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Abstract

We propose a method that involves a probabilistic model for
learning future classifiers for tasks in which decision bound-
aries nonlinearly change over time. In certain applications,
such as spam-mail classification, the decision boundary dy-
namically changes over time. Accordingly, the performance
of the classifiers will deteriorate quickly unless the classifiers
are updated using additional data. However, collecting such
data can be expensive or impossible. The proposed model al-
leviates this deterioration in performance without additional
data by modeling the non-linear dynamics of the decision
boundary using Gaussian processes. The method also in-
volves our developed learning algorithm for our model based
on empirical variational Bayesian inference by which uncer-
tainty of dynamics can be incorporated for future classifica-
tion. The effectiveness of the proposed method was demon-
strated through experiments using synthetic and real-world
data sets.

1 Introduction

The decision boundary dynamically changes over time in
certain applications. For example, in web-site classifica-
tion, malicious web sites are uninterruptedly created to scam
users; therefore, the decision boundary that classifies a web
site into malicious or not malicious can vary over time (Ma
et al. 2009). In activity recognition using sensor data, the
decision boundary can vary over time since user activity
patterns dynamically change (Abdallah et al. 2012). When
we do not update classifiers for tasks in which the decision
boundary evolves over time, the classification performance
deteriorates quickly (Gama et al. 2014).

There have been many methods proposed for updating
classifiers to maintain performance, such as online learn-
ing (Rosenblatt 1958; Crammer, Kulesza, and Dredze 2009;
Crammer et al. 2010; Wang, Zhao, and C.Hoi 2012), for-
getting algorithms (Klinkenberg 2004), ensemble learning
(Wang et al. 2003; Kolter and Maloof 2007; Bach and Mal-
oof 2010; Brzezinski and Stefanowski 2014), and domain
adaptation (Hoffman, Darrell, and Saenko 2014). These
methods require additional labeled and/or unlabeled data to
update classifiers. However, using these data can be expen-
sive or impossible. For example, collecting labeled data is

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

quite expensive since labels need to be manually assigned
by domain experts. Even using unlabeled data is impossible
in some domains such as security. For example, anti-virus
software vendors distribute their update files (data for up-
dating classifiers) many times a day for immediately dealing
with rapidly evolving malware. When software is used in an
off-line environment, which has a risk of virus infection via
physical media such as USB, it cannot receive the update
files; therefore, it cannot update the classifiers.

To overcome this problem, a method for learning future
decision boundaries given only labeled data with timestamps
collected until the current time has been proposed (Kuma-
gai and Iwata 2016). This method learns the dynamics of
the decision boundary without additional data and predicts
the future decision boundary. The dynamics of the decision
boundary is modeled using vector autoregressive models,
with which the decision boundary is assumed to depend lin-
early on the previous decision boundaries. However, this lin-
earity assumption is too strong because decision boundaries
would change more intricately in real-world data.

In this paper, we propose a method that involves a novel
probabilistic model for learning future classifiers, whose dy-
namics is non-linear, when only labeled data with times-
tamps collected until the current time are available. With
the proposed model, a decision boundary is defined by the
classifier parameters, and the dynamics of each parameter
is modeled by Gaussian processes (GPs) (Rasmussen and
Williams 2006). By handling the dynamics of each param-
eter, our model can reflect the characteristics of each fea-
ture. For example, in spam-mail classification, words such
as ‘free’, ‘viagra’, and ‘DISCOUNT’, have been used in
spam mail for a long time; therefore, the parameters for such
words (features) would be effective over time. In contrast,
for words temporarily used in spam mail, such as new prod-
uct names and celebrity’s names, the parameters would be-
come ineffective over time. The proposed method also in-
volves our developed learning algorithm based on empirical
variational Bayesian inference for optimizing classifier pa-
rameters and hyperparameters for GPs simultaneously. By
using a Bayesian framework, the proposed method can clas-
sify data collected at a future time by taking account into
the uncertainty of predicted future classifiers, which enables
robust classification.
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2 Related Work

