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Abstract

Training machine leaning algorithms on augmented data from
different related sources is a challenging task. This problem
arises in several applications, such as the Internet of Things
(IoT), where data may be collected from devices with differ-
ent settings. The learned model on such datasets can general-
ize poorly due to distribution bias. In this paper we consider
the problem of classifying unseen datasets, given several la-
beled training samples drawn from similar distributions. We
exploit the intrinsic structure of samples in a latent subspace
and identify landmarks, a subset of training instances from
different sources that should be similar. Incorporating sub-
space learning and landmark selection enhances generaliza-
tion by alleviating the impact of noise and outliers, as well as
improving efficiency by reducing the size of the data. How-
ever, since addressing the two issues simultaneously results
in an intractable problem, we relax the objective function
by leveraging the theory of nonlinear projection and solve a
tractable convex optimisation. Through comprehensive anal-
ysis, we show that our proposed approach outperforms state-
of-the-art results on several benchmark datasets, while keep-
ing the computational complexity low.

Introduction

The primary objective of supervised learning algorithms is
to learn a function f from a training set (X,Y ) that can
generalize well on unseen test data X ′. Traditional classi-
fiers generalize well if X and X ′ are well behaved and fol-
low the same (or very similar) distribution. However, this
common fact may not hold in many applications, especially
in the case of data collected from heterogenous sources.
For example, in sensor monitoring networks, data may be
collected from devices (i.e., domains) with different types,
placements, orientations, and sampling frequencies (Stisen
et al. 2015). In such applications, the classification model f
may fail to generalize well due to distribution bias (or shift)
in the collected samples. Therefore, developing a classifica-
tion algorithm that generalizes well on acquired knowledge
from various related sources and can be applied to unseen
sources is an important and compelling problem.
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With the advent of the IoT and the proliferation of smart
devices there is a need for efficient algorithms that accom-
modate cross-platform data analysis. A common approach to
improve the generalization ability of machine learning algo-
rithms is to provide more training examples. However, when
the examples are augmented data from multiple sources, in-
serting more data may only consume memory, rather than
yielding better performance (Torralba and Efros 2011). The
main reason behind the ineffectiveness of this common ap-
proach to modeling generalization is that the input space of
the training set dramatically deviates from the test set, i.e.,
the datasets are biased. Consequently, the challenge is to
build a system that is robust to the underlying distribution
bias and performs well on unseen datasets.

Domain adaptation and domain generalization address the
above problem by finding a shared subspace for related
sources. The aim of domain adaptation is to produce ro-
bust models on a specific target (test) source, by leveraging
supplementary information during training from this source,
as well as taking labeled samples from multiple training
sources. Domain adaptation produces target-specific mod-
els, indicating that the training process should be repeated
for each target. Moreover, the target samples may not always
be available. Domain generalization, in contrast, generates
a model independent of targets. It only assumes that sam-
ples from multiple sources can be accessed, and makes no
further assumption regarding the target. More specifically,
domain generalization aims to cope with the deviations in
the marginal distribution (X) and conditional distribution
(Y |X) among different sources. Blanchard et al. (2011) first
introduced the notion of domain generalization. Muandet et
al. (2013) developed a source invariant feature representa-
tion incorporating the distributional variance across sources
to reduce the dissimilarity. However, more recently it has
been shown that in many real world applications the shift
between different source distributions may not be corrected
by projecting the data to a latent space (Aljundi et al. 2015;
Gong, Grauman, and Sha 2013), and the impact of noise and
outliers may still persist.

