
as well as the evaluation metrics.

Data: Four benchmark datasets with relatively high di-
mensions are examined in our experiments: (a) YP90 with
10000 and 2000 90-dimensional data points for training

and testing, respectively; (b) QM274 with 6000 and 1165
274-dimensional data points for training and testing, respec-
tively; (c) MNIST300 with 8000 and 2000 300-dimensional
data points for training and testing, respectively; and (d)
LR500 with 8000 and 2000 500-dimensional data points for
training and testing, respectively. The first three datasets are
from real-world applications and the last one is synthesized
by simulation based on the 500-dimensional normal density
function with a randomly generated correlation matrix. 1-
dimensional outputs for each of the four datasets represent
either continuous response values or discrete label informa-
tion. For the synthetic dataset, the response values are gen-
erated through a linear transformation of the input data pep-
pered with random noises.

Baselines: In our comparison study, we consider ker-
nel approximation based on the following seven sampling
methods: (i) standard Monte Carlo sampling by pseudo-
random numbers (MC); (ii) quasi-Monte Carlo sampling by
Sobol numbers (Sobol); (iii) quasi-Monte Carlo sampling
by scrambled Sobol numbers (SSobol); (iv) antithetic sam-
pling (Anti); (v) control variate sampling with controlling
the first moment (CV1); (vi) control variate sampling with
controlling the first two moments (CV2); and (vii) the pro-
posed moment matching sampling method (MM). Specif-
ically, MC is the original method in (Rahimi and Recht
2007). Sobol is a well-tested method in (Yang et al. 2014a).
SSobol as a randomized variant of Sobol often achieves
a faster convergence rate (Dick, Kuo, and Sloan 2013).
Anti represents one commonly adopted variance reduction
method with cheap computational costs (Niederreiter 1992).
CV1 and CV2 that respectively employ the first term and
the both terms in (11) represent one of the most effective
variance reduction techniques in practice (Owen 2013).

Performance metrics: To fairly appraise the approxima-
tion of Gram matrices, we first report the relative errors in
both the Frobenius norm as ‖K−K̂‖F /‖K‖F and the spec-
tral norm as ‖K − K̂‖2/‖K‖2. Second, we report relative
errors in l2-norm as ‖z − ẑ‖2/‖z‖2 to evaluate regression
tasks, where ẑ is predicted value and z is the true value. To
mitigate the intervention of parameter tuning, we compare
the predictive power in a principal component regression
setting (Hastie, Tibshirani, and Friedman 2009). We specify
the band width σ as the average distance of all data points to
their tenth nearest neighbors unless otherwise stated.

To show the statistical significance, for all the methods ex-
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(a) Frobenius Norm (b) Spectral Norm (c) Frobenius Norm (d) Spectral Norm

Figure 3: Relative errors of approximated Gram matrices by different band widths across two datasets, i.e., (a) and (b) on
QM274; (c) and (d) on LR500 (semilog). The tenth nearest neighbors for QM274 and LR500 are 11 and 27, respectively. The
approximated Gram matrices K̂ are constructed based on 2048 samples.

cept the deterministic sampling method (ii), 100 random and
independent executions are repeated to compute the average
performance for Gram matrix approximation and regression.
For clarity, we do not report the observed negligible error
bands in plots and figures. Additionally, as the computa-
tional costs are negligible when compared with those for any
reasonable downstream use, we do not report running times
as they are of the same order for the different methods.

Notably, while all the preceding sampling methods can be
used to construct Gram matrices, only the methods (i), (ii),
(iii) and (vii) can produce random features, thereby being
tested in the regression task.

Results

We report the approximation errors of Gram matrices by in-
creasing the number of random features m, the approxima-
tion errors of Gram matrices by varying the band width σ,
and out-of-sample errors in principal component regression.

By increasing the sampling size m, we demonstrate the
convergence curves of Gram matrix approximation for the
seven methods across the four datasets in Figure 1 and Fig-
ure 2 in the Frobenuis norm and the spectral norm, respec-
tively. First, MM constantly achieves the lowest approxima-
tion errors, e.g., that MM apparently outperforms MC and
Sobol. Second, the observation that MM and CV2 are con-
sistent with each other across all the experiments numeri-
cally supports the theoretical conclusion in Corollary 2. In
other words, with the current size of the random features
MM and CV2 have achieved the asymptotic equivalence.
Third, MM shows markedly robust variance reduction in
high dimensions, from 90 to 500 dimensions. In addition,
as observed in (Yang et al. 2014a), MC underperforms all
the other sampling methods such as Sobol and SSobol. Fur-
ther, consistent with Corollary 1, CV1 and CV2 both beat
MC, and with the assist of one extra orthogonal control CV2
demonstrates an additional improvement over CV1.

Figure 3 illustrates the trend of relative approximation er-
rors by increasing the size of the band width σ in the Gaus-
sian kernel across two datasets. From the standpoint of ap-
proximating the Gram matrix, the size of the band width de-
termines how challenging it is to achieve an accurate approx-
imation. The performances of all the methods are in line with
those in Figures 1 and 2, i.e., that MM constantly has lower

Table 1: Out-of-sample regression error (%).

Dataset PC # MC Sobol SSobol MM

(a) 4096 0.71 0.71 0.71 0.70
512 0.51 0.51 0.52 0.50

(b) 4096 6.27 6.50 6.36 6.20
512 5.30 5.27 5.39 5.27

(c) 4096 75.40 75.90 76.50 75.40
512 81.00 81.45 81.24 81.23

(d) 4096 30.62 30.07 29.30 29.30
512 24.34 23.63 24.44 23.00

Note: We first implement principal component decompo-
sition on 4096 sampled random features. Then, we build
principal component regression models by all 4096 princi-
pal components and by the first 512 principal components,
respectively. Error bands are all negligible after repeating
the simulation 100 times.

approximation errors with noticeable effective sizes than
others. This observation signifies that the proposed sampling
method is sufficiently robust in tuning σ for applications.

Finally, following (Yang et al. 2014a), we investigate the
generalization errors in principal component regression of
the four methods on the four datasets in Table 1. Accord-
ingly, MM shows comparable performance without any de-
terioration and has the statistically lowest out of sample er-
rors in most tests. Such performance gain further confirms
the effectiveness of the proposed MM sampling method for
kernel approximation.

5 Conclusions and Discussions

In this paper, we have presented a novel and easy-to-use
algorithm to effectively approximate the Gaussian kernel
with random features. The proposed sampling algorithm has
taken the advantages of the moment matching technique to
achieve higher accuracy. Our theoretical proofs have shown
that the new method demands fewer features than the stan-
dard Monte Carlo method in any dimensions to achieve the
same approximation accuracy. Besides echoing with the the-
orems, our empirical studies have also demonstrated that the
new algorithm has noticeably lessened the approximation er-
rors in Gram matrices while achieving a comparable level of
accuracy in regression tasks. Our future work includes ap-
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plying the new algorithm to other classes of kernels (Hamid
et al. 2014) and combing it with other random feature con-
struction methods (Feng, Hu, and Liao 2015).
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