To maintain the performance of classifiers, updating the
classifiers with labeled data has been widely used. On-
line learning allows classifiers to be updated with sequen-
tially arriving data (Rosenblatt 1958; Loosli, Canu, and Bot-
tou 2007; Crammer, Kulesza, and Dredze 2009; Crammer
et al. 2010; Wang, Zhao, and C.Hoi 2012). Forgetting al-
gorithms learn the latest decision boundary by weighting
training data with their age, which means recent data are
important for learning (Koychev 2000; Klinkenberg 2004;
Babcock et al. 2002). Ensemble learning combines multiple
base classifiers to create a better classifier (Wang et al. 2003;
Kolter and Maloof 2007; Bach and Maloof 2010; Brzezin-
ski and Stefanowski 2014). Its mixture ratio is estimated so
that base classifiers that effectively capture a recent decision
boundary have a large ratio. Methods for learning the re-
cent decision boundary by using unlabeled data have also
been proposed (Zhang, Zhu, and Guo 2009; Dyer, Capo,
and Polikar 2014; Hoffman, Darrell, and Saenko 2014;
Haque, Khan, and Baron 2016). Some methods involve
active learning, which is a method for determining what
data should be labeled, to learn the time-evolving decision
boundary (Zhu et al. 2010; Zliobaite et al. 2014). (Royer and
Lampert 2015) proposed a method for classifying non-i.i.d
test samples drawn form a time-evolving data distribution.
(Zhou, Sohn, and Lee 2012) proposed an incremental fea-
ture learning algorithm for a time-varying data distribution.
(Gao et al. 2014) used GPs for latent variables of samples in
order to cope with concept drift. All these methods contin-
uously require additional labeled and/or unlabeled data for
adapting the time-varying decision boundary. However, the
task we investigated in this study is learning future classi-
fiers without additional labeled and/or unlabeled data.

There have been methods proposed that predict future
states by using data collected until the current time. A
method for predicting future probability distributions has
been proposed (Lampert 2015). Although this method pre-
dicts the future state of a probability distribution, the pro-
posed method predicts the future decision boundary. A
method for learning future decision boundaries has also been
proposed (Kumagai and Iwata 2016). Although it is assumed
that the decision boundary depends linearly on the previous
decision boundaries with this method, the proposed method
does not rely on the such assumption due to GP regres-
sion, which is a non-linear non-parametric regression model.
Though the previous method cannot take into account the
uncertainty of dynamics, by using a Bayesian framework,
the proposed method can. Moreover, since autoregressive
models require decision boundaries at regular intervals with-
out absence to predict future decision boundaries, the pre-
vious method requires training data to be collected continu-
ously over a certain period. In contrast, the proposed method
does not require this. These methods including the propose
method use time-series models for predicting future states.
Although time-series models usually require observed sam-
ples in the form of time-series, these methods only require
independent samples from different time units.

The proposed method is related to transfer learning (Pan
and Yang 2010). Transfer learning uses data in a source do-

Figure 1: Illustration of our approach

main to solve a related problem in the target domain. In our
task, the proposed method regards labeled data collected un-
til a certain time point as data in the source domain, and
data collected after the certain point as data in the target do-
main. Although transfer learning uses labeled or unlabeled
data in the target domain, the proposed method does not use
any data in the target domain for learning. Learning the dy-
namics of the decision boundaries is to learn how to transfer
the decision boundaries in the source domain to those in the
target domain.

3 Proposed Method

3.1 Model

We introduce the notations used in this paper and define
the task we investigated. Let Dt:={(xt

n, y
t
n)}Nt

n=1 be a set
of training data collected at time t, where xt

n ∈ R
D is the

D-dimensional feature vector of the n-th sample at time t,
ytn ∈ {0, 1} is its class label, and Nt is the number of train-
ing data collected at time t. t := (t1, . . . , tT ), where t1 <
t2 < · · · < tT , denotes times in which data are collected.
Our goal is to find classifiers ht : Rd → {0, 1}, ∀t > tT ,
which can precisely classify data at time t, given a set of
training dataD:={Dt}t∈t. Figure 1 illustrates our approach.
Using labeled data from time t1 to tT , the decision bound-
ary for each time, which is defined by classifier ht, and the
dynamics of the decision boundary is learned. Then, the de-
cision boundary at a future t, t > tT , is predicted with un-
certainty σ2

t by using the learned decision boundary and dy-
namics.

