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Abstract

Traditional topic model with maximum likelihood estimate
inevitably suffers from the conditional independence of
words given the documents topic distribution. In this paper,
we follow the generative procedure of topic model and learn
the topic-word distribution and topics distribution via di-
rectly approximating the word-document co-occurrence ma-
trix with matrix decomposition technique. These methods
include: (1) Approximating the normalized document-word
conditional distribution with the documents probability ma-
trix and words probability matrix based on probabilistic non-
negative matrix factorization (NMF); (2) Since the standard
NMF is well known to be non-robust to noises and outliers,
we extended the probabilistic NMF of the topic model to its
robust versions using �2,1-norm and capped �2,1-norm based
loss functions, respectively. The proposed framework inher-
its the explicit probabilistic meaning of factors in topic mod-
els and simultaneously makes the conditional independence
assumption on words unnecessary. Straightforward and effi-
cient algorithms are exploited to solve the corresponding non-
smooth and non-convex problems. Experimental results over
several benchmark datasets illustrate the effectiveness and su-
periority of the proposed methods.

Introduction
Due to an ever increasing amount of document data, topic
modeling plays an important role in the field of document
understanding and analyzing (Kuang, Choo, and Park 2015).
Typically, topic models are based on the idea that documents
are mixtures of topics, where a topic is a probability distri-
bution over words (Steyvers and Griffiths 2007). Th. Hof-
mann (Hofmann 1999) pioneered to present latent seman-
tic analysis (LSA) (Landauer, Foltz, and Laham 1998) from
a statistical perspective and model the word-document co-
occurrence information under a framework of aspect model
(Hofmann, Puzicha, and Jordan 1999), namely Probabilis-
tic Latent Semantic Analysis (PLSA). PLSA is an important
step toward probabilistic modeling of text; however, on one
hand, the number of parameters in PLSA model grows lin-
early with the size of the corpus, and thus it becomes prone
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to overfitting (Blei, Ng, and Jordan 2003). On the other hand,
how to assign a probability to a document outside of the
training set is not explicit in the framework of PLSA (Blei,
Ng, and Jordan 2003). Considering the exchangeable rep-
resentations for documents and words, Blei, et al. extended
the PLSA by introducing a Dirichlet prior on the topic dis-
tribution of documents, and proposed a fully Bayesian gen-
eralization of latent Dirichlet allocation (LDA) (Blei, Ng,
and Jordan 2003). In the past decades, topic model and its
variations have been widely used to discover latent semantic
structures from collections of text documents (Mcauliffe and
Blei 2008), images (Kivinen, Sudderth, and Jordan 2007;
Wang, Blei, and Li 2009), audio files (Hoffman, Blei, and
Cook 2009) and even biological data (Airoldi et al. 2009).

Topic models indeed attempt to find a low-dimensional
representation of the content of a set of documents (Steyvers
and Griffiths 2007), which can be modeled from two dif-
ferent views. On one hand, it inherits the explicit proba-
bilistic meaning of factors in aspect model and describes
the mixture approximation of the co-occurrence with un-
derlying generative probabilistic semantics. On the other
hand, the topic model can be interpreted as a matrix fac-
torization of the conditional distribution of words given
the documents. Previous studies (Ding, Li, and Peng 2006;
Gaussier and Goutte 2005) have suggested that PLSA and
Kullback-Leibler (KL) divergence based Non-negative Ma-
trix Factorization (NMF) indeed optimize the same objective
function although they converge to different local minima.
It is noteworthy that, as a widely used dimension reduction
technique, traditional NMF with Frobenius norm performs
well for document clustering and topic modeling (Arora et
al. 2012; 2013; Kuang, Choo, and Park 2015), although it
lacks explicit probabilistic meaning of factors.

