
Self-Correcting Models for
Model-Based Reinforcement Learning

Erik Talvitie
Department of Mathematics and Computer Science

Franklin & Marshall College
Lancaster, PA 17604-3003
erik.talvitie@fandm.edu

Abstract

When an agent cannot represent a perfectly accurate model
of its environment’s dynamics, model-based reinforcement
learning (MBRL) can fail catastrophically. Planning involves
composing the predictions of the model; when flawed pre-
dictions are composed, even minor errors can compound and
render the model useless for planning. Hallucinated Replay
(Talvitie 2014) trains the model to “correct” itself when it
produces errors, substantially improving MBRL with flawed
models. This paper theoretically analyzes this approach, illu-
minates settings in which it is likely to be effective or ineffec-
tive, and presents a novel error bound, showing that a model’s
ability to self-correct is more tightly related to MBRL perfor-
mance than one-step prediction error. These results inspire an
MBRL algorithm for deterministic MDPs with performance
guarantees that are robust to model class limitations.

1 Introduction

In model-based reinforcement learning (MBRL) the agent
learns a predictive model of its environment and uses it
to make decisions. The overall MBRL approach is intu-
itively appealing and there are many anticipated benefits to
learning a model, most notably sample efficiency (Szita and
Szepesvári 2010). Despite this, with few exceptions (e.g.
Abbeel, Quigley, and Ng 2006), model-free methods have
been far more successful in large-scale problems. Even as
model-learning methods demonstrate increasing prediction
accuracy in high-dimensional domains (e.g. Bellemare, Ve-
ness, and Talvitie 2014, Oh et al. 2015) this rarely corre-
sponds to improvements in control performance.

One key reason for this disparity is that model-free meth-
ods are generally robust to representational limitations that
prevent convergence to optimal behavior. In contrast, when
the model representation is insufficient to perfectly cap-
ture the environment’s dynamics (even in seemingly innocu-
ous ways), or when the planner produces suboptimal plans,
MBRL methods can fail catastrophically. If the benefits of
MBRL are to be gained in large-scale problems, it is vital
to understand how MBRL can be effective even when the
model and planner are fundamentally flawed.

Recently there has been growing awareness that the stan-
dard measure of model quality, one-step prediction accu-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Top: training models to predict environment states
from environment states. Bottom: training models to predict
environment states from states sampled from the model.

racy, is an inadequate proxy for MBRL performance. For
instance, Sorg, Lewis, and Singh (2010) and Joseph et
al. (2013) both pointed out that the most accurate model by
this measure is not necessarily the best for planning. Both
proposed optimizing model parameters for control perfor-
mance using policy gradient methods. Though appealing in
its directness, this approach arguably discards some of the
benefits of learning a model in the first place.

Talvitie (2014) pointed out that one-step prediction ac-
curacy does not account for how the model behaves when
composed with itself and introduced the Hallucinated Re-
play meta-algorithm to address this. As illustrated in Figure
1, this approach rolls out the model and environment in par-
allel, training the model to predict the correct environment
state (s4) even when its input is an incorrect sampled state
(z3). This effectively causes the model to “self-correct” its
rollouts. Hallucinated Replay was shown to enable mean-
ingful planning with flawed models in examples where the
standard approach failed. However, it offers no theoretical
guarantees. Venkatraman, Hebert, and Bagnell (2015) and
Oh et al. (2015) used similar approaches to improve models’
long-range predictions, though not in the MBRL setting.

This paper presents novel error bounds that reveal the
theoretical principles that underlie the empirical success of
Hallucinated Replay. It presents negative results that iden-
tify settings where hallucinated training would be ineffec-
tive (Section 2.3) and identifies a case where it yields a

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2597

tighter performance bound than standard training (Section
2.4). This result allows the derivation of a novel MBRL al-
gorithm with theoretical performance guarantees that are ro-
bust to model class limitations (Section 3). The analysis also
highlights a previously underexplored practical concern with
this approach, which is examined empirically (Section 4.1).

1.1 Notation and background

We focus on Markov decision processes (MDP). The en-
vironment’s initial state s1 is drawn from a distribution μ.
At each step t the environment is in a state st. The agent
selects an action at which causes the environment to tran-
sition to a new state sampled from the transition distribu-
tion: st+1 ∼ P at

st . The environment also emits a reward,
R(st, at). For simplicity, assume that the reward function is
known and is bounded within [0,M].

A policy π specifies a way to behave in the MDP. Let π(a |
s) = πs(a) be the probability that π chooses action a in
state s. For a sequence of actions a1:t let P (s′ | s, a1:t) =
P a1:t
s (s′) be the probability of reaching s′ by starting in s

and taking the actions in the sequence. For any state s, action
a, and policy π, let Dt

s,a,π be the state-action distribution
obtained after t steps, starting with state s and action a and
thereafter following policy π. For a state action distribution
ξ, let Dt

ξ,π = E(s,a)∼ξ D
t
s,a,π . For a state distribution μ let

Dt
μ,π = Es∼μ,a∼πs D

t
s,a,π . For some discount factor γ ∈

[0, 1), let Dμ,π = (1 − γ)
∑∞

t=1 γ
t−1Dt

μ,π be the infinite-
horizon discounted state-action distribution under policy π.

