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Abstract

Recently, many graph based hashing methods have been
emerged to tackle large-scale problems. However, there exists
two major bottlenecks: (1) directly learning discrete hashing
codes is an NP-hard optimization problem; (2) the complex-
ity of both storage and computational time to build a graph
with n data points is O(n2). To address these two problems,
in this paper, we propose a novel yet simple supervised graph
based hashing method, asymmetric discrete graph hashing,
by preserving the asymmetric discrete constraint and building
an asymmetric affinity matrix to learn compact binary codes.
Specifically, we utilize two different instead of identical dis-
crete matrices to better preserve the similarity of the graph
with short binary codes.We generate the asymmetric affinity
matrix using m (m << n) selected anchors to approximate
the similarity among all training data so that computational
time and storage requirement can be significantly improved.
In addition, the proposed method jointly learns discrete bi-
nary codes and a low-dimensional projection matrix to fur-
ther improve the retrieval accuracy. Extensive experiments on
three benchmark large-scale databases demonstrate its supe-
rior performance over the recent state of the arts with lower
training time costs.

Introduction

Hashing techniques have attracted considerable attention for
tackling a variety of large-scale tasks in computer vision
and machine learning. The core idea of hashing is to map
high-dimensional data into a low-dimensional binary (Ham-
ming) space with preserving the similarity among neigh-
bors (Wang, Kumar, and Chang 2012). Hence the high-
dimensional data can be represented by a set of compact bi-
nary codes, which lead to significant gains in both storage
and query speed (Liu et al. 2014).

Over the past decades, various hashing methods (In-
dyk and Motwani 1998), (Weiss, Torralba, and Fergus
2009), (Liu et al. 2011), (Gong et al. 2013), (Strecha et al.
2012), (Norouzi and Blei 2011), (Zhang et al. 2010) have
been proposed. Generally, these methods can be grouped
into two main categories: data-independent and data-
dependent. Locality-sensitive hashing (LSH) (Indyk and
Motwani 1998) is one of representative data-independent
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methods, which utilizes simple random projections to gen-
erate binary codes, thereby requiring long binary codes to
achieve good retrieval accuracy. To learn compact binary
codes, an increasing number of methods focus on learn-
ing data-dependent hashing functions with available train-
ing data. Based on whether utilizing the semantic (label) in-
formation, data-dependent methods can be further classified
into unsupervised and supervised hashing. Unsupervised
hashing methods, such as spectral hashing (SH) (Weiss,
Torralba, and Fergus 2009), anchor graph hashing (AGH)
(Liu et al. 2011) and iterative quantization (ITQ) (Gong
et al. 2013), try to explore intrinsic features of data to
learn binary codes without any supervision. By contrast,
supervised hashing methods, including linear discriminant
analysis hashing (LDAH) (Strecha et al. 2012), minimal
loss hashing (MLH) (Norouzi and Blei 2011) and semi-
supervised hashing (SSH) (Wang, Kumar, and Chang 2012),
leverage semantic information to map the high-dimensional
data into a low-dimensional binary space. Recently, super-
vised hashing has attracted increasing interest, since unsu-
pervised hashing methods are not able to guarantee desired
retrieval accuracy via semantic distances due to the seman-
tic gap (Wang, Kumar, and Chang 2012). Meanwhile, com-
pared to linear hashing methods, kernel-based hashing meth-
ods like binary reconstruction embedding (BRE) (Kulis and
Darrell 2009), random maximum margin hashing (RMMH)
(Joly and Buisson 2011), kernel supervised hashing (KSH)
(Liu et al. 2012) and kernel supervised discrete hashing
(KSDH) (Shi et al. 2016b) usually achieve better retrieval
performance because they can capture the non-linear mani-
fold structure hidden in the data.

