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Abstract

Single Index Models (SIMs) are simple yet flexible semi-
parametric models for machine learning, where the response
variable is modeled as a monotonic function of a linear combi-
nation of features. Estimation in this context requires learning
both the feature weights and the nonlinear function that relates
features to observations. While methods have been described
to learn SIMs in the low dimensional regime, a method that can
efficiently learn SIMs in high dimensions, and under general
structural assumptions, has not been forthcoming. In this pa-
per, we propose computationally efficient algorithms for SIM
inference in high dimensions with structural constraints. Our
general approach specializes to sparsity, group sparsity, and
low-rank assumptions among others. Experiments show that
the proposed method enjoys superior predictive performance
when compared to generalized linear models, and achieves
results comparable to or better than single layer feedforward
neural networks with significantly less computational cost.

Introduction
High-dimensional machine learning is often tackled using
generalized linear models, where a response variable Y ∈ R

is related to a feature vector X ∈ R
d via

E[Y |X = x] = g�(w
�
� x) (1)

for some unknown weight vector w� ∈ R
d and some smooth

transfer function g�. Typical examples of g� are the logit and
probit functions for classification, and the linear function
for regression. High dimensional parameter estimation for
GLMs has been widely studied, both from a theoretical and
algorithmic point of view (Van de Geer 2008; Negahban et
al. 2012; Park and Hastie 2007). While classical work on
generalized linear models (GLMs) assumes g� is known, this
function is often unknown in real-world datasets, and hence
we need methods that can simultaneously learn both g� and
w�.

The model in (1) with g� unknown is called a Single Index
Model (SIM) and is a powerful semi-parametric generaliza-
tion of a GLM. SIMs were first introduced in the econo-
metrics and statistics literature (Horowitz and Härdle 1996;
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Ichimura 1993; Horowitz 2009), and have since become pop-
ular in statistical machine learning applications as well. Re-
cently, computationally and statistically efficient algorithms
have been provided for learning SIMs (Kalai and Sastry 2009;
Kakade et al. 2011) in low-dimensional settings where the
number of samples/observations n is much larger than the
ambient dimension d. However, many problems in modern
machine learning, signal processing and computational biol-
ogy are high dimensional, i.e. the number of parameters to
learn, d far exceeds the number of data points n. For example,
in genetics, one has to infer activation weights for thousands
of genes with hundreds of measurements.

In this paper, motivated by high-dimensional data analysis
problems, we consider learning SIM in high dimensions. This
is a hard learning problem because (i) statistical inference
is ill-posed, and indeed impossible in the high-dimensional
setup without making additional structural assumptions and
(ii) unlike GLMs the transfer function itself is unknown and
also needs to be learned from the data. To handle these prob-
lems we impose additional structure on the unknown weight
vector w� which is elegantly captured by the concept of
small atomic cardinality (Chandrasekaran et al. 2012) and
make smoothness assumptions on the transfer function g�.
The concept of small atomic cardinality generalizes com-
monly imposed structure in high-dimensional statistics such
as sparsity, group sparsity, low-rank, and allows us to design
a single algorithm that can learn a SIM with various structural
assumptions.

We provide an efficient algorithm called CSI (Calibrated
Single Index) that can be used to learn SIMs in high di-
mensions. The algorithm is an optimization procedure that
minimizes a loss function that is calibrated to the unknown
SIM, for both w� and g�. CSI alternates between a projected
gradient descent step to update its estimate of w� and a func-
tion learning procedure called LPAV to learn a monotonic,
Lipschitz function. We provide extensive experimental evi-
dence that demonstrates the effectiveness of CSI in a variety
of high dimensional machine learning scenarios. Moreover
we also show that we are able to obtain competitive, and
often better, results when compared to a single layer neural
network, with significantly less computational cost.
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Related Work and Our Contributions

Alquier and Biau (Alquier and Biau 2013) consider learn-
ing high dimensional single index models. They provide
estimators of g�,w� using PAC-Bayesian analysis, which re-
lies on reversible jump MCMC, and is slow to converge
even for moderately sized problems. (Radchenko 2015)
learns high dimensional single index models with simple
sparsity assumptions on the weight vectors, while (Ganti,
Balzano, and Willett 2015) provide methods to learn SIM’s
in the matrix factorization setting. While these are first
steps towards learning high dimensional SIM’s, our method
can handle several types of structural assumptions, gen-
eralizing these approaches to several other structures in
an elegant manner. Restricted versions of the SIM esti-
mation problem with (structured) sparsity constraints have
been considered in (Plan, Vershynin, and Yudovina 2014;
Rao et al. 2016), where the authors are only interested in
accurate parameter estimation and not prediction. Hence, in
these works the proposed algorithms do not learn the transfer
function. We finally comment that there is also related liter-
ature focused on how to query points in order to learn the
SIM, such as (Cohen et al. 2012).