The T -step state-action value of a policy, Qπ
T (s, a)

represents the expected discounted sum of rewards ob-
tained by taking action a in state s and execut-
ing π for an additional T − 1 steps: Qπ

T (s, a) =∑T
t=1 γ

t−1 E(s′,a′)∼Dt
s,a,π

R(s′, a′). Let the T -step state
value V π

T (s) = Ea∼πs
[Qπ

T (s, a)]. For infinite horizons we
write Qπ = Qπ

∞, and V π = V π
∞. The agent’s goal will be to

learn a policy π that maximizes Es∼μ[V
π(s)].

The MBRL approach is to learn a model P̂ , approximat-
ing P , and then to use the model to produce a policy via a
planning algorithm. We let D̂, Q̂, and V̂ represent the cor-
responding quantities using the learned model. Let C repre-
sent the model class, the set of models the learning algorithm
could possibly produce. Critically, in this paper, it is not as-
sumed that C contains a perfectly accurate model.

2 Bounding value error
We consider an MBRL architecture that uses the simple one-
ply Monte Carlo planning algorithm (one-ply MC), which
has its roots in the “rollout algorithm” (Tesauro and Galperin
1996). For every state-action pair (s, a), the planner executes
N T -step “rollouts” in P̂ , starting at s, taking action a, and
then following a rollout policy ρ. Let Q̄(s, a) be the average
discounted return of the rollouts. For large N , Q̄ will closely
approximate Q̂ρ

T (Kakade 2003). The agent will select its
actions greedily with respect to Q̄. Talvitie (2015) bounds
the performance of one-ply MC in terms of model quality.

For a policy π and state-action distribution ξ, let εξ,π,Tval =

E(s,a)∼ξ

[|Qπ
T (s, a) − Q̂π

T (s, a)|
]

be the error in the T -step

state-action values the model assigns to the policy under the
given distribution. Then the following result can be straight-
forwardly adapted from one provided by Talvitie (2015).
Lemma 1. Let Q̄ be the state-action value function returned
by applying one-ply Monte Carlo to the model P̂ with rollout
policy ρ and rollout depth T . Let π̂ be greedy w.r.t. Q̄. For
any policy π and state-distribution μ,

E
s∼μ

[
V π(s)− V π̂(s)

] ≤ 4

1− γ
εξ,ρ,Tval + εmc,

where we let ξ(s, a) = 1
2Dμ,π̂(s, a) + 1

4Dμ,π(s, a) +
1
4

(
(1− γ)μ(s)π̂s(a) + γ

∑
z,b Dμ,π(z, b)P

b
z (s)π̂s(a)

)

and εmc = 4
1−γ ‖Q̄ − Q̂ρ

T ‖∞ + 4
1−γ ‖Q̂ρ

T − Q̂ρ‖∞ +
2

1−γ ‖BV ρ − V ρ‖∞ (here B is the Bellman operator).

The εmc term represents error due to limitations of the
planning algorithm: error due to the sample average Q̄, the
limited rollout depth T , and the sub-optimality of ρ. The
εξ,ρ,Tval term represents error due to the model parameters.
The key factor in the model’s usefulness for planning is the
accuracy of the value it assigns to the rollout policy in state-
actions visited by π and π̂. Our goal in the next sections is to
bound εξ,ρ,Tval in terms of measures of model accuracy, ulti-
mately deriving insight into how to train models that will be
effective for MBRL. Proofs may be found in the appendix.

2.1 One-step prediction error

Intuitively, the value of a policy should be accurate if the
model is accurate in states that the policy would visit. We
can adapt a bound from Ross and Bagnell (2012).
Lemma 2. For any policy π and state-action distribution ξ,

εξ,π,Tval ≤ M

1− γ

T−1∑
t=1

(γt − γT) E
(s,a)∼Dt

ξ,π

[‖P a
s − P̂ a

s ‖1
]
.

Combining Lemmas 1 and 2 yields an overall bound on
control performance in terms of the model’s prediction er-
ror. This result matches common MBRL practice; it recom-
mends minimizing the model’s one-step prediction error. It
acknowledges that the model may be imperfect by allowing
it to have one-step error in unimportant (i.e. unvisited) states.
However, if limitations of the model class prevent the model
from achieving low error in important states, this bound can
be quite loose, as the following example illustrates.