It is based on maximum likelihood estimate that the topic-
word distribution and topic distribution are learned in the
framework of traditional topic model. Therefore, a fun-
damental probabilistic assumption is underlying the topic
models (including LSA), i.e., words in a document are con-
ditionally independent of each other given the documents
topic distribution. In other words, the correlation informa-
tion among words is completely ignored in the traditional
framework of topic models. In fact, the correlation infor-
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mation might contain significant clues to the content of a
document (Steyvers and Griffiths 2007). It is reasonable to
believe that some words co-occur more than others, and thus
these words usually share the similar frequency. For exam-
ple, we are given the information that a document contains
the word “Trump”, which would increase the probability of
also observing the word “Clinton”.

Instead of using maximum likelihood estimate, in this pa-
per, we learn the topic-word distribution and topics distri-
bution via directly approximating the word-document co-
occurrence matrix based on NMF with Frobenius norm,
namely probabilistic non-negative matrix factorization for
the topic model. This framework inherits the clear proba-
bilistic meaning of factors in topic models and simultane-
ously makes the independence assumption on words (doc-
uments) unnecessary. Considering the outliers with signif-
icant loss usually dominate the Frobenius norm based ob-
jective function (Nie et al. 2013), the proposed framework
provides a flexible way to extend to its robust version by re-
placing the Frobenius norm with �2,1-norm or capped �2,1-
norm. Our main contributions are two-fold. On one hand,
we propose a probabilistic NMF framework for topic mod-
eling, and intuitively extend to its robust version by using a
more robust distance measurement. This framework denies
the assumption of conditional independence on words while
retaining the explicit probabilistic meaning of factors in the
topic model. Thus, it is more appropriate for real-world ap-
plications. On the other hand, efficient algorithms are ex-
ploited to solve the corresponding probabilistic NMF with
different distance measurement for the approximation. The-
oretical analysis and experimental results over some bench-
mark dataset illustrate the effectiveness and superiority of
the proposed algorithms.

Related Works

Topic Model

Suppose we have n documents and m words (terms),
denoted by sets D = {d1, d2, · · · , dn} and W =
{w1, w2, · · · , wm}, respectively. According to the gener-
ative process of topic model in Figure 1, each observa-
tion, i.e., the occurrence of a word w ∈ W in a docu-
ment d ∈ D, is associated with an unobserved variable
z ∈ Z = {z1, z2, · · · , zK}, where K refers to the num-
ber of topics. Based on the conditional independence as-
sumption that words w ∈ W are generated independently
of the specific documents d ∈ D given the topic z ∈ Z , i.e.,
p(w, d|z) = p(w|z)p(d|z) and p(w|d, z) = p(w|z), the gen-
erative process can be translated into the corresponding joint
probability model p(wi, dj) =

∑
k p(wi|zk)p(zk)p(dj |zk).

Let X = [xij ]m×n whose element xij denotes the term
frequency for observation pair (wi, dj), i.e., the number of
times word wi occurred in document dj . Traditional topic
models learn the distributions p(d), p(z|d) and p(w|z) by
maximizing the following log-likelihood function

JPLSA =
∑
i

∑
j

xij log
∑
k

p(wi|zk)p(zk)p(dj |zk). (1)

It is noteworthy that the equations p(W, dj) =
∏

i p(wi, dj)
and p(wi,D) =

∏
j p(wi, |dj) (∀j, i) are explicitly used in

D
( )ip d

Z
( | )k ip z d

W
( | )j kp w z

Figure 1: Generative process representation of topic model.

(1). As a result, topic model with maximum likelihood es-
timate inevitably suffer from the assumption of conditional
independence on words, and thus entirely ignores the corre-
lations among words (Steyvers and Griffiths 2007).

NMF for Topic Modeling

As a widely used dimension reduction technique, standard
NMF performs well for document clustering and topic mod-
eling (Arora et al. 2013; Kuang, Choo, and Park 2015;
Lee and Seung 2001). Considering the non-robustness of
squared �2-norm to outliers and noises, some robust NMF
methods are exploited by using a robust error functions
(Ding and Kong 2012; Kong, Ding, and Huang 2011), or
via half-quadratic minimization (Du, Li, and Shen 2012).
However, these NMF based methods for topic clustering per-
form less interpretatively since they lack the explicit proba-
bilistic meaning of each factor. Note that studies in (Ding,
Li, and Peng 2006; Gaussier and Goutte 2005) pointed out
PLSI and KL-divergence based NMF indeed optimize the
same objective function with additional constraint. Although
KL-divergence based NMF inherits probabilistic meaning
of topic model, the corresponding algorithms are typically
much slower than those for standard NMF (Xie, Song,
and Park 2013). Additionally, it is difficult to extend KL-
divergence based NMF to its robust version.