The goal of our work is to improve classification ac-
curacy across different sources. We introduce an efficient
method that enhances classification by combining subspace
projection and landmark selection. Our algorithm learns a
shift-invariant latent space that minimizes the difference be-
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tween the marginal distributions (X) of the sources, while
maintaining their functional relationship (Y |X). To deter-
mine the similarity of two distributions, we make use of the
Maximum Mean Discrepancy (MMD) (Gretton et al. 2012),
which compares the means of two empirical distributions in
a Reproducing Kernel Hilbert Space (RKHS). Based on the
MMD formulation, we derive a new objective function and
incorporate sample (or landmark) section. Landmarks are
defined as a subset of a common space where the sources
are closer to each other. However, since this new optimisa-
tion problem is intractable, we leverage the theory of non-
linear random projections and arrive at a relaxed objective
function. The algorithm learns a lower rank representation
of data, and exploits label information from the training
sources to extract the landmarks that reduce the discrepancy
between their distributions. The intuition behind landmark
selection is that not all samples are equally amenable to gen-
eralization. More specifically, only certain samples, owing
to their statistical properties, provide a bridge among the
sources.

Through a comprehensive analysis on several image and
sensor benchmark datasets, we demonstrate that our al-
gorithm outperforms state-of-the-art results, while being
computationally efficient. Unlike many existing approaches
that are built based on nonlinear kernels (Blanchard, Lee,
and Scott 2011; Muandet, Balduzzi, and Schölkopf 2013;
Khosla et al. 2012), the proposed algorithm exploits random
features in an invariant subspace to reveal nonlinear patterns
in the data. It enables large-scale data processing of compu-
tationally expensive machine learning algorithms by signif-
icantly reducing the size of the data. Moreover, to the best
of our knowledge this is the first attempt to integrate lower
rank representation and landmark selection.

Related Work
As our proposed algorithm performs domain generalization
method based on the use of randomized kernels, we briefly
review these two lines of research in this section.

Domain generalization: Given several labeled training
samples drawn from different sources with biased distribu-
tions, domain generalization assigns labels to target sets.
Fluctuations in the distributions arise in a variety of appli-
cations due to technical, environmental, biological, or other
sources of variation. This problem has been addressed in
other areas of machine learning such as domain adapta-
tion (Jiang 2008; Aljundi et al. 2015) and transfer learn-
ing (Pan and Yang 2010). However, they require the incorpo-
ration of target samples or even access to some of the target
labels, while domain generalization can be performed inde-
pendent of the target set.

Blanchard et al. (2011) first raised the domain gener-
alization problem and proposed a kernel-based approach
that identifies an appropriate RKHS and optimizes a regu-
larised empirical risk over the space. Two projection-based
algorithms, Domain-Invariant Component Analysis (DICA)
and Unsupervised DICA (UDICA), were then developed by
Muandet et al. (2013) to solve the same problem. DICA and
UDICA extend Kernel PCA by incorporating the distribu-
tional invariance across domains to reduce the dissimilarity.

Domain generalization algorithms have also been stud-
ied by the computer vision community for object recog-
nition. Khosla et al. (2012) proposed Undoing Dataset
Bias (UDB), a multi-task max-margin classifier exploiting
dataset-specific biases in feature space. The encoded biases
are used to push each dataset’s weight to be aligned with
the global weights. Xu et al. (2014) proposed an exemplar
SVM based method by exploiting the low-rank structure in
the source. They formulated a new optimisation problem
as a nuclear norm-based regularizer that captures the like-
lihoods of all positive samples. Niu et al. (2015) extended
Xu et al. (2014) and proposed a multi-view domain gen-
eralization approach for visual recognition by fusing mul-
tiple SVM classifiers. They built upon exemplar SVMs to
learn a set of SVM classifiers by using one positive sam-
ple and all negative samples in the source each time. Ghi-
fary et al. (2015) proposed a multi-task autoencoder that
leverages naturally occurring variation in sources as a sub-
stitute for the artificially induced corruption, and learns a
transformation from the original image into analogs in mul-
tiple related sources. More recently, to overcome distribution
variance across sources Erfani et al. (2016a) introduced ES-
Rand, which incorporates random projection with elliptical
data summarisation. While ESRand is reasonably efficient
and delivers high accuracy, it requires at least d+1 samples
for each source, where d is the number of features in the pro-
jected space. In some applications where the dimensionality
of data is high, e.g., in images, collecting d + 1 samples by
each source may not be feasible.