Consider the “Shooter” domain introduced by Talvi-
tie (2015), pictured in Figure 2a. The agent moves a space-
ship left and right at the bottom of the screen. It can fire
bullets upward, but each one has a cost (-1 reward). If a bul-
let hits one of the three targets, the agent receives 10 reward.
Each target has a “bullseye” (the white dots). If a bullet hits
the same column as a bullseye, the agent receives an addi-
tional 10 reward. Though the control problem is simple, the
state/observation space is high-dimensional due to the many
possible configurations of objects on the screen.

In the original Shooter the bullseyes remained still but
here they move back and forth across the targets. As such,
the problem is second-order Markov; when the bullseye is in

2598

Figure 2: The Shooter game. a) Example of the real dynam-
ics. b) Propagating errors (red outlines) in a model optimized
for one-step error. c) A model optimized for multi-step error.

the center, one cannot predict its next position without know-
ing its previous position. The agent, however, will use a fac-
tored Markov model, predicting each pixel conditioned on
the current image. It cannot accurately predict the bullseyes’
movement, though it can predict everything else perfectly.

One might imagine that this limitation would be fairly mi-
nor; the agent can still obtain reward even if it cannot reli-
ably hit the bullseyes. However, consider the sample rollout
pictured in Figure 2b. Here each image is sampled from a
model’s one-step predictions, and is then given as input for
the next predictions. This model has the lowest possible one-
step prediction error. Still, as anticipated, it does not cor-
rectly predict the movement of the bullseyes in the second
image. Because of the resulting errors, the sampled image
is unlike any the environment would generate, and there-
fore unlike any the model has trained on. The model’s un-
informed predictions based on this unfamiliar image cause
more errors in the third image, and so on. Ultimately this
model assigns low probability to a target persisting more
than a few steps, making it essentially useless for planning.

Note, however, that there are models within this model
class that are useful for planning. Consider the sample roll-
out pictured in Figure 2c. The model that generated this
rollout makes the same one-step errors as the previous
model when given an environment state. However, when
it encounters an unreasonable sampled state it still makes
reasonable predictions, effectively “self-correcting.” Talvi-
tie (2014) presents several similar examples involving vari-
ous model deficiencies. These examples illustrate the inad-
equacy of Lemma 2 when the model class is limited. Mod-
els with similar one-step prediction error can vary wildly in
their usefulness for planning. The true distinguisher is the
accuracy of predictions far into the future.

2.2 Multi-step prediction error

Since Qπ
T (s, a) =

∑T
t=1 γ

t−1 E(s′,a′)∼Dt
s,a,π

R(s′, a′), it is

straightforward to bound εξ,π,Tval in terms of multi-step error.
Lemma 3. For any policy π and state-action distribution ξ,

εξ,π,Tval ≤M
T∑

t=1

γt−1 E
(s,a)∼ξ

[‖Dt
s,a,π − D̂t

s,a,π‖1
]
.

The bound in Lemma 2 has dependence on 1
1−γ because

it effectively assumes the worst possible loss in value if the
model samples an “incorrect” state. In contrast, Lemma 3
accounts for the model’s ability to recover after an error,
only penalizing it for individual incorrect transitions. Un-
fortunately, it is difficult to directly optimize for multi-step
prediction accuracy. Nevertheless, this bound suggests that
algorithms that account for a model’s multi-step error will
yield more robust MBRL performance.

2.3 Hallucinated one-step prediction error

We now seek to formally analyze the practice of halluci-
nated training, described in Section 1. Venkatraman, Hebert,
and Bagnell (2015) provide some analysis but in the uncon-
trolled time series prediction setting. Here we focus on its
impact on control performance in MBRL. As a first step, we
derive a bound based on a model’s ability to predict the next
environment state, given a state sampled from the model’s
own predictions, i.e. to self-correct. For a policy π and state-
action distribution ξ let J t

ξ,π represent the joint distribution
over environment and model state-action pairs if π is exe-
cuted in both simultaneously. Specifically, let

J t
ξ,π(s, a, z, b) = E(s′,a′)∼ξ[D

t
s′,a′,π(s, a)D̂

t
s′,a′,π(z, b)].

Lemma 4. For any policy π and state-action distribution ξ,

εξ,π,Tval ≤M

T−1∑
t=1

γt E
(s,a,z,b)∼Jt

ξ,π

[‖P a
s − P̂ b

z ‖1
]
.

Inspired by “Hallucinated Replay” (Talvitie 2014), we
call the quantity on the right the hallucinated one-step er-
ror. Hallucinated one-step error is intended as a proxy for
multi-step error, but having formalized it we may now see
that in some cases it is a poor proxy. Note that, regardless
of the policy, the multi-step and one-step error of a perfect
model is 0. This is not always so for hallucinated error.

Proposition 5. The hallucinated one-step error of a perfect
model may be non-zero.

Proof. Consider a simple MDP with three states {s0, sh, st}
and a single action a. In the initial state s0, a fair coin
is flipped, transitioning to sh or st with equal probability,
where it stays forever. Consider a perfect model P̂ = P .
Then J1

s0,a(sh, a, st, a) = P a
s0(sh)P

a
s0(st) = 0.25. How-

ever, |P a
sh
(sh) − P a

st(sh)| = 1 − 0 = 1. Thus, the halluci-
nated one-step error of a perfect model is non-zero.