Most of data-dependent hashing methods are derived
from traditional dimensionality reduction techniques. One
popular dimensionality reduction framework is graph em-
bedding (Yan et al. 2007), on which many hashing meth-
ods like SH and AGH have been developed. However, there
are two major bottlenecks for graph based hashing methods:
(1) directly learning the discrete binary codes is an NP-hard
problem; (2) the complexity of both storage and computa-
tional time to build a graph with n data points is O(n2). To
obtain binary codes, most of graph based hashing methods
utilize the relaxation+rounding schemes, which might gen-
erate accumulate quantization errors between hashing and
projection functions, especially for large-scale training data
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(Shen et al. 2015). Therefore, discrete graph hashing (DGH)
(Liu et al. 2014) with preserving symmetric discrete con-
straint (using the element-wise product of two identical dis-
crete matrices to preserve the similarity among neighbors)
has been proposed to remove this limitation. To improve
storage requirement and computational time of graph gen-
eration, DGH adopts one popular strategy, namely anchor
graphs, to build an approximate symmetric neighbor graph
(Liu et al. 2011). Furthermore, recent literature (Neyshabur
et al. 2013) argues that the symmetric discrete constraint
might be difficult to optimize and not necessary to learn
binary codes of training data, and the asymmetric discrete
constraint (using the element-wise product of two different
discrete matrices to approximate the similar matrix) might
be more powerful to learn shorter binary codes. However,
the optimization problem in (Neyshabur et al. 2013) is not
completely same to the problem in graph based hashing al-
gorithms. In addition, the complexity of both storage and
computational time of the algorithm (Neyshabur et al. 2013)
is O(n2), which requires large computer memory and con-
sumes high training costs for a large n.

Motivated by the aforementioned observations, in this
paper, we propose a novel supervised graph based hash-
ing method, asymmetric discrete graph hashing (ADGH),
that can utilize the semantic information to encode high-
dimensional data into compact binary codes with low train-
ing time costs. Specifically, instead of preserving the sym-
metric discrete constraint, we preserve the asymmetric dis-
crete constraint in the proposed optimization model. To re-
duce the size of the graph, unlike the anchor graphs strat-
egy generating an n × n symmetric affinity matrix, we uti-
lize a small number m (m << n) anchors to build an
n×m asymmetric affinity matrix to approximate the similar-
ity among all training data. Besides directly learning binary
codes of training data, the proposed method can simultane-
ously learn the low-dimensional projection matrix. In sum-
mary, our contributions are:

• We propose a novel supervised graph based hashing
model by preserving the asymmetric discrete constraint
and building an asymmetric affinity matrix. In addition,
our model can jointly learn binary codes of training data
and a low-dimensional projection matrix, which can fur-
ther improve the retrieval accuracy.

• We present an optimization procedure to solve the pro-
posed model in an alternative and efficient manner, and
analyze its convergence and time complexity.

• We evaluate the proposed method on three popular large-
scale image and video databases, and demonstrate its su-
perior performance over the state of the arts with lower
training time costs.

Graph based asymmetric discrete hashing

Given data X = {x1,x2, · · · ,xn} ∈ R
d×n, where d and n

are the number of predictors and observations, respectively.
Without loss of generality, in this paper, the data {xi}ni=1

are assumed to be zero centered, i.e.
∑n

i=1 xi = 0. These
data points are used to construct a graph G = {X,W},

where W is a symmetric affinity matrix with wij charac-
terizing the favorite similarity relationship between xi and
xj . The purpose of traditional graph methods is to map the
high-dimensional data into a low-dimensional space with
similarity among neighbors best preserved. Suppose that
Y ∈ R

n×r is the corresponding low-dimensional data of
X, one popular formulation can be written as follows:

min
Y

Tr
{
YTLY

}
, s.t. YTY = Ir, (1)

where L = S −W is the graph Laplacian, and S is a diag-
onal matrix with the i-th diagonal element sii =

∑
j wij .