Kernel randomisation: Various nonlinear kernel-
machine formulations have been used to improve the
capacity of learning machines while making learning feasi-
ble, e.g., quadratic programming (QP) solvers. In particular,
these kernel-based methods rely on the computation of a
kernel matrix over all pairs of data points, which limits the
scalability of the algorithm on large datasets, and also can
limit its effectiveness on high dimensional inputs, given the
need to have sufficiently large training samples spanning
the variation in the high dimensional space.

To address the scalability problems of kernel-machines,
techniques have been proposed that either preprocess the
data, e.g., by using dimensionality reduction techniques such
as PCA or deep learning, or alleviate the QP problem, e.g.,
by breaking the problem into smaller pieces, for example by
using chunking. A more recent trend explores the use of ran-
domisation, such as linear random projection (Blum 2006)
as a substitute for the computationally expensive step of
kernel matrix construction. The work of Rahimi and Recht
(2007; 2009) made a breakthrough in this approach. They
replicated a Radial Basis Function (RBF) kernel by ran-
domly projecting the data to a lower dimensional space and
then used linear algorithms. Random projection avoids the
complexity of traditional optimisation methods needed for
nonlinear kernels. Recently, randomisation has been applied
to other kernel methods, such as dot-product kernels (Kar
and Karnick 2012), and one-class SVM (Erfani et al. 2015;
2016b).
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Figure 1: (Best shown in colour) Overall workflow of our approach. Generally, our objective is to find a projection to a subspace
such that it minimizes the distribution bias between similar classes, while maintaining the distance between dissimilar ones.
To further improve the generalization we select the observations that maximize the overlap between similar classes. Then a
classifier (typically an SVM or k-NN) is trained on the reduced set.

Proposed Approach
In this section, we introduce our approach to multi-source
classification. Our goal is to learn a representation of the
data that is shared across different sources. The key idea be-
hind our formulation is to simultaneously find a projection to
a low-dimensional subspace, and select landmarks/samples
from the existing data sources, such that the distance be-
tween the distributions of multiple sources is minimized. In-
tuitively, with such a representation, a classifier trained on
the existing sources should perform equally well on the un-
seen data. Fig. 1 illustrates the overall workflow of our pro-
posed approach. Before formally presenting our algorithms,
we first elaborate the idea of Maximum Mean Discrepancy,
which provides the foundation for the proposed algorithm.

Maximum Mean Discrepancy (MMD)

In our work, we are interested in measuring the distribu-
tion difference between multiple sources of data. Generally
speaking, we can compare two probability distributions ei-
ther through parametric models, or non-parametric ones. In
the former methods, the probability distributions are first
modelled, e.g., using Gaussian Mixture Models, and then
the models are compared to measure the dissimilarity among
the distributions. In non-parametric approaches, e.g., kernel
density estimation, the probability distribution is estimated
from observations without modelling the distributions ex-
plicitly.

To compare data distributions, we exploit a non-
parametric approach, mainly because in our problem, mod-
elling probability distributions is extremely difficult if not
impossible. More specifically, our data (sensor and visual):
• exhibits very complex probability distributions. As such,

an accurate model requires a large set of parameters to
tune which is restrictive.

• is by default high-dimensional. Training effective proba-
bilistic models for high-dimensional data is difficult and
demands a large number of observations.

Therefore, we use the MMD between the distributions as a
means to measure their dissimilarity.

Given Xp = {x1
p, · · · ,xn

p} and Xq = {x1
q, · · · ,xm

q } as
two sets of i.i.d. observations from sources p and q, with m

and n observations, respectively, the MMD criterion deter-
mines whether p = q in RKHS.