The class of SIM belongs to a larger set of semi-parametric
models called multiple index models (Hastie et al. 2005),
which involves learning a sum of multiple gj and corre-
sponding wj . Other semi-parametric models (Friedman
and Stuetzle 1981; Buja, Hastie, and Tibshirani 1989;
Ravikumar et al. 2009) where the model is a linear com-
bination of functions of the form gj(xj) are also popular, but
our restrictions on the transfer function allow us to use simple
optimization methods to learn g�.

Finally, neural networks have emerged as a powerful al-
ternative to learn nonlinear transfer functions that can be
basically thought of being defined by compositions of non-
linear functions. In the high dimensional setting (data poor
regime), it may be hard to estimate all the parameters accu-
rately of a multilayer network, and a thorough comparison is
beyond the scope of this paper. Nonetheless, we show that our
method enjoys comparable and often superior performance
to a single-layer feed forward NN, while being significantly
cheaper to train. These positive results indicate that one could
perhaps use our method as a much cheaper alternative to NN
in practical data analysis problems, and motivates us to con-
sider “deep” variants of our method in the future. To the best
of our knowledge, simple, practical algorithms with good
empirical performance for learning single index models in
high dimensions are not available.

Structurally Constrained Problems in High

Dimensions

We now set up notations that we use in the sequel, and set
up the problem we are interested to solve. Assume we are
provided i.i.d. data {(x1, y1), . . . , (xn, yn)}, where the la-
bel Y is generated according to the model E[Y |X = x] =
g�(w

�
� x) for an unknown parameter vector w� ∈ R

d, n �
d and unknown 1-Lipschitz, monotonic function g�. The
monotonicity assumption on g� is not unreasonable. In GLMs
the transfer function is monotonic. In neural networks the

most common activation functions are ReLU, sigmoid, and
the hyperbolic tangent functions, all of which are mono-
tonic functions. Moreover, learning monotonic functions is
an easier problem than learning general smooth functions,
as this learning problem can be cast as a simple quadratic
programming problem. This allows us to avoid using costlier
non-parametric smoothing techniques such as local polyno-
mial regression (Tsybakov 2009). We additionally assume
that y ∈ [−1, 1] 1. Let X ∈ R

n×d be a matrix with each row
corresponding to an xi and let y ∈ R

n be the correspond-
ing vector of observations. Note that in the case of matrix
estimation problems the data x1,x2, . . . are matrices, and
for the sake of notational simplicity we assume that these
matrices have been vectorized. In the case where n � d,
the problem of recovering w� from the measurements is ill-
posed even when g� is known. To overcome this, one usually
makes additional structural assumptions on the parameters
w�. Specifically, we assume that the parameters satisfy a no-
tion of “structural simplicity”, which we will now elaborate
on.

Suppose we are given a set of atoms, A = {a ∈ R
d},

such that any w ∈ R
d can be written as w =

∑
a∈A caa.

Although the number of atoms in A may be uncountably
infinite, the sum notation implies that any w can be expressed
as a linear combination of a finite number of atoms2.

Consider the following non convex atomic cardinality
function:

‖w‖A,0 = inf
{∑

a

1[ca > 0] : w =
∑
a

caa, ca ≥ 0

∀ a ∈ A
}
(2)

1[·] denotes the indicator function: it is unity when the con-
dition inside the [·] is satisfied, and infinity otherwise. We
say that a vector w is “structurally simple” with respect
to an atomic set A if ‖w‖A,0 in (2) is small. The notion
of structural simplicity plays a central role in several high
dimensional machine learning and signal processing applica-
tions:

1. Sparse regression and classification problems are ubiqui-
tous in several areas, such as neuroscience (Ryali et al.
2010) and compressed sensing (Donoho 2006). The atoms
in this case are merely the signed canonical basis vectors,
and the atomic cardinality of a vector w is simply the
sparsity of w.