It is assumed with our probabilistic model that the poste-
rior probability of label ytn given feature vector xt

n is mod-
eled by logistic regression as

p(ytn = 1|xt
n,wt) = σ(w�t x

t
n) = (1 + e−w

�
t x

t
n)−1, (1)

where wt = (wt1, . . . , wtD) ∈ R
D is a parameter vec-

tor of ht, σ is the sigmoid function, and � denotes trans-
position. Note that the posterior probability that ytn = 0,
p(ytn = 0|xt

n,wt), is equal to 1− p(ytn = 1|xt
n,wt).

It is assumed with the probabilistic model that the d-th
component of classifier parameter wtd is generated by map-
ping input time t using a non-linear function,

wtd = fd(t) + εd, (2)

where fd is the non-linear function for the d-th feature,
εd is Gaussian noise, εd ∼ N (0, η2d), and η2d is a vari-
ance parameter. We use a GP for a prior distribution of
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fd. Specifically, given any finite subset of input times t =
(t1, . . . , tT ), the prior on the corresponding outputs fd :=
(fd(t1), . . . , fd(tT )) is represented as a zero-mean multi-
variate Gaussian distribution on t,

p(fd) = N (fd|0,Kd), (3)

where the covariate matrix Kd ∈ R
T×T is constructed from

a covariance (or kernel) function kd , that is, the (t, t′) ele-
ment of Kd is the value of kd between t and t′, [Kd]tt′ :=
kd(t, t

′). Usually the kernel function depends on certain hy-
perparameters that control the smoothness property of fd. In
this paper, we use a Gaussian kernel with a bias term as the
kernel function,

kd(t, t
′) = β2

d exp

(
−1

2
α2
d|t− t′|2

)
+ γ2

d , (4)

where αd, βd, and γd are kernel hyperparameters. This ker-
nel function describes the time series with a smooth shape
well. By integrating out fd, we obtain the probability of
the d-th component of the classifier at the input times t,
w·d := (wt1d, . . . , wtT d) ∈ R

T , as follows,

p(w·d) =
∫

p(w·d|fd)p(fd)dfd = N (w·d|0,Cd), (5)

where the covariance matrix Cd ∈ R
T×T is defined by the

following kernel function,

cd(t, t
′) := kd(t, t

′) + δtt′η
2
d, (6)

where δtt′ = 1 if t = t′, and δtt′ = 0 otherwise.
The joint distribution of labeled data D:={Dt}t∈t and

classifier parameters W := (wt1 , . . . ,wtT ) is written as

p(D,W ;θ) = p(D|W )p(W ;θ)

=

tT∏
t=t1

Nt∏
n=1

p(ytn|xt
n,wt) ·

D∏
d=1

N (w·d|0,Cd), (7)

where θ := (α1,. . ., αD, β1,. . ., βD, γ1,. . ., γD, η1,. . ., ηD),
and p(W ;θ) =

∏D
d=1 p(w·d). When alpha is infinitely

large and gamma is zero, the classifier parameters in differ-
ent time points are independent. This corresponds to learn-
ing classifiers for each time point independently. When al-
pha is zero, the classifier parameters are constant over time.
This corresponds to learning a classifier by using all data
and ignoring their time stamps. Our probabilistic model can
represent various dynamics of the decision boundary by con-
trolling the values of kernel hyperparameters.