Many graph based hashing algorithms (Weiss, Torralba,
and Fergus 2009), (Liu et al. 2011) have been developed
based on Eq. (1). However, most of them use the relax-
ation+rounding schemes to learn binary codes, which might
generate the accumulated quantization errors between hash-
ing and projection functions. Although DGH directly learn
the binary codes via preserving the symmetric discrete con-
straint, the optimization procedure is relatively difficult to
optimize and requires high training time cost. Meanwhile,
the symmetric discrete constraint might require longer bi-
nary codes than the asymmetric discrete constraint to pre-
serve the similarity of the affinity matrix. For clear illustra-
tion, we present a lemma as follows:
Lemma 1: Given a symmetric positive semidefinite matrix
M ∈ R

n×n, for any discrete matrix B1 ∈ {±1}n×r,
there exists a discrete matrix B2 ∈ {±1}n×r such that
Tr

{
BT

1 MB1

} ≤ Tr
{
BT

1 MB2

}
. (Proof in the supple-

mental material)
In Lemma 1, a larger objective value of Tr

{
BT

1 MB2

}
sug-

gests that the discrete matrices can preserve more similarity
(label) information, which usually means better retrieval ac-
curacy.

Dimensionality reduction methods like principal compo-
nent analysis (PCA) (Wright et al. 2009), (Candès et al.
2011) and nonnegative matrix factorizations (Recht et al.
2012) (Zhou, Bian, and Tao 2013), suggest that a matrix
with high dimensionality yet low-rank can be represented
or approximated by a linear combination of basis vectors.
Therefore, in our problem, the affinity matrix W ∈ R

n×n

can be approximated by a factorization W ≈ VP, where
V ∈ R

n×m, V ⊂ W and P ∈ R
m×n is a weight ma-

trix. Typically, m << n. Based on these observations, we
propose a novel graph based hashing method, namely asym-
metric discrete graph hashing (ADGH).

Model formulation

Suppose there exists a projection matrix A ∈ R
d×r such

that XTA = Y. Because YTY = Ir and W ≈ VP, the
optimization problem in Eq. (1) can be reformulated as:

max
A

Tr
{
ATXVPXTA

}
, s.t.ATXXTA = Ir. (2)

Although V can be a subset of W, it is computationally
expensive to calculate the matrix P. To avoid the calculation
of P, we assume Z = PXT ∈ R

m×d to be anchors. Then
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the matrix V can be viewed as the affinity matrix character-
izing the relationship between the data X and the anchors
Z, and the projection matrix A is to maintain their similar-
ity into a low-dimensional space. To learn compact binary
codes of X and Z with similarity preserved, we consider
the requirement of the maximum information of each hash
bit and the minimum redundancy among different hash bits,
and formulate the following optimization problem:

max
B,D

Tr
{
BTVD

}
,

s.t. B ∈ {−1, 1}n×r
,D ∈ {−1, 1}m×r

,
BT1n = 0,BTB = nIr,
DT1m = 0,DTD = mIr,

(3)

where 1m ∈ R
m is a column vector with all elements be-

ing one, the discrete matrices B and D represent the binary
codes of the data X and the anchors Z, respectively.

It is difficult to solve Eq. (3) due to the hard constraints. To
compute the binary code matrices B, D and the projection
matrix A, we soften the hard constraints to obtain:

max
B,D,A

Tr
{
BTVD

}− γ
2

∥∥B−XTA
∥∥2
F
,

s.t. B ∈ {−1, 1}n×r
,D ∈ {−1, 1}m×r

,
ATXXTA = nIr,

(4)

where the parameter γ is to weight the similarity infor-
mation and the error between the discrete binary code ma-
trix B and the projection function f(X) = XTA. Since
ATX1n = 0, ATXXTA = nIr that can reduce the redun-
dancy among data points (Shi et al. 2016a), when γ → ∞,
the binary matrix B satisfies the constraint BT1n = 0 and
BTB = nIr. Note that we ignore the influence of the dis-
crete matrix D on the projection matrix A due to m << n,
hence it is unnecessary to compute matrix P. In practice,
we can select m data points X̃ ∈ R

d×m from X and build
V based on the similarity between the selected data and the
training data.