2. The idea of group sparsity plays a central role in multi-
task learning (Argyriou, Evgeniou, and Pontil 2008) and
computational biology (Jacob, Obozinski, and Vert 2009),
among other applications. The atoms are low dimensional
unit disks, and the atomic cardinality of a vector w is
simply the group sparsity of w.

3. Matrix estimation problems that typically appear in prob-
lems such as collaborative filtering (Koren, Bell, and Volin-
sky 2009) can be modeled as learning vectors with atoms
1We can easily relax this to y ∈ [−M,M ], i.e. bounded is

sufficient.
2This representation need not be unique.
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being unit rank matrices and the resulting atomic cardinal-
ity being the rank of the matrix.

Problem Setup: Calibrated loss minimization

Our goal in this paper will be to solve an optimization prob-
lem of the form

ĝ, ŵ := argmin
g,w

L(y,X,w, g)+
λ

2
‖w‖22 s.t. ‖w‖A,0 ≤ s

(3)
where A is a known atomic set, k is a positive integer, and
L is a loss function that is appropraitely designed that we
elaborate on next. Notice that in the above formulation we
added a squared �2 norm penalty to make the objective func-
tion strongly convex. In the case when we are dealing with
matrix problems we can use the Frobenius norm of w. The
constraint on the atomic cardinality ensures the learning of
structurally simple parameters, and indeed makes the prob-
lem well posed.

Suppose g� was known. Let Φ� : R → R be a function
such that Φ′

� = g�, and consider the following optimization
problem.

ŵ := argmin
w

1

n

n∑
i=1

Φ�(w
�xi)− yiw

�xi +
λ

2
‖w‖2

s.t. ‖w‖A,0 ≤ s (4)

Modulo the ‖w‖A,0 penalty and the regularization terms,
the above objective is a sample version of the following
stochastic optimization problem:

min
w

E[Φ�(w
�x)− yw�x]. (5)

Since, g� is a monotonically increasing function, Φ� is convex
and the above stochastic optimization problem is convex.
By taking the first derivative we can verify that the optimal
solution satisfies the relation E[Y |X = x] = g�(w

�
� x).

Hence, by defining the loss function in terms of the integral
of the transfer function, the loss function is calibrated to
the transfer function, and automatically adapts to the SIM
from which the data is generated. To gain further intuition,
notice that when g� is linear, then Φ� is quadratic and the
optimization problem in Equation (4) is a constrained squared
loss minimization problem. When g� is logit then the problem
in Equation (4) is a constrained logistic loss minimization
problem.

The optimization problem in Equation (4) assumes that
we know g�. When g� is unknown, we instead consider the
following loss function in (3):

L(y,X,w, g) :=
1

n

n∑
i=1

Φ(w�xi)− yiw
�xi (6)

where we constrain Φ′ = g ∈ G, the set of monotonic, 1-
Lipschitz functions. With this choice of L, our optimization
problem becomes

ĝ, ŵ =arg min
g∈G,w

1

n

n∑
i=1

Φ(w�xi)− yiw
�xi +

λ

2
‖w‖22

subject to ‖w‖A,0 ≤ s,Φ′ = g (7)

Notice that in the above optimization problem we are simul-
taneously learning a function g as well as a weight vector.
This additional layer of complication explains why learning
SIMs is a considerably harder problem than learning GLMs
where a typical optimization problem is similar to the one
in Equation (4). As we will later show in our experimental
results this additional complexity in optimization is justified
by the excellent results achieved by our algorithm compared
to GLM based algorithms such as linear/logistic regression.

The Calibrated Single Index Algorithm

Our algorithm to solve the optimizaion problem in Equa-
tion (7) is called as Calibrated Single Index algorithm (CSI)
and is sketched in Algorithm 1. CSI interleaves parameter
learning via iterative projected gradient descent and mono-
tonic function learning via the LPAV algorithm.