Probabilistic NMF (PNMF)

For a probabilistic interpretation, we normalize the observa-
tion matrix X = [x1,x2, · · · ,xn] ∈ R

m×n such that each
column xj = [x1j , x2j , · · · , xmj ]

� ∈ R
m refers to a dis-

tribution of words in the j-th document i.e.,
∑

i xij = 1
for j = 1, 2, · · · , n. In this sense, the equation 1�X = 1�
holds naturally. Let U = [uik]m×K with uik = p(wi|zk)
and V = [vjk]n×K with vjk = p(zk|dj). Then the condi-
tional distribution p(wi|dj) can be formulated in terms of
matrix notation, i.e., p(wi|dj) =

∑
k p(wi|zk)p(zk|dj) =

(UV �)ij . Based on this matrix notation, we employ �F -
norm based error measurement and directly approximate the
conditional distribution p(w|d) to actual normalized obser-
vation matrix X by solving the following problem

min
U≥0,V≥0,1�U=1,V 1=1

JNMF
�F = ‖X − UV �‖2F (2)

where the accompanying constraints on decomposed matri-
ces U and V are significantly important since they character-
ize the explicit probabilistic meaning of factors, and simul-
taneously facilitate to ensure the equation 1�UV � = 1�.
For a better understanding, we demonstrate the framework
in Figure 2. The optimization problem (2) attempts to find a
low-dimensional representation for topic modeling via split-
ting the normalized observation X into two non-negative
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Figure 2: Framework of proposed probabilistic NMF.

matrices with probabilistic constraints. In contrast to the ob-
jective JNMF

KL , the proposed framework not only inherits
the explicit probabilistic meaning of factors but also denies
the assumption of conditional independence on words.

Optimization Procedure

Note that the objective JNMF
�F

is convex in U only or V
only, but not convex in both variables together. It is unreal-
istic to expect an algorithm to solve problem (2) in the sense
of finding global minima (Lee and Seung 2001). Thanks to
the independence of p(wi|zk) and p(zk|dj), we address the
proposed problem (2) with alternative optimizing algorithm.

Update V with fixed U : For the objective JMFI
�F

=∑n
j=1 ‖U(vj)�−xj‖22, we update each row of V each time

while fixing the others, i.e.,

min
vj≥0,vj1=1

‖U(vj)� − xj‖22 (3)

where vj is the j-th row of matrix V . Removing the unre-
lated terms to variable vj , the optimization problem (3) can
be reformulated as

min
vj≥0,vj1=1

ϕj(v
j) = vjQ(vj)� − 2vjcj (4)

where Q = U�U ∈ R
K×K and cj = U�xj ∈ R

K .
Subsequently, we propose an Accelerated Projected Gradi-
ent (APG) method to solve optimization problem (4) for its
simplicity and efficiency (Nesterov 2007). Based on APG
method, let the second order Taylor expansion of objec-
tive function ϕj(·) about an auxiliary variable yt in the t-
th iteration be ϕL

j (v
j) = ϕ(yt) + 〈∇ϕj(yt),v

j − yt〉 +
L
2 ‖vj − yt‖22. We update vj by solving an easier optimiza-
tion problem minvj≥0,vj1=1 ϕ

L
j (v

j) which is equivalent to
a Euclidean projection problem on the simplex space, i.e.,

vj
t+1 = min

vj≥0,vj1=1
‖vj − hj

t‖22 (5)

where hj
t = yt − 1

L∇ϕj(yt) = yt − 2
L (ytQ− c�j ) ∈ R

K ;
L ≥ 0 is a constant. Note that some efficient algorithms
for the Euclidean projection problem on the simplex space
have been studied thoroughly in the past decades. Interested
readers please refer to (Condat 2016; Duchi et al. 2008;
Becker et al. 2013; Censor et al. 2012) for more details.