To improve the robustness of the projection function to
outliers, we replace the constraint ATXXTA = nIr with a
more general constraint

∥∥ATXXTA− nIr
∥∥2
F

≤ ε, where
ε is a very small coefficient. Since Tr

{
BTB

}
= rn and

Tr
{
ATXXTA

} → rn, we propose our graph based hash-
ing framework:

max
B,D,A

Tr
{
BTVD

}
+ γTr

{
BTXTA

}
,

s.t. B ∈ {−1, 1}n×r
,D ∈ {−1, 1}m×r

,∥∥ATXXTA− nIr
∥∥2
F
≤ ε.

(5)

The framework incorporates the binary codes B, D and
the projection matrix A so that embedding learning and re-
gression model can be jointly implemented and optimized,
which can further improve the robustness of the projection
matrix A (Shi et al. 2015), (Hou et al. 2014).

Out-of-Sample Hashing: After obtaining A, given a
query data point q ∈ R

d, we will use the hashing functions
H(q) = [h1(q), h2(q), · · · , hr(q)] =

{
sgn(aTi q)

}r

i=1
to

achieve its binary codes, where

sgn(aTi q) =

{
1 if aTi q ≥ 0;
−1 otherwise.

(6)

Optimization process

Since it is difficult to directly to solve the problem in Eq. (5),
we propose a tractable optimization manner via alternative
solving the following four subproblems.
B-subproblem:

max
B

Tr
{
BTVD

}
+ γTr

{
BTXTA

}
,

s.t. B ∈ {−1, 1}n×r
,

(7)

from which we can obtain B = sgn(VD+ γXTA).
D-subproblem:

max
D

Tr
{
BTVD

}
, s.t. D ∈ {−1, 1}m×r

, (8)

whose optimal solution is D = sgn(VTB).
C-subproblem:

max
C

Tr
{
BTC

}
, s.t. CT1n = 0,CTC = nIr, (9)

where C ∈ R
n×r is an auxiliary matrix to replace XTA.

Eq. (9) can be solved based on Theorem 1.
Theorem 1: If rank(JB) = r, where J = 1n1

T
n − 1

n1n1
T
n .

Eq. (9) has a unique global solution C =
√
nRQT , Q ∈

R
r×r is obtained based on the SVD of BTJB = QΣ2QT

and R = JBQΣ−1 ∈ R
n×r. (Proof in the supplemental

material)
A-subproblem:

min
A

∥∥C−XTA
∥∥2
F
+ λ ‖A‖2F , (10)

whose solution is A = (XXT + λId)
−1XC. Obviously,

ATXXTA = CTXT (XXT + λId)
−1XXT (XXT +

λId)
−1XC. If λ = 0, it is easy to achieve ε = 0; other-

wise, ε > 0, and a larger λ means a larger ε.
In summary, Algorithm 1 presents the optimization proce-

dure to solve Eq. (5). In Algorithm 1, when λ = 0, the objec-
tive value in each iteration is non-decreasing and bounded.
Therefore, we have the following theorem:
Theorem 2: When λ = 0, the loop step in Algorithm 1
will monotonously non-decrease in each iteration and finally
converge to an optima. (Proof in the supplemental material)

In practice, when λ is small, Algorithm 1 can also con-
verge to an optima because each subproblem has a closed
form solution. For clarity, we show the convergence process
with λ = 0.01 in Figure 1, which shows that the objective
value is close to an optima after 3 iterations and mean aver-
age precision (MAP) becomes stable after 6 iterations.

Kernel Extension

Since kernel hashing methods, which can capture the non-
linear manifold structure hidden in data, usually obtain bet-
ter retrieval accuracy than linear hashing methods, we can
further kernelize our graph based hashing model. Let φ:
R

d → H represent a kernel mapping from the original
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Algorithm 1: ADGH

Input: X ∈ R
d×n, X̃ ∈ R

d×m, V ∈ R
n×m, r, γ and λ.