Function learning using LPAV : We use the LPAV
(Kakade et al. 2011) method to update the function g. One
way to learn the a monotonic function would be to model
the function as a multi-layer neural network and learn the
weights of the newtwork using a gradient based algorithm.
LPAV is computationally far simpler. Furthermore, learning
several parameters of a NN is typically not an option in data-
poor settings such as the ones we are interested in. Another
alternative is to cast learning g as a dictionary learning prob-
lem, which requires a good dictionary at hand, which in turn
relies on domain expertise.

Given a vector wt−1, in order to find a function fit gt that
minimizes the objective in (7), we can look at the first order
optimality condition. Differentiating the objective in (7) w.r.t.
w, and assuming that λ ≈ 0 we get

∑n
i=1(gt(w

�
t−1xi) −

yi)xi = 0. If, E[ xix
�
i ] ∝ Id, i.e. if we assume that the

features are uncorrelated, and the features have similar vari-
ance 3, then by elementary algebra we just need the func-
tion gt to optimize the expression

∑n
i=1(gt(w

�
t−1xi)− yi)

2.
LPAV solves this exact optimization problem. More precisely,
given data (p1, y1), . . . (pn, yn), where p1, . . . , pn ∈ R and
pi = w�

t−1xi, LPAV outputs a best univariate monotonic,
1-Lipschitz function ĝ that minimizes the squared error∑n

i=1(g(pi)− yi)
2. LPAV does this using the following two

step procedure. In the first step, it solves:

ẑ = arg min
z∈Rn

‖z − y‖22
s.t. 0 ≤ zj − zi ≤ pj − pi if pi ≤ pj

(8)

This is a pretty simple convex quadratic programming prob-
lem and can be solved using standard methods. In the sec-
ond step, we define ĝ as follows: Let ĝ(pi) = ẑi for all
i = 1, 2, . . . , n. To get ĝ everywhere else on the real line,
LPAV performs linear interpolation as follows: Sort pi for
all i and let p{i} be the ith entry after sorting. Then, for any

3The variance assumption can be satisfied by normalizing the
features appropriately. Similarly, the uncorrelatedness assumption
can be satisfied via a Whitening transformation
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ζ ∈ R, we have

ĝ(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

ẑ{1}, ζ ≤ p{1}
ẑ{n}, ζ ≥ p{n}
μẑ{i} + (1− μ)ẑ{i+1} ζ = μp{i}+

(1− μ)p{i+1}

It is easy to see that ĝ is a Lipschitz, monotonic function and
attains the smallest least squares error on the given data.

Note that solving the LPAV is not the same as fitting a
GLM. Specifically, LPAV finds a function g() that minimizes
the squared error between the fitted function and the response.

We are now ready to describe CSI. CSI begins by initial-

Algorithm 1 CSI
Require: Data: X = [x1, . . . ,xn] ∈ R

n×d, Labels: y =
[y1, . . . , yn]

�, Iterations: T > 0, Step size: η > 0, pa-
rameters λ ≥ 0, s > 0, atomic set A.

1: Initialize w0 = PA
s (X�y).

2: for t=1,. . . , T do
3: gt ← LPAV (Xwt−1,y).
4: Calculate w̃t ← wt−1− η

n

∑n
i=1(gt(w

�
t xi)−yi)xi+

λwt−1.
5: wt ← PA

s (w̃t)
6: end for

izing w to w0 = PA
s (X�y). Here PA

s (·) is a projection
operator that outputs the best s− atomic-sparse representa-
tion of the argument. s is provided as a parameter to CSI . We
then update our estimate of g� to gt by using the LPAV algo-
rithm on the data projected onto the vector wt−1. Using the
updated estimate, gt, we update our weight vector to wt by a
single gradient step on the objective function of the optimiza-
tion problem in Equation (7) with Φ = Φt, where Φt and
gt are related by the equation Φ′

t = gt. This gradient step is
followed by an atomic projection step (Step 5 in CSI). While,
one can use convergence checks and stopping conditions to
decide when to stop, we noticed that few tens of iterations
are sufficient, and in our experiments we set T = 50.

A key point to note is that CSI is very general: indeed the
only step that depends on the particular structural assumption
made is the projection step (step 5 in Algorithm (1)).

As long as one can define this projection step PA
s (·) for the

structural constraint of interest, one can use the CSI algorithm
to learn an appropriate high dimensional SIM. As we show
next, this projection step is indeed tractable in a whole lot of
cases of interest in high dimensional statistics.