To approximate the auxiliary variable to the solution vj ,
we update yt according to the following formula

yt+1 = vj
t +

σt − 1

σt+1
(vj

t+1 − vj
t ) (6)

Algorithm 1 APG algorithm for optimization problem (3).

Input: X , Q, c.
Initialize: vj

0 = y0, σ0 = 1, t = 0.
1: while not converge do

2: Update vj
t+1 = minvj≥0,vj1=1 ‖vj − hj

t‖22 with
hj
t = yt − 2

L (ytQ− c�j );

3: Update σt+1 =
1+

√
1+4σ2

t

2 ;
4: Update yt+1 = vj

t +
σt−1
σt+1

(vj
t+1 − vj

t );
5: t = t+ 1.
6: end while

where the acceleration coefficient σ is updated through

σt+1 =
1

2
(1 +

√
1 + 4σ2

t ). (7)

In summary, we describe the APG algorithm for optimiza-
tion problem (3) in Algorithm 1. It has been pointed out in
(Nesterov 2007) that the APG algorithm converges fast.

Update U with fixed V : We rewrite the objective
JNMF
�F

= ‖X − ∑
k ukv

�
k ‖2F and update one column of

U each time while fixing the other columns, i.e.,

min
uk≥0,1�uk=1

φk(uk) = ‖ukv
�
k −Hk‖2F (8)

for k = 1, 2, · · · ,K, where Hk =
∑

i�=k uiv
�
i − X ∈

R
m×n. This problem can be rewritten as a Euclidean pro-

jection problem on the simplex space according to the fol-
lowing Theorem 1.
Theorem 1. The solution of optimization problem (8)
is equivalent to the solution of optimization problem
minuk≥0,u�

k 1=1 ‖uk −hk‖22 with hk = 1
‖vk‖2

2
Hkvk ∈ R

m.

Proof. According to some nice properties of trace operator,
we reformulate the objective function of problem (8) as

φk(uk) = Tr
[
ukv

�
k vku

�
k − 2ukv

�
k H�

k +HkH
�
k

]

= ‖vk‖22 Tr[uku
�
k − 2

‖vk‖22
(Hkvk)

�uk +
1

‖vk‖22
HkH

�
k ].

Removing the unrelated terms in φk(uk) with respect
to variable uk, the problem (8) is equivalent to a Eu-
clidean projection problem on the simplex space, i.e.,
minuk≥0,1�uk=1 ‖uk − hk‖2F , where hk = 1

‖vk‖2
2
Hkvk.

The proof is completed.

In summary, we describe the alternative algorithm for
probabilistic NMF of topic model in Algorithm 2. Note that
the main computational cost of Algorithm 2 lies in solving
the Euclidean projection problems on the simplex spaces in
R

m and R
K respectively, where the number of topics K is

much smaller than the number of words m in dictionary. In
this paper, we solve this problem according to the fast algo-
rithm proposed in (Condat 2016), which performs efficiently
for large-scale problems with large dictionaries, with com-
plexity O(m) or O(m logm). As a result, thanks to the con-
vergence of APG algorithm as well as the efficient optimiza-
tion of Euclidean projection problem on the simplex space,
the proposed Algorithm 2 performs well in practice.
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Algorithm 2 Alternative Algorithm for problem (2)

Input: Normalized X satisfying 1�X = 1�.
Initialize: U0, t = 0.

1: while not converge do

2: ∀j, update vj
t+1 with APG Algorithm 1;

3: ∀k, update ut+1
k = minuk≥0,1�uk=1 ‖uk − ht+1

k ‖22
with ht+1

k = 1
‖vt+1

k ‖2
2

Ht+1
k vt+1

k and Ht+1
k =∑

i�=k u
t
i(v

t+1
i )� −X;

4: t = t+ 1.
5: end while

For a new document d′ with normalized observation
x′ = [x′

1, x
′
2, · · · , x′

m]� (1�x′ = 1) out of the
training dataset, we learn its topic distribution v′ =
[p(z1|d′), p(z2|d′), · · · , p(zK |d′)] by solving optimization
problem v′ = minv′≥0,v′1=1 ‖U(v′)� − x′‖22 with APG
Algorithm 1, where the parameter U is estimated over train-
ing dataset.