Output: B ∈ {−1, 1}n×r, A ∈ R
d×r.

Initialize: t=0, let A0 be the eigenvectors of XVX̃

and D0 = sgn(X̃A0), calculate M = (XXT + λId)
−1X;

Repeat

Update Bt+1 = sgn(VDt + γXTAt);
Update Dt+1 = sgn(VTBt+1);
Update Ct+1 based on Theorem 1;
Update At+1 = MCt+1;

Until convergence

Iteration #
0 2 4 6 8 10 12 14 16 18 20

Ob
jec

tiv
e

×105

1.7

1.705

1.71

1.715

1.72

1.725

1.73

1.735

(a) @ λ = 0.01

Iteration #
2 4 6 8 10 12 14 16 18 20

M
AP

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

(b) @ λ = 0.01

Figure 1: Influence of the number of iterations on retrieval
performance and training time (We present the results of
ADGH with 32-bit binary codes on YouTube face database
with 100 classes and 30000 training data. The number (m)
of selected anchors is 3000.). (a) Objective vs Iteration #, (b)
MAP vs Iteration #.

space to the kernel space, where H is a Reproducing Ker-
nel Hilbert Space (RKHS) with a kernel function K(x,y) =
φ(x)φ(y). To map the data X into the kernel space, we ran-
domly select l data points from X to construct a kernel ma-
trix K ∈ R

l×n. With normalizing the kernel matrix K to
be K̄ ∈ R

l×n such that K̄1n = 0, we kernelize the graph
based hashing model:

max
B,D,Ak

Tr
{
BTVD

}
+ γTr

{
BT K̄TAk

}
,

s.t. B ∈ {−1, 1}n×r
,D ∈ {−1, 1}m×r

,∥∥AT
k K̄K̄TAk − nIr

∥∥2
F
≤ ε,

(11)

where Ak ∈ R
l×r is a projection matrix to map the ker-

nelized data into a low-dimensional space. Since Eq. (11) is
similar to Eq. (5), it is easy to solve Eq. (11) using Algo-
rithm 1 by replacing the data matrix X with the kernel ma-
trix K̄. In this paper, the kernel version of ADGH is named
KADGH.

Time Complexity Analysis

In the initialization step of Algorithm 1, ADGH, the time
complexity to calculate the matrices A0, D0 and M is
O(nmd), O(mdr) and O(nd2), respectively. In the loop
step, calculating the matrices Bt+1, Dt+1, Ct+1 and
At+1 requires at most max(O(nmr),O(ndr)), O(nmr),
O(nr2) and O(ndr) operations, respectively. Thus the time
complexity of the loop step is max(O(knmr),O(kndr)),
where k is the number of iterations, empirically k ≤ 6. The
total complexity of Algorithm 1 is max(O(nmd),O(nd2)),

since usually kr < m and kr < d. Similarly, the time com-
plexity of KADGH is max(O(nml),O(nl2)).

In the test stage, for ADGH and KADGH, the time com-
plexity of encoding one test sample is O(dr) and O(ld+lr),
respectively.

Experiment

We evaluate the proposed algorithms ADGH and KADGH
on three benchmark large-scale image databases: CIFAR-
10 (Torralba, Fergus, and Freeman 2008), YouTube (Wolf,
Hassner, and Maoz 2011) and ImageNet (Deng et al. 2009).
CIFAR-10 database is a labeled subset of 80M tiny im-
ages, constituted of 60K color images from ten object cate-
gories. Every category contains 6K images, each of which is
cropped and aligned to 32 × 32 pixels and then represented
by a 512-dimensional GIST feature vector (Oliva and Tor-
ralba 2001). YouTube face database consists of 1595 peo-
ple, from which we randomly choose 100 individuals that
each one has at least 310 images to form a subset for evalua-
tion. Each face image is represented by a 1770-dimensional
LBP feature vector (Ahonen, Hadid, and Pietikainen 2006).
ImageNet database contains more than 1.4 million labeled
images. We adopt the ILSVRC-2012 dataset, containing 1.2
million images of 1000 object categories, from which 50 cat-
egories are selected to construct a subset, and convolutional
neural network (CNN) (LeCun, Bengio, and Hinton 2015) is
used to extract a 4096-dimensional feature vector to repre-
sent each image.