Definition 1 (Gretton et al. 2006) Let F be a class of func-
tions f : X → R. Then the maximum mean discrepancy
(MMD) and its empirical estimate are defined as:

MMD(F, p, q) = sup
f∈F

(Ex∼p[f(x)]− Ex∼q[f(x)]) ,

MMD(F,Xp,Xq) = sup
f∈F

⎛
⎝ 1

n

n∑
i=1

f(xi
p)−

1

m

m∑
j=1

f(xj
q)

⎞
⎠ .

Clearly, the value of MMD depends on the function set F.

Theorem 1 (Gretton et al. 2006) Let F be a unit ball in
RKHS, defined on compact metric space X with associated
kernel k(·, ·). Then MMD(F, p, q) = 0 if and only if p = q.

In short, the MMD between the distributions of two sets of
observations is equivalent to the distance between the means
of the two sets mapped into a high-dimensional, nonlinear
feature space. We note that recently the characteristic RKHS
(a more general RKHS compared to universal RKHS) has
been used to assess the MMD (Sriperumbudur, Fukumizu,
and Lanckriet 2011).

Multi-Source Classification

There are two popular approaches to multi-source classifi-
cation: projecting all source samples to a common subspace
where they share similar distributions (Baktashmotlagh et
al. 2013; Pan et al. 2011), or selecting landmarks/samples
from the source data in a way that the distribution distance
between different sources will be minimized (Gretton et al.
2006). Here, we follow similar ideas, but unfiy the subspace
projection and sample selection into a single optimisation
problem, and show that this unified approach improves the
classification accuracy.

More specifically, we simultaneously learn a subspace
(W ) and identify landmarks (α) that minimize the distribu-
tion difference between multiple sources. We exploit MMD
as a measure of the distance between the distribution of mul-
tiple sources, which lets us write our optimisation problem
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as:

min
α,W

∥∥∥∥∥∥
1∑n

i=1 αi

n∑
i=1

αiφ(x
p
i )W − 1

m

m∑
j=1

φ(xq
j)W

∥∥∥∥∥∥
H

s.t. αi ∈ {0, 1}
(1)

where φ(·) is the mapping from R
D to the Hilbert space

RKHS H, α = [α1, . . . , αn] is the vector of binary variables
indicating if a sample from source p is selected as landmark
(e.g., αi = 1 → xi ∈ Landmarks), and W is a subspace
projection applied to the source samples.

We try to find a subspace and select samples shared
among different sources of data, so that the distribution dis-
tance between multiple sources will be minimized. To en-
force choosing the appropriate proportion of all the classes
of the source data, we add another constraint to our opti-
misation problem: 1∑

n αn
αnyn,c = 1

n

∑
n yn,c, where C

is the number of classes and yn,c is a variable that deter-
mines whether the ith source sample is a member of class c
or not (Gong, Grauman, and Sha 2013).

It is intractable to solve the optimisation problem in (1)
because of the binary constraints. Therefore, we solve the
relaxed problem which can be expressed as

min
β,W

∥∥∥∥∥∥
n∑

i=1

βiφ(x
p
i )W − 1

m

m∑
j=1

φ(xq
j)W

∥∥∥∥∥∥
H

,

s.t. βi ∈ [0, 1] , and
n∑

i=1

βi = 1 (2)

where the variable βi replaces a binary variable αi/(
∑

αi).
The optimisation problem in (2) can be expressed in terms

of a kernel function k(·, ·). We make use of the Gaussian
kernel function which satisfies the universality condition of
the MMD:

min
β,W

n∑
i,j=1

βiW
T k(xp

i , x
p
j )W

+
1

m2

m∑
i,j=1

W T k(xq
i , x

q
j)W (3)

− 2

m

n,m∑
i,j=1

W T k(βix
p
i , x

q
j)W ,

where k(·, ·) is the Gaussian kernel function
exp

(
− (xi−xj)

T (xi−xj)
σ

)
, and σ is the bandwidth in

the Gaussian kernel.
The resulting optimisation problem is a non-convex prob-

lem, and also is cumbersome to solve for large scale datasets.
To overcome this limitation, instead of solving the optimisa-
tion problem for W , we refer to the results of (Lopez-Paz,
Muandet, and Recht 2015), and project all source data to a
random subspace.