Robust Probabilistic NMF

In this section, we extend the proposed probabilistic NMF
of topic model to its robust versions which approximate the
observation matrix with �2,1-norm (PNMFR1) and capped
�2,1-norm (PNMFR2), respectively.

Robust Approximation with �2,1-norm

We assume the fitting error follows Laplacian distribution.
The idea of robust probabilistic NMF with �2,1-norm can be
formulated as

min
U≥0,V≥0,1�U=1,V 1=1

Ψ(U, V ) = ‖X − UV �‖2,1 (9)

where the �2,1-norm of matrix W is defined as ‖W‖2,1 =∑
j ‖wj‖2, which satisfies the three conditions of norm

(Kong, Ding, and Huang 2011). The �2,1-norm based error
measurement isolates the outliers by imposing sparsity on
the corresponding column of error matrix X − UV � (Liu,
Liu, and Sun 2015; Chang et al. 2014; Nie et al. 2010). Let
f(x) =

√
x and gj(U,vj) = ‖xj − U(vj)�‖22, then the

objective function Ψ(U, V ) =
∑n

j=1 ‖xj − U(vj)�‖2 =∑n
j=1 f(gj(U,vj)), where f is a concave function. As a re-

sult, we follow the concave duality theorem (Zhang 2009)
and exploit an efficient re-weighted Algorithm 3 to address
optimization problem (9), where the key step lies in solving
the following optimization problem

min
U≥0,V≥0,1�U=1,V 1=1

n∑
j=1

f ′(gj(U,vj))gj(U,vj). (10)

where δj = f ′(gj(U,vj)) denotes the super-gradient of con-
cave function f at point gj(U,vj), i.e.,

δj =
1

2‖xj − U(vj)�‖2 . (11)

Algorithm 3 Re-weighted Algorithm for problem (9)

Input: X satisfying 1�X = 1�.
Initialize: δ0j = I (∀j), t = 0

1: while not converge do
2: Update U t+1 and V t+1 by solving problem (10);
3: Update weight δt+1

j (∀j) according to Eq. (11);
4: t = t+ 1.
5: end while

Output: U, V .

Algorithm 4 Alternative Algorithm for problem (10)

Input: Normalized X satisfying 1�X = 1�.
1: while not converge do

2: ∀j, update vj
t+1 with APG Algorithm 1;

3: ∀k, update ut+1
k = minuk≥0,1�uk=1 ‖uk −

ht+1
k ‖22 with ht+1

k = 1
(vt+1

k )�Δvt+1
k

M t+1
k Δvt+1

k and

M t+1
k = X −∑

i�=k u
t
i(v

t+1
i )�;

4: t = t+ 1.
5: end while

We specify the objective function above as Ψδ(U, V ) =∑n
j=1 δj‖xj − U(vj)�‖22 = ‖(X − UV �)Δ

1
2 ‖2F , where

Δ = diag(δ1, δ2, · · · , δn) is a n × n diagonal matrix. In
this case, the problem (10) is very similar to the problem (2)
expect for a multiplier Δ. In this paper, we solve the prob-
lem (10) by iteratively updating U and V with the other one
fixed until convergence. When variable U is fixed, the opti-
mization problem (10) with respect to each row of matrix V
turns to optimization problem (4), and thus can be solved ef-
ficiently. With fixed V , since ∀k, Ψδ(U, V ) = ‖ukv

�
k Δ

1
2 −

MkΔ
1
2 ‖2F holds with Mk = X − ∑

i�=k uiv
�
i ∈ R

m×n,
we update the k-th column of U while keeping the other
columns fixed, by solving the following problem

min
uk≥0,1�uk=1

‖ukv
�
k Δ

1
2 −MkΔ

1
2 ‖2F . (12)

According to Theorem 1, this problem is equivalent
to a Euclidean projection problem on the simplex
space, i.e., minuk≥0,1�uk=1 ‖uk − hk‖22, where hk =

1
v�
k Δvk

MkΔvk ∈ R
m. We summarize the alternative algo-

rithm for optimization problems (10) in Algorithm 4.