Experimental setting

In our experiments, we split CIFAR-10 database into a train-
ing set (59K images) and a test query set (1K images), which
consists of 10 categories with each containing 100 images.
We also partition the selected set of YouTube face database
into two parts: training and test query sets, where we ran-
domly pick up 300 and 10 images of each individual for
training and testing, respectively. For the subset of ImageNet
database, we randomly choose 1000 and 20 images from
each category for training and testing, respectively.

We compare ADGH and KADGH against four unsuper-
vised methods, LSH (Indyk and Motwani 1998), SH (Weiss,
Torralba, and Fergus 2009), AGH (Liu et al. 2011) and DGH
(Liu et al. 2014), and five supervised methods, KSH (Liu
et al. 2012), asymmetric Lin:V (Neyshabur et al. 2013),
FastHash (Lin et al. 2014), SDH (Shen et al. 2015), and
COSDISH (Kang, Li, and Zhou 2016). Apart from that, we
also show the retrieval performance of supervised discrete
graph hashing (SDGH) that preserves the symmetric dis-
crete matrix to learn binary codes of training data (The de-
tails of the model formulation and the optimization proce-
dure are explained in the supplemental material). We set the
regularization parameter λ = 0.01 for all ADGH, KADGH
and SDGH, γ = 0.1 for ADGH, γ = 0.01 for KADGH,
and search the best γ during [0.01, 100] for SDGH. We
choose the same kernel as KSH for KADGH in experiments.
To construct the affinity matrix V, we randomly select 10
percent samples of each class as anchors for ADGH and
KADGH. This process is repeated 10 times and the average
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Table 1: Hamming ranking performance (%) on CIFAR-10, YouTube face and ImageNet databases (r is the number of bits of
each hashing method).

Anchors Method
CIFAR-10 YouTube ImageNet

MAP/Top-5900 MAP/Top-300 MAP/Top-1000
r = 8 r = 16 r = 32 r = 16 r = 32 r = 64 r = 16 r = 32 r = 64

-

LSH 17.10 17.73 18.65 6.77 11.36 19.87 12.46 19.50 28.91
SH 17.04 17.10 16.41 22.36 29.60 35.52 29.02 32.44 36.53

AGH 1 22.84 22.47 23.28 22.05 31.02 37.25 39.92 49.21 51.14
AGH 2 22.45 21.72 22.39 16.37 26.70 32.81 34.26 44.14 49.17
DGH 23.62 21.89 22.21 14.40 30.20 38.12 28.36 40.54 45.64

- FastHash 48.66 57.81 62.90 39.20 48.00 51.00 67.98 78.10 81.24

-
COSDISH 45.70 52.65 57.55 27.30 44.26 51.70 71.73 81.00 82.85

Lin:V 43.50 49.30 47.30 35.10 36.36 37.21 69.50 67.00 66.50
SDGH 47.00 55.17 55.90 35.56 45.93 51.24 70.90 81.40 83.80
ADGH 51.70 53.16 56.60 39.61 47.60 52.77 75.80 82.60 83.80

1000
KSH 37.46 43.92 47.65 36.74 45.55 48.97 52.67 62.68 66.84
SDH 41.50 59.80 61.24 36.60 46.80 47.48 67.30 72.22 75.90

KADGH 57.00 60.40 62.80 40.20 49.40 52.70 73.00 80.02 81.40

3000
KSH 42.89 49.09 52.11 34.46 44.05 51.09 53.83 63.23 67.52
SDH 42.30 63.40 65.28 43.30 48.30 53.00 72.60 76.11 78.20

KADGH 62.50 64.30 67.50 44.50 52.38 55.10 78.40 82.90 83.60

Table 2: Training and test time on CIFAR-10, YouTube face and ImageNet databases (The kernels in KSH, SDH and KADGH
are constructed by 3000 anchors. r is the number of bits of each hashing method. All training and test time are in seconds.).