Here the environment samples heads and the model sam-
ples tails. Given its own state, the model rightly predicts
tails, but incurs error nevertheless since the environment’s
next state is heads. Because the model and environment
dynamics are uncoupled, one cannot distinguish between
model error and legitimately different stochastic outcomes.
As such, the hallucinated error is misleading when the true
dynamics are stochastic. This corroborates the conjecture
that Hallucinated Replay may be problematic in stochas-
tic environments (Talvitie 2014). Note that this observation
applies not just to hallucinated training, but to any method

2599

that attempts to improve multi-step predictions by compar-
ing sample rollouts from the model and the environment.

While it may seem limiting to restrict our attention to
deterministic environments, this is still a large, rich class
of problems. For instance, Oh et al. (2015) learned mod-
els of Atari 2600 games, which are fully deterministic
(Hausknecht et al. 2014); human players often perceive them
as stochastic due to their complexity. Similarly, in synthetic
RL domains stochasticity is often added to simulate com-
plex, deterministic phenomena (e.g. robot wheels slipping
on debris), not necessarily to capture inherently stochastic
effects in the world. As in these examples, we shall assume
that the environment is deterministic but complex, so a lim-
ited agent will learn an imperfect, stochastic model.

That said, even specialized to deterministic environments,
the bound in Lemma 4 is loose for arbitrary policies.
Proposition 6. The hallucinated one-step error of a perfect
model may be non-zero, even in a deterministic MDP.

Proof. Alter the coin MDP, giving the agent two actions
which fully determine the coin’s orientation. The original
dynamics can be recovered via a stochastic policy that ran-
domly selects sh or st and then leaves the coin alone.

Oh et al. (2015) tied action selection to the environment
state only (rather than independently selecting actions in the
environment and model). This prevents stochastic decou-
pling but may fail to train the model on state-action pairs
that the policy would reach under the model’s dynamics.

2.4 A Tighter Bound

In the remainder of the paper we assume that the environ-
ment is deterministic. Let σa1:t

s be the unique state that re-
sults from starting in state s and taking the action sequence
a1:t. The agent’s model will still be stochastic.

Recall that our goal is to bound the value error under the
one-ply MC rollout policy. Proposition 6 shows that hallu-
cinated error gives a loose bound under arbitrary policies.
We now focus on blind policies (Bowling et al. 2006). A
blind policy depends only on the action history, i.e. π(at |
st, a1:t−1) = π(at | a1:t−1). This class of policies ranges
from stateless policies to open-loop action sequences. It in-
cludes the uniform random policy, a common rollout policy.

For any blind policy π and state-action distribution ξ, let
Ht

ξ,π be the distribution over environment state, model state,
and action if a single action sequence is sampled from π and
then executed in both the model and the environment. So,

H1
ξ,π(s1, z1, a1) = ξ(s1, a1) when z1 = s1 (0 otherwise);

H2
ξ,π(s2, z2, a2) = E(s1,a1)∼ξ[π(a2 | a1)P a1

s1 (s2)P̂
a1
s1 (zs)];

and for t > 2, Ht
ξ,π(st, zt, at) =

E(s1,a1)∼ξ

[∑
a2:t−1

π(a2:t | a1)P a1:t−1
s1 (st)P̂

a1:t−1
s1 (zt)

]
.

Lemma 7. If P is deterministic, then for any blind policy π
and any state-action distribution ξ,

εξ,π,Tval ≤ 2M
T−1∑
t=1

γt E
(s,z,a)∼Ht

ξ,π

[
1− P̂ a

z (σ
a
s)
]
.

We can also show that, in the deterministic setting,
Lemma 7 gives an upper bound for multi-step error (Lemma
3) and a lower bound for one-step error (Lemma 2).

Theorem 8. If P is deterministic, then for any blind policy
π and any state-action distribution ξ,

εξ,π,Tval ≤ M

T∑
t=1

γt−1 E
(s,a)∼ξ

[‖Dt
s,a,π − D̂t

s,a,π‖1
]

≤ 2M
T−1∑
t=1

γt E
(s,z,a)∼Ht

ξ,π

[
1− P̂ a

z (σ
a
s)
]

≤ 2M

1− γ

T−1∑
t=1

(γt − γT) E
(s,a)∼Dt

ξ,π

[
1− P̂ a

s (σ
a
s)
]
.

Thus, with a deterministic environment and a blind rollout
policy, the hallucinated one-step error of the model is more
tightly related to MBRL performance than the standard one-
step error. This is the theoretical reason for the empirical
success of Hallucinated Replay (Talvitie 2014), which trains
the model to predict the next environment state, given its
own samples as input. We now exploit this fact to develop
a novel MBRL algorithm that similarly uses hallucinated
training to mitigate the impact of model class limitations and
that offers strong theoretical guarantees.