We propose to exploit a lower rank approximation of (3)
using nonlinear random Fourier features, which serves as a
good approximation of the Gaussian (non-linear) kernel. For
shift-invariant kernels we can exploit Bochner’s theorem to
generate h dimensional random features Z ∈ R

m×h, and
for i = 1, . . . ,m

zi = [cos(rTi x1 + bi), . . . , cos(r
T
i xh + bi)]. (4)

The vectors (r1, . . . , rh) are sampled from the Fourier
transformation, and (b1, . . . , bh) ∼ U(0, 2π).

Then (2) can be written as

min
β

∥∥∥∥∥∥
n∑

i=1

βiz
p
i −

1

m

m∑
j=1

zq
j

∥∥∥∥∥∥
H

,

s.t. βi ∈ [0, 1] , and
n∑

i=1

βi = 1 (5)

where the mean in the RKHS reduces to

μ̃ =
1

m

m∑
i=1

zi ∈ R
h. (6)

In practice, we project the data from all sources to a ran-
dom subspace W , solve (3) for the weights β, and then
enforce a threshold on the output variable β to obtain the
binary weights α.

Empirical Evaluation

In this section, we compare the performance and efficiency
of the proposed algorithm with state-of-the-art methods
through classification tasks on multiple sensor and image
benchmark datasets. In the implementation, we project all
samples from the different sources to a shared random sub-
space, and find the samples/landmarks that are most similar
among all the data sources. We use the resulting representa-
tion (projected landmarks) as the input to train a linear SVM
classifier and k-NN.

Sensor Datasets: We use four real life activity recogni-
tion datasets from the UCI Machine Learning Repository:
(i) Daily and Sport Activity (DSA), (ii) Heterogeneity Ac-
tivity Recognition (HAR), (iii) Opportunity Activity Recog-
nition (OAR), (iv) PAMAP2 Physical Activity Monitoring,
with the number of 19, 6, 5, 13 activities collected from 8,
9, 4, 8 subjects, respectively1.

Image Datasets: We use four set sof images from the
Caltech-101 (C), LabelMe (L), SUN09 (S), and PASCAL
VOC2007 (P) datasets. Each of the datasets represents a data
source and they share five object categories: bird, car, chair,
dog, and person. Instead of using the raw features as inputs
to the algorithms, we used the DeCAF6 extracted features
with the dimensionality of 4,096 2.

1DSA, HAR and PAMAP2 are large datasets including mil-
lions of samples. We used a subset of these datasets. For DSA and
PAMAP2 the first 1000 samples of each activity from each user
were used, and for HAR the first 2000 samples were used.

2Available at: http://www.cs.dartmouth.edu/
˜chenfang/proj_page/FXR_iccv13/index.php
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Table 1: Comparison of the leave-one-source-out classification accuracies for the sensor datasets. Bold-face values indicate the best perfor-
mance for each dataset.

k −NN l-SVM

Dataset DICA AE CAE Ours DICA AE CAE Ours k-NN SVM UDB LRE

DSA 87.81 90.11 95.02 94.16 87.18 91.63 93.68 94.67 87.46 86.15 88.61 91.73
HAR 68.44 76.25 84.11 84.03 63.31 76.69 83.15 84.68 65.27 73.95 75.86 80.41
OAR 73.35 78.88 84.92 87.18 74.42 76.17 86.35 88.86 71.57 71.42 76.68 79.15
PAMAP2 81.41 91.23 94.61 96.70 82.44 90.63 96.53 96.08 79.45 83.21 84.86 88.56

Avg. 77.75 84.12 89.67 90.52 76.84 83.78 89.93 91.10 75.94 78.68 81.50 84.96

Table 2: Comparison of the leave-one-source-out classification accuracies for the image datasets. Bold-face values indicate the best perfor-
mance for each dataset.