3.2 Learning

We developed a learning algorithm for our probabilistic
model based on empirical variational Bayesian inference
(Bishop 2006). We consider obtaining an approximate pos-
terior distribution, called the variational posterior q(W ), of
the posterior distribution p(W |D;θ) since analytically cal-
culating p(W |D;θ) is impossible. In addition, we estimate
hyperparameters θ from training dataD. The q(W ) and op-
timal hyperparameters θ can be obtained by maximizing the
following lower bound L(q;θ) with respect to q and θ,

L(q;θ) =

∫
q(W ) log

p(D,W ;θ)

q(W )
dW . (8)

We assume that q(W ) can be factorized as follows,

q(W ) =

tT∏
t=t1

D∏
d=1

q(wtd). (9)

We would like to maximize the lower bound L(q;θ). How-
ever, it is impossible because of the non-conjugacy of logis-
tic regression. To solve this problem, we use the following
inequality (Bishop 2006),
p(ytn|xt

n,wt) ≥

ey
t
naσ(ξtn) exp

(
−a+ ξtn

2
− h(ξtn)(a

2 − ξtn
2
)

)
,

(10)

where a:=w�t x
t
n, ξtn ∈ R is a parameter that is associated

with each training sample (xt
n, y

t
n) and determines the accu-

racy of the approximation, and h(ξtn) := 1
2ξtn

(
σ(ξtn)− 1

2

)
.

By substituting the term on the right side of Eq. (10) with
L(q;θ), we obtain a new lower bound L(q;θ, ξ). Since
L(q;θ, ξ) is the lower bound of L(q;θ), increasing the value
of L(q;θ, ξ) leads to an increased value of L(q;θ). By cal-
culating the derivatives of L(q;θ, ξ) with respect to q and
ξtn, we find that q(W ) takes the following form,

q(wtd) = N (wtd|μtd, λ
−1
td ). (11)

The variables μtd, λtd, and ξnt satisfy the following equa-
tions,

μtd = λ−1
td

⎛
⎝ Nt∑

n=1

{(ytn −
1

2
)xt

nd − 2h(ξtn)
∑
l �=d

μtlx
t
nlx

t
nd}

−
∑
s�=t

[C−1
d ]tsμsd

⎞
⎠ ,

λtd =[C−1
d ]tt + 2

Nt∑
n=1

h(ξtn)(x
t
nd)

2,

(ξtn)
2 =xt�

n (Λ−1
t +μtμ

�
t )x

t
n, (12)

where μt := (μt1, . . . , μtD), and Λt :=diag(λt1, . . . , λtD),
in which diag(x) means a diagonal matrix whose diagonal
elements are x. We maximize L(q;θ, ξ) with respect to θ
by using the quasi-Newton method (Liu and Nocedal 1989).
The L(q;θ, ξ) is represented as

L(q;θ, ξ) =− 1

2

D∑
d=1

[μ�·dC
−1
d μ·d +Tr(C−1

d Λ−1
d )

+ log(det(Cd))] + const, (13)
where μ·d :=(μt1d, . . . , μtT d), Λd :=diag(λt1d, . . . , λtT d),
Tr is the trace, det is the determinant, and const is the terms
that do not depend on θ. The gradients of L(q;θ, ξ) with
respect to θd, which represents one of the αd, βd, γd and ηd,
are expressed as
∂L(q;θ, ξ)

∂θd
=

1

2
μ�·dC

−1
d

∂Cd

∂θd
C−1

d μ·d+
1

2
Tr

(
C−1

d

∂Cd

∂θd
(C−1

d Λ−1
d −I)

)
,

(14)
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where I is the identity matrix. The gradients of the Kernel
[Cd]tt′ with respect to αd, βd, γd and ηd are given by

∂[Cd]tt′

∂αd
= −αd|t− t′|2β2

d exp

(
−1

2
α2
d|t− t′|2

)
,

∂[Cd]tt′

∂βd
= 2βd exp

(
−1

2
α2
d|t− t′|2

)
,

∂[Cd]tt′

∂γd
= 2γd,

∂[Cd]tt′

∂ηd
= 2δtt′ηd. (15)

The q(W ) is estimated by updating variables μtd, λtd, and
ξtn by using Eq. (12) and the hyperparameters θ are esti-
mated using the quasi-Newton method with Eqs. (13), (14),
and (15) in turn until some convergence criteria are satisfied.