3 Hallucinated DAgger-MC

The “Data Aggregator” (DAgger) algorithm (Ross and Bag-
nell 2012) was the first practically implementable MBRL al-
gorithm with performance guarantees agnostic to the model
class. It did, however, require that the planner be near op-
timal. DAgger-MC (Talvitie 2015) relaxed this assumption,
accounting for the limitations of the planner that uses the
model (one-ply MC). This section augments DAgger-MC
to use hallucinated training, resulting in the Hallucinated
DAgger-MC algorithm1, or H-DAgger-MC (Algorithm 1).

In addition to assuming a particular form for the plan-
ner (one-ply MC with a blind rollout policy), H-DAgger-
MC assumes that the model will be “unrolled” (similar to,
e.g. Abbeel, Quigley, and Ng 2006). Rather than learning
a single model P̂ , H-DAgger-MC learns a set of models
{P̂ 1, . . . , P̂T−1} ⊆ C, where model P̂ i is responsible for
predicting the outcome of step i of a rollout, given the state
sampled from P̂ i−1 as input. The importance of learning an
unrolled model will be discussed more deeply in Section 4.1.

Much of the H-DAgger-MC algorithm is identical to
DAgger-MC. The main difference lies in lines 14-18, in
which ρ is executed in both the environment and the model
to generate hallucinated examples. This trains the model to
self-correct during rollouts. Like DAgger and DAgger-MC,

1“Is this a dagger which I see before me,
The handle toward my hand? Come, let me clutch thee.
I have thee not, and yet I see thee still.
Art thou not, fatal vision, sensible
To feeling as to sight? Or art thou but
A dagger of the mind, a false creation,
Proceeding from the heat-oppress’d brain?” [Macbeth 2.1.33–39]

2600

Algorithm 1 Hallucinated DAgger-MC
Require: Exploration distribution ν, ONLINE-LEARNER,

MC-PLANNER (blind rollout policy ρ, rollout depth T),
num. iterations N , num. rollouts per iteration K

1: Get initial datasets D1:T−1
1 (maybe using ν)

2: Initialize P̂ 1:T−1
1 ← ONLINE-LEARNER(D1:T−1

1).
3: Initialize π̂1 ← MC-PLANNER(P̂ 1:T−1

1).
4: for n← 2 . . . N do
5: for k ← 1 . . .K do
6: With probability... 	 Sample (x, b) ∼ ξn...
7: 1/2: Sample (x, b) ∼ D

π̂n−1
μ

8: 1/4: Reset to (x, b) ∼ ν.
9: (1−γ)/4: Sample x ∼ μ, b ∼ π̂n−1(· | x).

10: γ/4:
11: Reset to (y, c) ∼ ν
12: Sample x ∼ P (· | y, c), b ∼ π̂n−1(· | x)
13: Let s← x, z ← x, a← b.
14: for t← 1 . . . T − 1 do 	 Sample from Ht

n...
15: Sample s′ ∼ P (· | s, a).
16: Add 〈z, a, s′〉 to Dt

n. 	 Hallucinated training
	 (DAgger-MC adds 〈s, a, s′〉 instead).

17: Sample z′ ∼ P̂ t
n−1(· | z, a).

18: Let s← s′, z ← z′, and sample a ∼ ρ.
19: P̂ 1:T−1

n ← ONLINE-LEARNER(P̂ 1:T−1
n−1 , D1:T−1

n)
20: π̂n ← MC-PLANNER(P̂ 1:T−1

n).
21: return the sequence π̂1:N

H-DAgger-MC requires the ability to reset to the initial state
distribution μ and also the ability to reset to an “exploration
distribution” ν. The exploration distribution ideally ensures
that the agent will encounter states that would be visited by
a good policy, otherwise no agent could promise good per-
formance. The performance bound for H-DAgger-MC will
depend in part on the quality of the selected ν.

We now analyze H-DAgger-MC, adapting Ross and Bag-
nell (2012)’s DAgger analysis. Let Ht

n be the distribution
from which H-DAgger-MC samples a training triple at depth
t (lines 6-13 to pick an initial state-action pair, lines 14-18
to roll out). Define the error of the model at depth t to be
ε̄tprd = 1

N

∑N
n=1 E(s,z,a)∼Ht

n
[1− P̂ t

n(σ
a
s | z, a)].

For a policy π, let cπν = sups,a
Dμ,π(s,a)
ν(s,a) represent the

mismatch between the discounted state-action distribution
under π and the exploration distribution ν. Now, consider
the sequence of policies π̂1:N generated by H-DAgger-MC.
Let π̄ be the uniform mixture over all policies in the se-
quence. Let ε̄mc =

1
N

4
1−γ

∑N
n=1(‖Q̄n−Q̂ρ

T,n‖∞+‖Q̂ρ
T,n−

Q̂ρ
n‖∞) + 2

1−γ ‖BV ρ − V ρ‖∞ be the error induced by the
choice of planning algorithm, averaged over all iterations.