Robust Approximation with Capped �2,1-norm

Consider the better robustness of capped �2,1-norm, (Zhang
2013) and (Gong, Ye, and Zhang 2013), we go further to use
capped �2,1-norm to measure the error of observation matrix
approximation. This idea can be formulated as the following
optimization problem

min
U≥0,V≥0,1�U=1,V 1=1

n∑
j=1

min(‖xj − U(vj)�‖2, θ) (13)

where θ > 0 is a thresholding parameter. Note that this op-
timization problem turns to the �2,1-norm based probelm (9)
if thresholding θ is set as positive infinite.
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Figure 3: Clustering performance in terms of ACC on three datasets. Performance is shown in percentages.
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Figure 4: Clustering performance in terms of NMI on three datasets. Performance is shown in percentages.

Let functions fθ(x) = min(
√
x, θ) and gj(U,vj) =

‖xj − U(vj)�‖22. Then the objective of optimization prob-
lem (13) can be rewritten as Φ(U, V ) =

∑
j fθ(gj(U,vj)),

where fθ(x) is a concave function. As a result, we use the
re-weighted Algorithm 3 to solve the non-convex and non-
smooth challenging problem (13), and the key step lies in
solving optimization problem

min
U≥0,V≥0,1�U=1,V 1=1

∑
j

δj‖xj − U(vj)�‖22 (14)

according to Algorithm 4, where δj = f ′
θ(gj(U,vj)) is cal-

culated by

δj =

{ 1
2‖xj−U(vj)�‖2

, ‖xj − U(vj)�‖22 ≤ θ;
0, ‖xj − U(vj)�‖22 ≥ θ.

(15)

Note that the determination of topic distribution for a new
document d′ does not depend on the re-weighting matrix
Δ for both of the proposed robust probabilistic NMF of
topic model. Therefore, given the estimated U from train-
ing dataset, the procedure of testing for a new document is
identical to the probabilistic NMF based on �F -norm.

Experiment

In this section, we present experimental results on three
benchmark datasets in terms of three evaluation metrics,
which demonstrate the effectiveness and superiority of the
proposed approaches.

Datasets Description and Baseline Methods

Three datasets are utilized in the experiments. The first
dataset is the Reuters dataset (Cai and He 2012). We remove
the categories with less than 100 documents, resulting in 9
categories and 7,195 documents. 70% documents are used
for training, and the rest are used for testing. The second
dataset is a subset of the NIST Topic Detection and Track-
ing (TDT) corpus (Cai, He, and Han 2005) which consists of
9,394 documents from the largest 30 categories. In a similar
fashion, we use 70% documents for training and the rest for
testing. The third dataset is the 20 Newsgroups (20-News),
which contains 18,846 documents from 20 categories. 60%
documents are used for training, and the rest are used for
testing. To focus on the important words, we remove the stop
words and use a vocabulary of 5,000 words with the largest
document frequency.

We compared the proposed three alternatives, i.e. PNMF,
PNMFR1 and PNMFR2, with the following baseline meth-
ods: Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jor-
dan 2003), LDA regularized with Determinantal Point Pro-
cess prior (DPP-LDA) (Zou and Adams 2012), PLSA (Hof-
mann, Puzicha, and Jordan 1999), NMF for Latent Seman-
tic Analysis (LSA) (Stevens et al. 2012) and robust NMF
with �2,1-norm (RNMF)(Kong, Ding, and Huang 2011). The
parameters in the compared approaches are tuned using 5-
fold cross validation. The value of θ used in PNMFR2 is
set according to the ratio of the outliers (between 0.03 and
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Table 1: Perplexity on three datasets. Smaller number indicates better performance.