3.3 Prediction

We explain how to predict future classifiers by using the
learned model. Assume we have a test input t∗ and we would
like to obtain the corresponding output (future decision
boundary) wt∗ . The probability of wt∗ = (wt∗1, . . . , wt∗D)
is represented as follows,

p(wt∗) =
D∏

d=1

p(wt∗d),

p(wt∗d)=

∫
p(wt∗d|w·d)q(w·d)dw·d=N(wt∗d|mt∗d, σ

2
t∗d),

mt∗d = k�d C
−1
d μ·d,

σ2
t∗d = kd(t∗, t∗) + η2d + k�d

(
C−1

d Λ−1
d − I

)
C−1

d kd,
(16)

where kd := (kd(t∗, t1), . . . , kd(t∗, tT )). The d-the compo-
nent of the mean future decision boundary mt∗d is given by a
weighted sum of the estimated past decision boundaries μ·d,
where the weights depend on the test input t∗. In contrast,
the weights of the autoregressive models in (Kumagai and
Iwata 2016) are constant. The variance σ2

t∗d, which also de-
pends on t∗, can be used for measuring the uncertainty of the
prediction though the autoregressive models cannot take into
account the uncertainty of their prediction. For classifying
data at time t∗, we use Bayesian logistic regression, which
is a method for classification taking variances of p(wt∗) into
account. For details of Bayesian logistic regression, refer to
(Bishop 2006). The posterior probability of label yt∗n = 1
given a sample xt∗

n is given as follows,

p(yt∗n = 1|xt∗
n ) = σ(τ(σ̃2)μ̃),

μ̃ = m�
t∗x

t∗
n , σ̃2 = xt∗

n
�
Σt∗x

t∗
n ,

τ(z) = (1 + πz/8)−
1
2 , (17)

where mt∗ := (mt∗1, . . . ,mt∗D), and Σt∗ is a diagonal
matrix whose diagonal elements are (σ2

t∗1, . . . , σ
2
t∗D).

4 Experiments
We conducted experiments using two synthetic and four
real-world data sets to confirm the effectiveness of the pro-
posed method. In our experiments, we discretized time at
regular intervals, and data collected in the same time unit
were regarded as data at the same time.

4.1 Synthetic Data

We used two synthetic data sets. For the first data set, called
Linear, a sample (x1, x2) ∈ R

2 with label y ∈ {0, 1}
and time t was generated from the following distribution
p(x|y, t),

x1 = 2.0 · cos(π((t− 1)/19 + 1− y)) + ε1,

x2 = 2.0 · sin(π((t− 1)/19 + 1− y)) + ε2, (18)

where εi for i = 1, 2 is a random variable with a standard
Gaussian distribution. The decision boundary changes lin-
early in this data set. We changed t from 1 to 20 and gener-
ated 100 samples for each label y and each time t. For the
second data set, called Non-linear, when t ≤ 11, a sample
(x1, x2) ∈ R

2 with label y ∈ {0, 1} was generated from the
following time-invariant distribution,

x1 = 2.0 · cos(π(1− y)) + ε1,

x2 = 2.0 · sin(π(1− y)) + ε2. (19)

When t ≥ 12, a sample (x1, x2) was generated from the
distribution obtained by replacing t of (18) with t− 10. The
decision boundary changes non-linearly in this data set. We
changed t from 1 to 30 and generated 100 samples for each
label y and each time t.

4.2 Real-world Data

We used four real-world data sets: SPAM21, ELEC22,
ONP3, and BLOG 4. SPAM2 and ELEC2 are public bench-
mark data sets for evaluating concept drift. SPAM2 con-
tains 11, 905 samples and has 166, 047 features. ELEC2
contains 45, 312 samples and has eight features. ONP con-
sists of 39, 797 samples and 61 features. BLOG consists of
60, 021 samples and 281 features. For SPAM2, we added
ham in SPAM1 (Concept drift Dataset1) to SPAM2 (Con-
cept drift Dataset2) since the number of spams and hams
were very skewed. In addition, we reduced the features to
200-dimensional features by principal component analysis
(PCA) preserving 99.9% of the accumulated proportion. For
ELEC2, samples have missing values were removed since
missing values were not the focus of our task. As a result,
SPAM2 contained 14, 623 samples and ELEC2 contained
27, 549 samples. For ONP, we transformed the regression
task into a binary classification as the author instructs. For
BLOG, we also converted the regression task into a binary
classification based on whether the target value is more than
zero.