Lemma 9. In H-DAgger-MC, the policies π̂1:N are such
that for any policy π,

E
s∼μ

[
V π(s)− V π̄(s)

] ≤ 8M

1− γ
cπν

T−1∑
t=1

ε̄tprd + ε̄mc.

Note that this result holds for any comparison policy π.
Thus, if ε̄mc is small and the learned models have low
hallucinated one-step prediction error, then if ν is similar
to the state-action distribution under some good policy, π̄
will compare favorably to it. Like the original DAgger and
DAgger-MC results, Lemma 9 has limitations. It uses the
L1 loss, which is not always a practical learning objective.
It also assumes that the expected loss at each iteration can
be computed exactly (i.e. that there are infinitely many sam-
ples per iteration). It also applies to the average policy π̄,
rather than the last policy in the sequence. Ross and Bag-
nell (2012) discuss extensions that address more practical
loss functions, finite sample bounds, and results for π̂N .

The next question is, of course, when will the learned
models be accurate? Following Ross and Bagnell (2012)
note that ε̄tprd can be interpreted as the average loss of an
online learner on the problem defined by the aggregated
datasets at each iteration. In that case, for each horizon
depth t let ε̄tmdl be the error of the best model in C under
the training distribution at that depth, in retrospect. Specif-
ically, ε̄tmdl = infP ′∈C 1

N

∑N
n=1 E(s,z,a)∼Ht

n
[1 − P ′(σa

s |
z, a)]. Then the average regret for the model at depth t is
ε̄trgt = ε̄tprd − ε̄tmdl. For a no-regret online learning algo-
rithm, ε̄trgt → 0 as N →∞. This gives the following bound
on H-DAgger-MC’s performance in terms of model regret.
Theorem 10. In H-DAgger-MC, the policies π̂1:N are such
that for any policy π,

E
s∼μ

[
V π(s)− V π̄(s)

] ≤ 8M

1− γ
cπν

T−1∑
t=1

(ε̄tmdl + ε̄trgt) + ε̄mc,

and if the model learning algorithm is no-regret then ε̄trgt →
0 as N →∞ for each 1 ≤ t ≤ T − 1.

Theorem 10 says that if C contains a low-error model for
each rollout depth then low error models will be learned.
Then, as discussed above, if ε̄mc is small and ν visits impor-
tant states, the resulting policy will yield good performance.
Notably, even with hallucinated training, if C contains a per-
fect model, H-DAgger-MC will learn a perfect model.

It is important to note that this result does not promise
that H-DAgger-MC will eventually achieve the performance
of the best performing set of models in the class. The model
at each rollout depth is trained to minimize prediction error
given the input distribution provided by the shallower mod-
els. Note, however, that changing the parameters of a model
at one depth alters the training distribution for deeper mod-
els. It is possible that better overall error could be achieved
by increasing the prediction error at one depth in exchange
for a favorable state distribution for deeper models. This ef-
fect is not taken into account by H-DAgger-MC.

4 Empirical Illustration
In this section we illustrate the practical impact of optimiz-
ing hallucinated error by comparing DAgger, DAgger-MC,
and H-DAgger-MC in the Shooter example described in
Section 2.12. The experimental setup matches that of Talvi-
2Source code for these experiments may be found at github.com/
etalvitie/hdaggermc.

2601

tie (2015) for comparison’s sake, though the qualitative com-
parison presented here is robust to the parameter settings.

In all cases one-ply MC was used with 50 uniformly ran-
dom rollouts of depth 15 at every step. The exploration dis-
tribution was generated by following the optimal policy with
(1−γ) probability of termination at each step. The model for
each pixel was learned using Context Tree Switching (Ve-
ness et al. 2012), similar to the FAC-CTW algorithm (Veness
et al. 2011), and used a 7× 7 neighborhood around the pixel
in the previous timestep as input. Data was shared across all
positions. The discount factor was γ = 0.9. In each iteration
500 training rollouts were generated and the resulting policy
was evaluated in an episode of length 30. The discounted
return obtained by the policy in each iteration is reported,
averaged over 50 trials.

The results can be seen in Figure 3a and 3b. The shaded
regions represent 95% confidence intervals for the mean
performance. The benchmark lines labeled “Random” and
“Perfect Model” represent the average performance of the
uniform random policy and one-ply Monte Carlo using a
perfect model, respectively. In Figure 3a the bullseyes move,
simulating the typical practical reality that C does not con-
tain a perfect model. In Figure 3b the bullseyes have fixed
positions, so C does contain a perfect model.

As observed by Talvitie (2015), DAgger performs poorly
in both versions, due to the suboptimal planner. DAgger-MC
is able to perform well with fixed bullseyes (Figure 3b), but
with moving bullseyes the model suffers from compounding
errors and is not useful for planning (Figure 3a). This holds
for a single model and for an “unrolled” model.