LDA DPP-LDA PLSA NMF RNMF PNMF PNMFR1 PNMFR2

K = 25 1357 1348 1336 1275 1232 1211 1202 1179
K = 50 1339 1331 1324 1267 1205 1182 1173 1152

Reuters K = 100 1328 1322 1313 1258 1174 1158 1127 1103
K = 200 935 926 921 846 817 786 757 732
K = 500 911 903 895 782 764 755 709 684

K = 25 2712 2678 2654 2432 2413 2057 1847 1802
K = 50 2713 2681 2657 2416 2416 2032 1832 1815

TDT K = 100 2716 2684 2645 2418 2419 2016 1816 1793
K = 200 2722 2686 2659 2404 2395 2011 1785 1743
K = 500 2435 2412 2384 2219 2174 1843 1638 1596

K = 25 874 863 867 832 826 789 801 794
K = 50 876 859 866 827 815 803 795 782

20 Newsgroups K = 100 876 847 853 811 802 785 778 762
K = 200 857 842 849 789 774 792 762 730
K = 500 773 751 765 712 701 684 659 624

0.05). The number of topics for each dataset varies among
{25, 50, 100, 200, 500}.

Clustering Performance

In this section, we verify the effectiveness of the learned rep-
resentations for testing data on k-means clustering. In the ex-
periment, we fix the number of clusters as the ground truth
number of categories. For a fair comparison, we repeat the
k-means 50 times with different random initializations and
return the solution with the lowest loss value. Following re-
lated studies (Cai, He, and Han 2005; Blei, Ng, and Jordan
2003) on topic models for clustering, we leverage two pop-
ular evaluation metrics, namely clustering accuracy (ACC)
and normalized mutual information (NMI) (Cai, Zhang, and
He 2010), to measure the performance of clustering on the
testing data after various unsupervised dimension reduction
approaches. The experimental results of values of ACC and
NMI over three datasets are reported in Figure 3 and Fig-
ure 4, respectively. We observe from the experimental re-
sults that: (1) The values of ACC and NMI regarding dif-
ferent methods have an overall tendency to grow as the in-
crease topics. However, the growth rate slows down when
more topics involved. (2) Since the proposed probabilistic
NMF approaches do not rely on the conditional indepen-
dence of words, they achieve comparable even better perfor-
mance in contrast to LDA, DPP-LDA, and PLSA. (3) Due
to the probabilistic constraint on the components of U and
V , the proposed probabilistic NMF methods perform better
than LSA with NMF and RNMF. It is noteworthy that both
RNMF and the proposed PNMFR1 employ the �2,1-norm for
the loss measurement; however, PNMFR1 achieves better
performances thanks to the probabilistic constraints. (4) The
proposed PNMFR2 algorithm outperform other approaches
in almost all the cases on both ACC and NMI, followed by
PNMFR1 among the compared methods.

Perplexity on Testing Data

Following the setting in (Salakhutdinov and Hinton 2009),
we further compute the perplexity on the held-out test set
to assess the document modeling power of the compared al-
gorithms. A lower perplexity score indicates better general-
ization performance. The experimental results on the three
benchmark datasets are reported in Table 1. For each model,
we observe that the value of perplexity decrease with the
increase of topics over all datasets. Thanks to the robust-
ness of �2,1 and capped �2,1-norm based error measurement,
the proposed robust extensions of probabilistic NMF mod-
els achieve the best performance among the compared meth-
ods over nearly all of the datasets. Additionally, the pro-
posed probabilistic NMF with �F -norm also show better per-
formance than other conventional methods which rely on
the conditional independence of words given the documents
topic distribution.

Conclusion

In this paper, we proposed three new and straightforward
NMF for the topic model by directly approximating the
word-document co-occurrence matrix with matrix decompo-
sition technique with probabilistic constraints. The proposed
framework inherits the explicit probabilistic meaning of fac-
tors in topic models and simultaneously makes the condi-
tional independence assumption on words unnecessary. Intu-
itively, it is capable of being extended to its robust versions.
Some efficient algorithms are exploited to solve the pro-
posed optimization problems. Experimental results on some
benchmark datasets illustrate the effectiveness and superior-
ity of the proposed methods.
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