Method
CIFAR-10 YouTube ImageNet

TrainTime TestTime TrainTime TestTime TrainTime TestTime
r = 8 r = 32 r = 32 r = 16 r = 64 r = 64 r = 16 r = 64 r = 64

LSH 0.18 0.25 3.0× 10−6 0.28 0.36 1.4× 10−5 0.49 0.64 2.0× 10−5

SH 0.76 1.00 1.0× 10−5 1.43 3.06 4.2× 10−5 9.38 10.95 4.0× 10−5

AGH 1 202.81 183.90 2.8× 10−4 28.51 31.67 3.3× 10−4 93.37 93.67 6.3× 10−4

AGH 2 211.33 190.91 2.7× 10−4 30.03 32.57 3.5× 10−4 104.46 105.76 6.7× 10−4

DGH > 10000 > 10000 3.1× 10−4 300.76 364.16 3.3× 10−4 525.19 633.40 7.0× 10−4

FastHash 279.31 975.63 4.4× 10−4 221.63 768.12 8.3× 10−4 447.05 1290.67 8.5× 10−4

COSDISH 3.47 26.77 6.4× 10−6 6.93 52.41 1.4× 10−5 26.78 98.89 2.0× 10−5

Lin:V > 10000 > 60000 1.1× 10−4 > 20000 > 50000 9.0× 10−5 > 30000 > 90000 1.8× 10−5

SDGH 55.09 199.44 6.4× 10−6 46.88 98.15 1.4× 10−5 215.60 885.44 2.0× 10−5

ADGH 6.54 6.74 6.4× 10−6 7.16 8.01 1.4× 10−5 50.04 52.09 2.0× 10−5

KSH > 10000 > 50000 1.1× 10−4 > 10000 > 50000 1.8× 10−4 > 10000 > 50000 3.3× 10−4

SDH 69.40 85.89 1.1× 10−4 29.36 101.66 2.0× 10−4 55.71 145.57 3.9× 10−4

KADGH 35.57 37.16 1.1× 10−4 19.20 20.05 1.8× 10−4 37.21 39.23 3.3× 10−4

retrieval accuracy is reported. The affinity matrix is defined
as:

vij =

{
1
nc

if
{
xi,xsj

} ∈ c-th class,
0 otherwise,

(12)

where nc is the number of training data belonging to c-th
class, xi represents one training sample and xsj is the se-
lected data.

For the kernel methods KADGH, KSH and SDH, we ran-
domly select 1000 and 3000 samples as anchors to construct
the kernels, respectively. Three standard main criterions:
Precision, Mean average precision (MAP) and Precision-
Recall (PR) curve, are used to evaluate the hashing meth-
ods. In addition, we also report the training and test time of
each hashing method for comparison. All experiments are
conducted using Matlab on a 3.50GHz Intel Xeon CPU with
128GB memory.