In these experiments one practically-minded alteration
was made to the H-DAgger-MC algorithm. In early train-
ing the model is highly inaccurate, and thus deep rollouts
produce incoherent samples. Training with these samples is
counter-productive (also, the large number of distinct, non-
sensical contexts renders CTS impractical). For these ex-
periments, training rollouts in iteration i were truncated at
depth �i/10. Planning rollouts in these early iterations use
the models that have been trained so far and then repeatedly
apply the deepest model in order to complete the rollout.
Talvitie (2014), Venkatraman, Hebert, and Bagnell (2015),
and Oh et al. (2015) all similarly discarded noisy examples
early in training. This transient modification does not impact
H-DAgger-MC’s asymptotic guarantees.

In Figure 3a it is clear that H-DAgger-MC obtains a good
policy despite the limitations of the model class. Halluci-
nated training has made MBRL possible with both a flawed
model and a flawed planner while the standard approach has
failed entirely. In the case that C contains a perfect model
(rare in problems of genuine interest) H-DAgger-MC is out-
performed by DAgger-MC. Despite the adjustment to train-
ing, deep models still receive noisy inputs. Theoretically the
model should become perfectly accurate in the limit, though
in practice it may do so very slowly.

4.1 Impact of the unrolled model

Recall that the H-DAgger-MC algorithm assumes the model
will be “unrolled,” with a separate model responsible for
sampling each step in a rollout. This has clear practical

disadvantages, but it is important theoretically. When one
model is used across all time-steps, convergence to a perfect
model cannot be guaranteed, even if one exists in C.

In Figure 3c, H-DAgger-MC has been trained using a
single model in Shooter with fixed bullseyes. The tempo-
rary truncation schedule described above is employed, but
the training rollouts have been permanently limited to vari-
ous depths. First consider the learning curve marked “Depth
15”, where training rollouts are permitted to reach the maxi-
mum depth. While the rollouts are temporarily truncated the
model does well, but performance degrades as longer roll-
outs are permitted even though C contains a perfect model!

Recall from Section 3 that changing the model parameters
impacts both prediction error and the future training distri-
bution. Furthermore, training examples generated by deep
rollouts may contain highly flawed samples as inputs. Some-
times attempting to “correct” a large error (i.e. reduce pre-
diction error) causes additional, even worse errors in the next
iteration (i.e. harms the training distribution). For instance
consider a hallucinated training example with the 4th screen
from Figure 2b as input and the 5th screen from Figure 2a as
the target. The model would effectively learn that targets can
appear out of nowhere, an error that would be even harder
to correct in future iterations. With a single model across
timesteps, a feedback loop can emerge: the model parame-
ters change to attempt to correct large errors, thereby caus-
ing larger errors, and so on. This feedback loop causes the
observed performance crash. With an unrolled model the pa-
rameters of each sub-model cannot impact that sub-model’s
own training distribution, ensuring stability.

Note that none of Talvitie (2014), Venkatraman, Hebert,
and Bagnell (2015), or Oh et al. (2015) used an unrolled
model. As such, all of their approaches are subject to this
concern. Notably, all three limited the depth of training roll-
outs, presumably to prevent overly noisy samples. Figure 3c
shows that in this experiment, the shorter the training roll-
outs, the better the performance. These results show that it
may be possible in practice to avoid unrolling the model by
truncating training rollouts, though for now there is no per-
formance guarantee or principled choice of rollout depth.

5 Conclusions and future work
The primary contribution of this work is a deeper theoretical
understanding of how to perform effective MBRL in the face
of model class limitations. Specifically we have examined a
novel measure of model quality that, under some assump-
tions, is more tightly related to MBRL performance than
standard one-step prediction error. Using this insight, we
have also analyzed a MBRL algorithm that achieves good
control performance despite flaws in the model and planner
and provides strong theoretical performance guarantees.

We have also seen negative results indicating that hal-
lucinated one-step error may not be an effective optimiza-
tion criterion in the most general setting. This poses the
open challenge of relaxing the assumptions of determinis-
tic dynamics and blind policies, or of developing alternative
approaches for improving multi-step error in more general
settings. We have further observed that hallucinated train-
ing can cause stability issues, since model parameters affect

2602

0 50 100 150 200

Iteration

0

1

2

3

4

5

6

7

8

9

A
vg

.
D

is
co

un
te

d
R

et
ur

n
(5

0
tr

ia
ls

)

Random

Perfect Model

H-DAgger-MC
DAgger-MC (one model)

DAgger-MC (unrolled)
DAgger

a) Moving Bullseyes

0 50 100 150 200

Iteration

0

1

2

3

4

5

6

7

8

9

A
vg

.
D

is
co

un
te

d
R

et
ur

n
(5

0
tr

ia
ls

)