4.3 Setting

To find the temporal variation of the classification perfor-
mance in our experiments, we evaluated Area Under the
Curve (AUC) by using data until a certain time unit for train-
ing, and the remaining for testing. This setting is the same
as that in a previous study (Kumagai and Iwata 2016). For

1http://www.comp.dit.ie/sjdelany/Dataset.htm
2http://www.inescporto.pt/˜jgama/ales/ales 5.html
3https://archive.ics.uci.edu/ml/datasets/

Online+News+Popularity
4https://archive.ics.uci.edu/ml/datasets/BlogFeedback
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Table 1: Average and standard errors of AUCs over all test time units. Values in boldface are statistically better than others (in
paired t-test, p=0.05)

Proposed AAAI16 Batch Online Present
Linear 0.988±0.002 0.940±0.011 0.443±0.036 0.860±0.020 0.860±0.020
Non-linear 0.984±0.003 0.952±0.012 0.302±0.031 0.851±0.021 0.854±0.020
SPAM2 0.956±0.003 0.907±0.006 0.930±0.005 0.928±0.004 0.915±0.005
ELEC2 0.921±0.005 0.926±0.005 0.916±0.004 0.904±0.005 0.903±0.005
ONP 0.705±0.002 0.533±0.004 0.630±0.002 0.622±0.002 0.622±0.002
BLOG 0.838±0.003 0.827±0.003 0.827±0.004 0.730±0.004 0.754±0.004

(a) Linear (b) Non-linear

Figure 2: Average and standard errors of AUCs for all test
time units over ten runs

Linear, we set tT = 10 and the remaining ten time units as
test data. For Non-linear, we set tT = 20 and the remaining
ten time units as test data. We created ten different data sets
for each synthetic data set. For SPAM2, we set two weeks
as one time unit, tT = 14, and the reminding ten time units
as test data. For ELEC2, we set two weeks as one time unit,
tT = 29, and the reminding ten time units as test data. For
ONP, we set one month as one time unit, tT = 15, and the
reminding ten time units as test data. For BLOG, we set two
days as one time unit, tT = 20, and the reminding ten time
units as test data. We chose 80% of samples randomly at
every training time unit to create ten different training data,
and evaluated the average AUC by using these training data
sets.

4.4 Comparison methods

We compared the proposed method with four other methods:
batch logistic regression (Batch), online logistic regression
(Online), present logistic regression (Present) and a method
for future classifiers (AAAI16). Batch learns a classifier by
using all training data D at once. Online learns a classifier
wt by maximizing the log likelihood of data Dt with a prior
p(wt) = N (wt|wt−1, cI), where c is a regularization pa-
rameter, in turn from wt1 to wtT . Online is considered as a
weighing method, where the past data are used in the form
of priors with weights. Present estimates a classifier with
only recent training data DtT . Present is also considered as
a weighting method, where there is a weight only at the cur-
rent time. The AAAI16 method is for learning future clas-
sifiers by using the one-step algorithm (Kumagai and Iwata
2016). With the proposed method, we ran the learning four

(a) classifier parameter for the
1st feature

(b) classifier parameter for the
2nd feature

Figure 3: Classifier parameters estimated with the proposed
method on Non-linear. Blue line is mean of probability of
classifier (16) for each input value, and dotted green lines
represent point-wise mean plus and minus two times stan-
dard deviation for each input value. Red line represents one
ideal classifier, whose AUC is one for all time units

times with different initial conditions, and selected the result
with the highest lower bound. For Batch, Online and Present,
we chose the regularization parameter from {10−1, 1, 101}
in terms of which average AUC over all test time units was
the best. For AAAI16, we set the parameters for the gamma
priors as the same values as those in a previous study (Ku-
magai and Iwata 2016), ran the learning four times with dif-
ferent initial conditions, and changed the order of vector au-
toregressive models from 1, . . . , 9 in terms of which average
AUC over all test time units was the best. For the proposed
method and AAAI16, the number of iterations for learning
was 2000 in all experiments.

