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Abstract

We study the problem of recovering a t-sparse vector ±x0

in R
n from m quadratic equations yi = (aT

i x)
2 with noisy

measurements yi’s. This is known as the problem of com-
pressive phase retrieval, and has been widely applied to X-
ray diffraction imaging, microscopy, quantum mechanics, etc.
The challenge is to design a a) fast and b) noise-tolerant al-
gorithms with c) near-optimal sample complexity. Prior work
in this direction typically achieved one or two of these goals,
but none of them enjoyed the three performance guarantees
simultaneously. In this work, with a particular set of sens-
ing vectors ai’s, we give a provable algorithm that is ro-
bust to any bounded yet unstructured deterministic noise. Our
algorithm requires roughly O(t) measurements and runs in
O(tn log(1/ε)) time, where ε is the error. This result ad-
vances the state-of-the-art work, and guarantees the applica-
bility of our method to large datasets. Experiments on syn-
thetic and real data verify our theory.

Introduction

Phase retrieval is a new research topic in machine learn-
ing, signal processing, and statistics. In machine learning
and signal processing, the goal of phase retrieval is to re-
cover a hidden signal +x or −x from a quadratic system
{yi = (aTi x)

2}mi=1 with known sensing vectors {ai}mi=1 and
measurements {yi}mi=1. In statistics, the x indicates a set of
parameters remaining estimated for some probability distri-
bution. The problem becomes more challenging when the
signal, or the unknown parameter vector x, is t-sparse and
only m = Õ(t)1 equations are available. This is known as
the problem of compressive phase retrieval, and has been
widely applied to X-ray diffraction imaging (Schniter and
Rangan 2015), microscopy (Miao et al. 2008), quantum me-
chanics (Corbett 2006), and many other domains. See Figure
1 for an application of compressive phase retrieval in image
sensing and restoration.

Despite a large amount of work on compressive phase
retrieval, many fundamental problems remain unresolved.
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1We denote by Õ(·) the simplicity of O(·) that omits the loga-
rithm factor.

(a) real scene (b) recovered im-
age

Figure 1: Recovery results of our algorithm in the framework
of compressive phase retrieval, where the high-resolution
real image contains a crescent Uranus taken by Voyager.

One long-standing challenge is designing fast algorithms
with near-optimal sample complexity. If there is no speed re-
quirement, the recovery problem can be solved easily by di-
mension lifting approach, whose basic idea is to convert the
problem of recovering a sparse signal ±x ∈ R

n to the prob-
lem of recovering a rank-one matrix xxT ∈ R

n×n by im-
plementing nuclear norm minimization (Candès, Strohmer,
and Voroninski 2013) or matrix completion (Candès, Li, and
Soltanolkotabi 2015; Zhang, Lin, and Zhang 2016; Zhang
et al. 2015b). While this method enjoys intriguing perfor-
mance guarantee with near-optimal sample complexity, the
computational cost is large (Bahmani and Romberg 2015).
This definitely limits its applicability to large datasets.

When the measurements are noisy, the problem becomes
even more challenging. Prior work in this direction mostly
assumed certain statistical structures on the noise model,
e.g., the noise is subject to Poisson distribution, and max-
imized the likelihood function corresponding to the struc-
ture. However, when no assumption is made on the nature of
noise, the likelihood functions are unavailable and so these
approaches do not work. In this paper, with a particular set of
sensing vectors, we propose a provable algorithm that is fast,
noise-tolerant, and performs well with near-optimal sample
complexity.

Related Work

Lots of literatures have investigated the problem of gen-
eral (a.k.a. non-sparse) phase retrieval (PR) in recent years.
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They proposed various algorithms with sample complexity
of the same order as the ambient dimension, up to a logarith-
mic factor. Specifically, (Candès, Strohmer, and Voroninski
2013) proposed the dimension lifting. Although the method
enjoys O(n log n) sample complexity, the computational
cost is too high to be applied to the real applications. To
resolve the issue, (Candès, Li, and Soltanolkotabi 2015)
designed Wirtinger Flow (WF) method (Candès, Li, and
Soltanolkotabi 2015; Zhang and Liang 2016) with sample
complexity as small as O(n log n). In comparison with di-
mension lifting, the time complexity is onlyO(n3 log(1/ε)),
which is significantly faster. Here ε indicates the algorithmic
precision. Later, Truncated Wirtinger Flow (TWF) (Chen
and Candès 2015) reduced the sample complexity to O(n)
and time complexity to O(n2 log(1/ε)) by truncating large
abnormal measurements.

The exploration of sparse structures (Zhang et al. 2015a;
2016) in the phase retrieval context (compressive phase re-
trieval, CPR) has drawn lots of attention as well. A natu-
ral approach is to inherit the techniques of general phase
retrieval while imposing the sparsity constraint. Specifi-
cally, (Moravec, Romberg, and Baraniuk 2007) formulated
the problem of sparse phase retrieval as an �1 minimiza-
tion problem with a non-convex constraint. They empiri-
cally showed that the t-sparse signal can be successfully
estimated by only O(t log n

t ) measurements (Shechtman,
Beck, and Eldar 2014). Unfortunately, these non-convex
methods typically lack global convergence guarantees. To
resolve the issue, some researchers proposed relaxing the
non-convex problems to a convex one. Probably one of
the most popular techniques is the sparse dimension lift-
ing method. The method lifts the target vector x to a
rank-1 sparse matrix xxT and do nuclear norm minimiza-
tion to recover the hidden signal (Li and Voroninski 2013;
Ohlsson et al. 2012). The sample complexity is as low as
O(t2 log n) with Gaussian sensing vector (Li and Voroninski
2013). Recent work (Iwen, Viswanathan, and Wang 2015;
Bahmani and Romberg 2015) further reduced the sample
complexity to O(t log n

t ) using constrained sensing vectors.
They assumed that the measurement vectors lie in a random
low-dimensional subspace and the recovery process can be
decomposed into two steps, both of which are convex mod-
els. However, the computational cost of these methods is too
large to be applied to high-dimensional signal processing.