Random

Perfect Model

DAgger-MC (one model)
DAgger-MC (unrolled)

H-DAgger-MC
DAgger

b) Fixed Bullseyes

0 50 100 150 200

Iteration

0

1

2

3

4

5

6

7

8

9

A
vg

.
D

is
co

un
te

d
R

et
ur

n
(5

0
tr

ia
ls

)

Depth 1
Depth 5
Depth 6
Depth 7

Depth 15

c) H-DAgger-MC (one model)

Figure 3: a,b) Comparing DAgger, DAgger-MC, and H-DAgger-MC in Shooter with moving and fixed bullseyes, respectively.
c) H-DAgger-MC in Shooter with fixed bullseyes using a single model across time steps, truncating rollouts at various depths.

both prediction error and the training distribution itself. It
would be valuable to develop techniques that account for
both of these effects when adapting model parameters.

Specializing to the one-ply MC planning algorithm may
seem restrictive, but then again, the choice of planning al-
gorithm cannot make up for a poor model. When the model
class is limited, H-DAgger-MC is likely still a good choice
over DAgger, even with a more sophisticated planner. Still,
it would be valuable to investigate whether these principles
can be applied to more sophisticated planning algorithms.

Though this work has assumed that the reward function is
known, the results presented here can be straightforwardly
extended to account for reward error. However, this also
raises the interesting point that sampling an “incorrect” state
has little negative impact if the sampled state’s rewards and
transitions are similar to the “correct” state. It may be possi-
ble to exploit this to obtain still tighter bounds, and more ef-
fective guidance for model learning in MBRL architectures.

Acknowledgements

This work was supported in part by NSF grant IIS-1552533.
Many thanks to Marc Bellemare whose feedback has pos-
itively influenced the work, both in substance and presen-
tation. Thanks to Drew Bagnell and Arun Venkatraman for
their valuable insights. Thanks also to Joel Veness for his
freely available FAC-CTW and CTS implementations (http:
//jveness.info/software/).

References

Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inaccurate
models in reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning (ICML), 1–8.
Bellemare, M. G.; Veness, J.; and Talvitie, E. 2014. Skip con-
text tree switching. In Proceedings of the 31st International
Conference on Machine Learning (ICML), 1458–1466.
Bowling, M.; McCracken, P.; James, M.; Neufeld, J.; and
Wilkinson, D. 2006. Learning predictive state representations
using non-blind policies. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), 129–136.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone, P.
2014. A neuroevolution approach to general atari game play-
ing. IEEE Transactions on Computational Intelligence and AI
in Games 6(4):355–366.

Joseph, J.; Geramifard, A.; Roberts, J. W.; How, J. P.; and Roy,
N. 2013. Reinforcement learning with misspecified model
classes. In 2013 IEEE International Conference on Robotics
and Automation (ICRA), 939–946.
Kakade, S. M. 2003. On the sample complexity of reinforce-
ment learning. Ph.D. Dissertation, University of London.
Oh, J.; Guo, X.; Lee, H.; Lewis, R. L.; and Singh, S. 2015.
Action-conditional video prediction using deep networks in
atari games. In Advances in Neural Information Processing
Systems 28 (NIPS), 2845–2853.
Ross, S., and Bagnell, D. 2012. Agnostic system identification
for model-based reinforcement learning. In Proceedings of the
29th International Conference on Machine Learning (ICML),
1703–1710.
Sorg, J.; Lewis, R. L.; and Singh, S. 2010. Reward design
via online gradient ascent. In Advances in Neural Information
Processing Systems 23 (NIPS), 2190–2198.
Szita, I., and Szepesvári, C. 2010. Model-based reinforcement
learning with nearly tight exploration complexity bounds. In
Proceedings of the 27th International Conference on Machine
Learning (ICML), 1031–1038.
Talvitie, E. 2014. Model regularization for stable sample roll-
outs. In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence (UAI), 780–789.
Talvitie, E. 2015. Agnostic system identification for monte
carlo planning. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), 2986–2992.
Tesauro, G., and Galperin, G. R. 1996. On-line policy im-
provement using monte-carlo search. In Advances in Neural
Information Processing Systems 9 (NIPS), 1068–1074.
Veness, J.; Ng, K. S.; Hutter, M.; Uther, W. T. B.; and Silver,
D. 2011. A Monte-Carlo AIXI Approximation. Journal of
Artificial Intelligence Research (JAIR) 40:95–142.
Veness, J.; Ng, K. S.; Hutter, M.; and Bowling, M. 2012. Con-
text tree switching. In Proceedings of the 2012 Data Compres-
sion Conference (DCC), 327–336. IEEE.
Venkatraman, A.; Hebert, M.; and Bagnell, J. A. 2015. Im-
proving multi-step prediction of learned time series models. In
Proceedings of the 29th AAAI Conference on Artificial Intelli-
gence (AAAI), 3024–3030.

2603