Experimental results

As shown in Table 1, ADGH exhibits better ranking perfor-
mance than the other three linear methods, SDGH, Lin:V
and COSDISH, on three databases in most cases, especially
with short binary codes like 8-bit, 16-bit and 16-bit binary
codes on CIFAR-10, YouTube and ImageNet databases, re-
spectively. Compared to kernel methods SDH and KSH,
KADGH exhibits better accuracy when 1000 and 3000 an-
chors are selected, and the gain in MAP ranges from 3.4%
to 46% over the best competitor SDH on three databases
with different bits. Moreover, KADGH with 3000 anchors
achieves higher MAP than the other hashing methods except
ADGH. Compared to unsupervised hashing methods LSH,
SH, AGH 1, AGH 2 and DGH, supervised hashing meth-
ods always obtain better ranking performance on the three
databases. Table 2 shows the training and testing time of dif-
ferent hashing methods on the three databases. In contrast to
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Figure 2: Precision and PR curves of different hashing methods on three databases: (a) Precision vs. Bit on CIFAR-10, (b)
Precision vs. Bit on YouTube, (c) Precision vs. Bit on ImageNet, (d) PR curve on CIFAR-10, (e) PR curve on Youtube, (f) PR
curve on ImageNet.

ADGH, although COSDISH requires less training time cost
on short bits (8-bit on CIFAR-10, 16-bit on Youtube and Im-
ageNet databases), it spends much more training time on
long bits (32-bit on CIFAR-10, 64-bit on Youtube and Im-
ageNet databases). Compared to DGH, Lin:V and SDGH,
ADGH consumes much less training time. Among the ker-
nel methods, KADGH takes the least training time on all
three databases, and requires a lower test time cost than SDH
on YouTube and ImageNet databases. To better illustrate the
retrieval performance of different supervised hashing meth-
ods, we present precision with different bits and PR-curve on
three databases in Figure. 2, which indicates that KADGH
outperforms the other hashing methods, and ADGH has the
superior performance over SDGH and COSDISH, especially
on short binary codes.

Discussion

Experiments on all the three benchmark databases demon-
strate that the linear hashing method ADGH has superior
retrieval performance over SDGH and COSDISH, and its
kernelization KADGH can further improve the retrieval ac-
curacy and outperform the other hashing methods. We sum-
marize and interpret our preservations as follows:

• Compared to the unsupervised hashing methods LSH,
SH, AGH 1, AGH 2 and DGH, the supervised hashing
methods ADGH, SDGH, Lin:V, COSDISH, FastHash,
KSH and SDH can obtain better retrieval accuracy, be-
cause they utilize the semantic information to encode each
image into binary codes.

• ADGH outperforms COSDISH, probably because COS-
DISH divides the training data into two parts to pro-
duce binary codes, thereby losing some semantic infor-

mation. ADGH takes less training time cost to produce
relatively long binary code than COSDISH, since the op-
timization procedure in COSDISH calculates the binary
codes bit by bit. ADGH achieves better retrieval perfor-
mance than SDGH with short binary codes (the number
of bits is smaller than the number of classes), probably
because the asymmetric discrete constraint can better pre-
serve the similarity of affinity matrix than the symmet-
ric discrete constraint. ADGH has superior retrieval ac-
curacy (including MAP and precision) to Lin:V, proba-
bly because it can jointly learn binary codes and the pro-
jection matrix. Moreover, ADGH consumes less training
time than SDGH and Lin:V because of the asymmetric
affinity matrix and its efficient optimization procedure.

• Compared to ADGH, KADGH can obtain better retrieval
performance because it can capture the non-linear man-
ifold structure hidden in the data. KADGH outperforms
KSH because of directly learning binary codes. KADGH
can achieve better performance than SDH, probably be-
cause SDH aims to reduce the length of binary codes to
the number of classes, which suggests that it achieves the
best accuracy of itself when the length of binary codes is
much larger than the number of classes.

Conclusion

In this paper, we propose a novel graph bashed hashing
method, asymmetric discrete graph hashing, to utilize the
semantic information to encode the high-dimensional data
into a set of binary codes. The proposed method preserves
the asymmetric discrete constraint and builds an asymmet-
ric affinity matrix to maintain the similarity of the original
affinity matrix. Besides directly learning the binary codes of
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training data, the method can simultaneously learn a low-
dimensional projection matrix. Extensive experiments on
three benchmark databases demonstrate that the proposed
method outperforms the art-of-the-start methods with lower
training time costs.
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