Note that the projection can be replaced by a soft
thresholding-type operator as well, and the algorithmic per-
formance should be largely unaffected. However, performing
hard thresholding is typically more efficient, and has been
shown to enjoy comparable performance to soft thresholding
operators in several cases.

Examples of Atomic Projections

A key component of Algorithm 1 is the projection operator
PA
s (·), which entirely depends on the atomic set A. Suppose

we are given a vector w ∈ R
d, an atomic set A and a positive

integer s. Also, let w =
∑

a∈A caa, where the ca achieve the
inf in the sense of (2). Let [c] ↓ be the elements ca, arranged
in descending order by magnitude. We define

PA
s (w) :=

s∑
i=1

([c] ↓)iai (9)

where (·)i is the ith element of the vector, and ai denotes
the corresponding atom in the original representation. We
can see that performing such projections is computationally
efficient in most cases:

• When the atomic set are the signed canonical basis vectors,
the projection is the standard hard thresholding operation:
retain the top s magnitude coefficients of w.

• Under low rank constraints, PA
s (·) reduces to retaining the

best rank-s approximation of w. Since s is typically small,
this can be done efficiently using power iterations.

• When the atoms are low dimensional unit disks, the pro-
jection step reduces to computing the norm of w restricted
to each group, and retaining the top s groups.

Computational Complexity of CSI

To analyze the computational complexity of each iterate of
the CSI algorithm, we need to analyze the time complexity
of the gradient step, the projection step and the LPAV steps
used in CSI . The gradient step takes O(nd) time. The pro-
jection step for low-rank, sparse and group sparse cases can
be naively implemented using O(d log(d) + s) time or via
the use of max-heaps in O(d+ s log(d)) time. The LPAV al-
gorithm is a quadratic program with immense structure in the
inequality constraints and in the quadratic objective. Using
clever algorithmic techniques one can solve this optimization
problem in O(n log(n)) time (See Appendix D in (Kakade
et al. 2011)). The total runtime complexity for T iterations
of CSI is O(T (nd+ d log(d) + s+ n log(n))), making the
algorithm fairly efficient. In most large scale problems, the
data is sparse, in which case the nd term can be replaced by
nnz(X).

Experimental Results

We now compare and contrast our method with several other
algorithms, in various high dimensional structural settings
and on several datasets. We start with the case of standard
sparse parameter recovery, before proceeding to display the
effectiveness of our method in multitask/multilabel learn-
ing scenarios and also in the structured matrix factorization
setting.

Sparse Signal Recovery

We compare our method with several standard algorithms on
high dimensional datasets:

• Sparse classification with the logistic loss (SLR) and the
squared hinge loss (SQH). We vary the regularization
parameter over {2−10, 2−9, · · · , 29, 210}. We used MAT-
LAB code available in the L1-General library.
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dataset SLR SQH SLS CSI Slisotron SLNN
link (d = 1840, n = 1051) 0.976 0.946 0.908 0.981 0.959 0.975
page (d = 3000, n = 1051) 0.987 0.912 0.941 0.997 0.937 0.999
ath-rel (d = 17785, n = 1427) 0.857 0.726 0.733 0.879 0.826 0.875
aut-mot (d = 16347, n = 1986) 0.916 0.837 0.796 0.941 0.914 0.923
cryp-ele (d = 22293, n = 1975) 0.960 0.912 0.834 0.990 0.910 0.994
mac-win (d = 7511, n = 1946) 0.636 0.615 0.639 0.646 0.616 0.649

Table 1: AUC values for various methods on several datasets. The entries in bold are the best values.

• Sparse regression using least squares SLS. We used a mod-
ified Frank Wolfe method (Rao, Shah, and Wright 2015),
and varied the regularizer over {2−5, 2−4, · · · , 219, 220}.

• Our method CSI . We varied the sparsity of the solution as
{d/4, d/8, d/16, · · · , d/1024}, rounded off to the nearest
integer, where d is the dimensionality of the data.

• Slisotron (Kakade et al. 2011) which is an algorithm for
learning SIMs in low-dimensions.