k −NN l-SVM

Train Set Test Set DICA AE CAE Ours DICA AE CAE Ours k-NN l-SVM UDB LRE

C, L, S P 59.26 60.01 62.16 61.80 59.14 59.10 61.86 62.45 59.03 58.86 54.29 60.58
C, L, P S 56.34 57.50 58.00 58.24 55.81 57.86 58.02 57.31 55.09 49.09 54.21 54.88
C, S, P L 53.47 57.63 59.32 60.11 55.11 58.20 59.67 59.80 52.64 52.49 58.09 59.74
L, S,P C 85.89 86.44 88.12 88.43 86.05 86.67 89.88 89.07 84.73 77.67 87.50 88.11

Avg. 63.74 65.40 66.90 67.15 64.03 65.46 67.36 67.16 62.87 59.53 63.52 65.83

Baselines: To evaluate the performance and efficiency
of our algorithm, we compare it with the following base-
line methods: (i) DICA and UDICA: kernel-based optimi-
sation algorithms that learn an invariant transformation to
minimize the dissimilarity across domains, (ii) AE (Autoen-
coder) (Bengio et al. 2007): a basic autoencoder trained by
stochastic gradient descent, (iii) CAE (Contractive Autoen-
coder) (Rifai et al. 2011): an autoencoder with an additional
penalty, the Frobenius norm of the Jacobian matrix of the
encoder activations with respect to the input, to yield robust
features on the activation layer, (iv) k-NN: k Nearest Neigh-
bour, we use k = 1, (v) l-SVM: Support Vector Machine
with linear kernel, (vi) UDB (Khosla et al. 2012): a max-
margin SVM-based framework for reducing dataset bias,
(vii) LRE-SVM (Xu et al. 2014): a non-linear exemplar-
SVMs model with a nuclear norm regularisation to impose
a low-rank likelihood matrix.

The hyper-parameters of all the algorithms are adjusted
using grid search based on their best performance on a vali-
dation set. Algorithms i− iii are used for feature extraction.
For classification purposes, the learnt features from these al-
gorithms are used with k-NN and multi-class SVM with a
linear kernel l-SVM. Since the focus of the experiment is to
evaluate the effectiveness of the studied methods, we utilize
simple classification algorithms, otherwise more advanced
approaches can be employed. For algorithms iv−vii no fea-
ture extraction has been conducted, and the algorithms have
been applied directly on the (normalised) raw datasets.

Metric: We use the Receiver Operating Characteristic
(ROC) curve and the corresponding Area Under the Curve
(AUC) to measure the performance of all the methods. The
reported training times are in seconds using MATLAB on
an Intel Core i7 CPU at 3.60 GHz with 16 GB RAM. The
stated AUC values and training times are the average of 10

Table 3: Wilcoxon test to compare the performance of the
top four algorithms regarding the p-values. The values in
bold indicate that the null hypothesis is rejected for the cor-
responding method. R+ corresponds to the sum of the ranks
for the method on the first column, and R− for our method.
The X(k) and X(l) indicate the result of algorithm X using
k-NN and l-SVM, respectively.

Ours(k) Ours(l)

Method R+ R− p R+ R− p

AE(l) 0 36 0.0078 0 36 0.0078
AE(k) 0 36 0.0078 0 36 0.0078
DAE(l) 9 27 0.2500 11 25 0.3828
DAE(k) 18 27 0.2500 7 29 0.1484
UDB 0 36 0.0078 0 36 0.0078
LRE 0 36 0.0078 0 36 0.0078

folds for each experiment. For SVM based methods LIB-
SVM was used.