4.5 Results

Table 1 shows the average and standard errors of AUCs over
all test time units for all data sets. The proposed method
achieved the highest AUC for all data sets except ELEC2.
For ELEC2, the proposed method outperformed Batch, On-
line and Present although AAAI16 performed slightly better
than the proposed method. Nevertheless, this results show
that the proposed method can better maintain classification
performance compared with the other methods.

Figure 2 shows the average and standard errors of AUCs
for all test time units in the synthetic data sets. For both data
sets, the proposed method maintained AUC at almost one
over all test time units, although the AUCs of the others de-
creased quickly over time. Figure 3 shows an example of
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(a) SPAM2 (b) ELEC2 (c) ONP (d) BLOG

Figure 4: Average and standard errors of AUCs for all test time units over ten runs

Figure 5: Average and standard errors of AUCs with pro-
posed method with different numbers of training data on
SPAM2

Figure 6: Classifier parameters estimated with proposed
method on ONP. t represents time after training

classifier parameters estimated with the proposed method on
Non-linear. The variances σ2

td in Eq. (16) for the test inputs
(t ≥ 21) were large, although they were small for the train-
ing inputs (t ≤ 20). This is the property of GP regression.
We found that the estimated classifiers (the means mtd in
Eq. (16)) nearly matches the ideal classifiers, whose AUC is
one for all time units. From these results, we confirmed that
the proposed method works effectively when the decision
boundary dynamically changes over time.

Figure 4 shows the average and standard errors of AUCs
for all test time units in the real-world data sets. The pro-
posed method outperformed the others over all the test
time units in SPAM2 and ONP. Note that the AUC of
AAAI16 was worse than Batch, Online and Present. One
of the reasons for the poor performance of AAAI16 is that
it could not effectively capture the dynamics of the time-
evolving decision boundary since they are probably com-
plex in SPAM2 and ONP. In contrast, the proposed method
performed well since GP regression is a flexible non-linear
regression model; therefore, it could effectively capture the

complex dynamics of the decision boundary. For BLOG, the
proposed method outperformed the others in many test time
units. For ELEC2, AAAI16 performed slightly better than
the proposed method, while the proposed method outper-
formed Batch, Online, and Present. This indicates that the
linearity assumption on AAAI16 matches ELEC2 well.

Next, we discuss the classification performance when
varying the number of training data. Figure 5 shows the av-
erage and standard errors of AUCs with different number of
training data at time t on SPAM2. The hyperparameters of
all methods were the same as before. The proposed method
outperformed the others whether the number of training data
was small or large. These results suggest that the proposed
method is robust against the number of training data.

Finally, we show that the proposed method can model
the various dynamics of the classifier parameters. Figure 6
shows an example of classifier parameters for each feature
wtd, where t = 1 and t = 10, on ONP. We found that many
classifier parameters are very small, some parameters, such
as those for the 4-th, 7-th, and 24-th features, dynamically
change over time, and some parameters, such as those for
the 31-st and 37-th features, are almost non-zero constant.
Since the classifier parameters that do not affect the classifi-
cation performance become small, the proposed method can
select features that are useful for classification.

5 Conclusions

We propose a method involving a probabilistic model for
learning future classifiers, whose dynamics is non-linear,
given labeled data with timestamps collected until the cur-
rent time, and a learning algorithm for the model based on
empirical variational Bayesian inference by which uncer-
tainty of dynamics can be incorporated for future classifi-
cation. We conducted experiments, and showed that the pro-
posed method can better maintain the classification perfor-
mance over time compared with current methods. For future
work, we will apply other kernel functions or deep learning
methods to the framework of learning future classifiers.
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