• Single layer feedforward NN (SLNN) trained using Ten-
sorflow (Abadi et al. 2016) and the Adam optimizer used
to minimize cross-entropy (Kingma and Ba 2014) 4. We
used the early stopping method and validated results over
multiple epochs between 50 and 1000, and the number of
hidden units were varied between 5 and 1000. Since, a
SLNN is not constrained to fitting a monotonic function,
we would expect SLNNs to have smaller bias than SIMs.
However, since SLNNs use more parameters, they have
larger variance than SIMs.

We always perform a 50− 25− 25 train-validation-test split
of the data, and report the results on the test set.

We tested the algorithms on several datasets: link and
page are datasets from the UCI machine learning repository.
We also use four datasets from the 20 newsgroups corpus:
atheism-religion, autos-motorcycle, cryptography-electronics
and mac-windows. We compared the AUC in Table (1) -
since several of the datasets are unbalanced - for each of the
methods. The following is a summary:

• CSI outperforms simple, widely popular learning algo-
rithms such as SLR, SQH, SLS. Often, the difference be-
tween CSI and these other algorithms is quite substantial.
For example when measuring accuracy, the difference be-
tween CSI and either SLR, SQH, SLS on all the datasets
is at least 2% and in many cases as large as 4− 5%.

• CSI comfortably outperforms Slisotron on all datasets and
often by a margin as large as 5 − 6%. This is expected
because Slisotron does not enforce any structure such as
sparsity in its updates.

• The most interesting result is the comparison with SLNN.
In spite of its simplicity, we see that CSI is comparable to
and often outperforms SLNN by a slight margin.

4The settings used are: learning rate=0.1, beta1=0.9,
beta2=0.999, epsilon=1e-08, use locking=False

Group Sparsity: Multilabel and Multitask
Learning

Next, we consider the problem of multi-label learning using
group sparsity structure. We consider two datasets. For multi-
label learning, the flags dataset contains 194 measurement
and 7 possible labels (based on the colors in the flag). The
data is split into 129−65 measurements, for training and test
respectively. Out of the training set, we randomly set aside
10% of the measurements for validation.

For multitask learning, the atp7d dataset consists of 2
simultaneous regression tasks from 411 dimensional data
with 296 measurements. We perform a random 80− 10− 10
split of the data for training, validation and testing.

We compared our method with group sparse logistic regres-
sion and least squares, using the MALSAR package (Zhou,
Chen, and Ye 2011). For logistic regression and least squares,
the range of parameter values was {2−10, 2−9, · · · , 29, 210}.
We varied the step size η ∈ [2−6, 22] on a log scale for our
method, setting the group sparsity parameter to be 5 for both
datasets. Table (2) shows that our method performs better
than both compared methods. For classification, we use the
F1 score as a performance measure, since multilabel prob-
lems are highly unbalanced, and measures such as accuracy
are not indicative of performance. For multitask learning, we
report the MSE.

dataset Logistic Linear CSI
atp7d (MSE) 1.1257 0.8198 0.0611
Flags (F1) 0.6458 0.5747 0.6539

Table 2: Group Sparsity constrained Multitask and Multilabel
learning. CSI outperforms both linear and logistic regression.
The first row reports MSE (lower is better), while the second
row is the F1 score (higher is better).

Structured Matrix Factorization

We now visit the problem of matrix completion in the pres-
ence of graph side information. We consider two datasets,
Epinions and Flixster Both datasets have a (known) social
network among the users. We process the data as follows:
we first retain the top 1000 users and items with the most
ratings. Then we sparsify the data so as to randomly retain
only 3000 observations in the training set, out of which we
set aside 300 observations for cross validation. Furthermore,
we binarize the observations at 3, corresponding to “likes”
and “dislikes” among users and items.(Natarajan, Rao, and
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Dhillon 2015) showed that the problem of structured ma-
trix factorization can be cast as the following atomic norm
constrained program. The least squares approach solves the
following program:

min
W

1

N
‖(Y −W )Ω‖2F s.t. ‖S 1

2
u U

−1
u WU−T

v S
1
2
v ‖∗ ≤ s

(10)
where Uu, Su are the singular vectors and singular values of
the graph Laplacian of the graph among the rows of W and
Uv, Sv are the same for the graph Laplacian corresponding to
the graph among columns of W . We use the same atoms in
our case, except we replace the loss function by our calibrated
loss. We report the MSE in Table (3).

dataset # test set # links LS CSI
Epinions 3234 61610 1.0012 0.9488
Flixster 64095 4016 1.0065 0.9823

Table 3: Dataset details and performance of different algo-
rithms for structured matrix factorization. LS stands for the
least squares method in (10), and CSI is the same method
with an unknown nonlinearity.