Accuracy Evaluation

To assess the generalization ability of our algorithm across
sources, we conduct our experiments on sensor and image
datasets. All the records in each dataset are normalized be-
tween [0,1]. For each dataset, we take one subject (i.e.,
source) as the test set and the remaining subjects as the train-
ing set, i.e., leave-one-source-out, and repeat this for all the
sources. In Table 1, due to the high number of sources in
the sensor datasets, the average classification accuracy over
all the sources is reported, while in Table 2 the accuracy for
each individual source is reported. The stated values are the
percentage accuracy. Since the accuracy results of UDICA
and DICA are similar on these dataset, only the results of
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DICA have been included in the tables.
Comparing the performance of the proposed algorithm

with conventional machine learning algorithms, l-SVM and
k-NN, the large performance gap, i.e., about 5% on aver-
age, for both sensor image datasets indicates that our method
is effective in reducing distribution bias. This improvement
can also be observed in the comparison with the domain gen-
eralization approaches, DICA, UDB, and LRE, however, our
algorithm outperforms these approaches as well. Over all,
our algorithm delivers the best performance on the bench-
mark datasets with an average accuracy of 91% and 67% for
sensor and image datasets. The closest results are from CAE,
with respectively 90% and 67% accuracy.

To statistically assess the significance of the performance
between our algorithm and the top four algorithms, we use
the Wilcoxon test. Table 3 summarizes these results. The p-
value associated with each comparison represents the low-
est level of significance of a hypothesis that results in a re-
jection. This value allows one to identify if two algorithms
have significantly different performance and to what extent.
The returned p-values for all the algorithms, except CAE,
reject the null hypothesis for the accuracy measure with a
level of significance of α = 0.05, indicating the superior-
ity of our algorithm over the compared methods. Although
our algorithm is not statistically better than CAE, it deliv-
ers much higher ranks (R−) in this comparison. Fig. 2 il-
lustrates the behaviour of our algorithms on the five image
classes. From the left, the first column shows some example
of images misclassified by all the approaches, the second
and third columns show the images that were misclassified
by SVM and CAE, but correctly labeled with our algorithm.

A possible explanation for effectiveness of our algorithm
can relate to the dimensionality of the manifold in feature
space where samples concentrate. We hypothesise that if
features concentrate near a low dimensional sub-manifold,
then the algorithm has found invariant features and will gen-
eralize well. Moreover, the landmark selection step elimi-
nates the noisy records and outliers, giving a boost to the
generalization.

Efficiency Evaluation

To improve generalization, our algorithm substantially re-
duces the number of features as well as the number of sam-
ples. To study this impact, we compare the training time of
our algorithm with CAE, which has the second best accu-
racy, and l-SVM. In this experiment we use a sensor dataset,
OAR, and a set of image samples including the L, P, and S
datasets. Figure 3 demonstrates the result of this compari-
son. Comparing the training time of l-SVM with our algo-
rithm, the advantage of our subspace landmark selection is
immediately revealed. Reducing both the number of features
and samples substantially diminishes the training time. Even
in comparison with CAE, the training time of our algorithm
increases at a lower rate. The training time of these three
methods are comparable only when the size of data is small,
e.g., when in OAR the number of records is less than 5000.
But in larger datasets like images where the dimensionality
of data is usually high, even for small numbers of records
our algorithm runs about twice as fast.
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by our Algorithm 

Figure 2: Some examples of misclassified test samples from
different sources.
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Figure 3: Comparison of the training time of our algorithm
with CAE and l-SVM.

Conclusion

Distribution similarity is central to the multi-source learning
problem. The need for adaptive classifiers arises in many ap-
plication domains, especially in IoT applications involving a
variety of devices. While existing approaches focus on cor-
recting shift-distribution between data sources by learning a
projection to a latent space, we have advanced the field by
proposing a unified approach to subspace learning and land-
mark selection. At the core is the idea of exploiting land-
marks in a lower dimensional space, and identifying samples
from the training sources that share grater statistical similar-
ity within this space. We applied the model to sensor and vi-
sual benchmark datasets and empirically verified the conver-
gence of the training algorithm. The results are very promis-
ing, they are on par or better than state-of-the-art methods in
classification accuracy, and with significant gains in terms
of training time. In future work, we will explore the perfor-
mance of our algorithm in other areas of machine learning
such as streaming video data, where the appearance of ob-
jects transforms in real-time.
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