Empirical discussion of the convergence of CSI

When g� is known then the CSI algorithm is basically an iter-
ative gradient descent based algorithm on a convex likelhood
function, combined with hard thresholding. Such algorithms
have been analyzed and exponential rates of convergence
have been established (Agarwal, Negahban, and Wainwright
2012; Jain, Tewari, and Kar 2014). These results assume that
the likelihood loss function satisfies certain restricted strong
convexity and restricted strong smoothness assumptions. This
leads to a natural question: Can we establish exponential rates
of convergence for the CSI algorithm, for the single index
model, i.e. when g� is unknown? While, we have been unable
to establish a formal analysis of the rates of convergence in
this case, we believe that such fast rates might not be achiev-
able in the case of SIM and at best one can achieve much
slower sub-linear rates of convergence on the iterates. We
support our claim with an experiment, where we study how
quickly do the iterates w1,w2, . . . generated by CSI con-
verge to w� on a synthetic dataset generated using the SIM.
Our synthetic experiment is setup as follows: We generate
the covariates x1,x2, . . . ,xn from a standard normal dis-
tribution N(0, Id). We use n = 500 in our experiment. We
then choose w� ∈ R

d to be
√
d sparse with the locations of

the non-zero entries chosen at random. The non-zero entries
are filled with values sampled from N(0, 1). Next choose g�
to be the logistic function g�(w

�x) = 2
1+exp(−w�x)

− 1 5

and generate labels in {+1,−1} for each xi using a SIM as
shown in Equation (1) with the above g�. For our experiments
both g�,w� are kept hidden from the CSI algorithm. We run

5Note that this definition of g� is exactly the same as the standard
logistic formula 1

1+exp(−w�x)
. Since we are working with expec-

tations in Equation (1) and not probabilities as is done in classical
logistic regression, our formula, on the surface, looks a bit different.
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Figure 1: CSI when applied to a high-dimensional dataset
with labels generated by sparse weight vector w� with spar-
sity level k =

√
d. Each of the three lines show how the �2

error decreases with the number of iterations of the CSI algo-
rithm. The covariates x1, . . . ,xn are sampled from N(0, Id),
where n = 500. CSI is run with λ = 0.001, s = 5k. (best
seen in color)

CSI with λ = 0.001 and s = 5k. In Figure (1) we show
how the distance of the iterates wt from w� changes as the
number of iterations of CSI increases. This result tells us that
the distance monotonically decreases with the number of iter-
ations and moreover, the problem is harder as dimensionality
increases. Combining the results of (Jain, Tewari, and Kar
2014) and the simulation result shown in Figure (1) we make
the following conjecture.
Conjecture 1. Suppose we are given i.i.d. labeled data which
satisfies the SIM E[y|X = x] = g�(w

�
� x), where g� is a L−

Lipschitz, monotonic function and ‖w�‖0 ≤ k. Let Φ′
�

def
= g�

be (γl, τl) restricted strong convex and (γu, τu) restricted
strong smooth, as defined in (Agarwal, Negahban, and Wain-
wright 2012), for the given data distribution. Then with an
appropriate choice of the parameters λ and s ≥ k, algorithm
CSI with the hard-thresholding operation after t iterations
outputs a vector wt that satisfies

||wt −w�||2 ≤ f(γl, γu)O

(
Lk log(d)

t

)
+Δ (11)

where Δ is some function that depends on k, log(d), n, τl, τu
and f(γl, γu) is some function dependent on γl, γu and is
independent of t. Δ represents the statistical error of the
iterates that arises due to the presence of limited data.

Conclusions and Discussion

In this paper, we introduced CSI , a unified algorithm to learn
single index models in high dimensions, under general struc-
tural constraints on the data. The simplicity of our learning
algorithm, its versatility, and competitive results makes it a
great tool that can be added to a data analyst’s toolbox.
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