Our Contributions

In this paper, we design a fast, noise-tolerant algorithm with
near-optimal sample complexity. Our algorithm advances
the state-of-the-art approaches in the following aspects:

• Regarding the sample complexity, our algorithm requires
only Õ(t) measurements, which matches the information-
theoretic limit up to a logarithm factor.

• The time complexity of our algorithm is O(tn log(1/ε))
for error ε, which is significantly faster than the dimension
lifting based methods. This result is comparable with the
computational cost of compressive sensing problem, al-
though the problem of compressive phase retrieval is more
challenging than that of compressive sensing.

Table 1: Performance indexes in phase retrieval for t-sparse
n-dimensional signals with error ε

WF TWF TWF+Sparse
Noise Possion Possion Sub-exponential

Sample Õ(n) O(n) Õ(t2)

Time Õ(n3 log(1/ε)) O(n2 log(1/ε)) ungiven*
ECPR SparsePR Ours

Noise Unstructured Unstructured Unstructured

Sample Õ(t) Õ(t) Õ(t)

Time ungiven* ungiven* Õ(tn log (1/ε))

• Our algorithm is robust to any bounded yet unstructured
noise, with provable intriguing performance guarantee.
We show that the �2 error of our estimator decreases in
the same order of O(1/m).

The comparison of all these three aspects in various algo-
rithms is presented in Table 1. The novelty of our algorithm
is a refinement step inspired from disagreement based active
learning. This step enables us to exactly recover the under-
lying signal x0 with finite samples in the noise-free setting,
and significantly reduces the error of our estimator in the
noisy scenario.

Preliminaries

Problem Description: The problem of phase retrieval de-
rives from solving a linear system. In the noiseless case,
given m linear equations bi = aTi x0, i = 1, 2, ...,m, where
ai’s ∈ R

n are sensing vectors, yi’s > 0 are measurements
and x0 ∈ R

n is the unknown target signal, the problem
of phase retrieval assumes that the phases/signs of bi’s are
unavailable and aims at recovering ±x0 from the quadratic
equations b2i = yi = (aTi x0)

2, i = 1, 2, ...,m. This prob-
lem becomes more challenging when the underlying vector
x0 is t-sparse and the number of equations m is far less than
the ambient dimension n. This is known as the problem of
Compressive Phase Retrieval. Our goal is to design an al-
gorithm with sample complexity Õ(t) and time complexity
Õ(tn), advancing the state-of-the-art results.
Noise Model: In the noisy case, an adversary can add any
bounded yet unstructured noise {ηi}mi=1 to the clean mea-
surements, namely,

yi = (aTi x0)
2 + ηi > 0, i = 1, 2, ...,m. (1)

Here ηi’s are deterministic constants, and the magnitude of
noise is bounded such that ‖[η1; ...; ηm]‖2 ≤ η. Beyond that,
no other assumptions are made on the nature of noise and so
even adversarial noise is allowed. We investigate the possi-
bility of recovering the hidden signal in this worst case.
Sampling Model: To efficiently sense the sparse signal, we
study the problem of noisy compressive phase retrieval with
a particular set of sensing vectors ai’s of the form

ai = ΨTwi ∈ R
n, (2)

where Ψ ∈ R
d×n and wi’s ∈ R

d are known a priori. Specif-
ically, we assume that wi’s are drawn i.i.d. fromN (0, I) of
R

d, and Ψ is a restricted isometry matrix such that

(1− δ2t)‖x‖22 ≤ ‖Ψx‖22 ≤ (1 + δ2t)‖x‖22, (3)
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for a constant δ2t ∈ [0, 1] and all 2t-sparse vectors x.
Therefore, the sensing vectors {ai}mi=1 lie on a fixed d-
dimensional subspace — the row space of matrix Ψ. Such
a sampling scheme is realistic in lots of interesting applica-
tions (Bahmani and Romberg 2015):
• In the application of imaging through scattering media,

one usually models the optical transfer function by a ran-
dom matrix, a.k.a. the transfer matrix. In this scenario, dif-
ferent LED excitations lead to illumination patterns that
are in the row space of the transfer matrix (Bertolotti et
al. 2012; Liutkus et al. 2014).

• In the application of estimating convariance matrix, con-
variance matrices that are simultaneously low-rank and
sparse can be sketched by sensing vectors that lie in a low-
dimensional subspace (Chen, Chi, and Goldsmith 2015).

• In the application of one-bit camera (Duarte et al. 2008),
one modulates the sparse signal x0 in the frequency do-
main and obtain FTDFx0, where F is the unitary dis-
crete Fourier transform matrix and D is a diagonal matrix
with Rademacher diagonal entries. In this setting, we can
characterize the sensing vectors by setting Ψ = F in our
sampling model.

Main Results

In this section, we propose a fast algorithm for robustly
recovering a sparse signal from phase-quantized measure-
ments, and develop our main theoretical contributions under
bounded yet unstructured noise. Our algorithm is robust and
requires few measurements: With O(t poly(log n)) samples
the algorithm suffices to converge to the underlying t-sparse
signal in R

n with provable small error. The time complexity
of our algorithm is O(tn log(1/ε)), which is significantly
faster than dimension lifting based methods (Candès, Li,
and Soltanolkotabi 2015; Candès, Strohmer, and Voroninski
2013; Bahmani and Romberg 2015).

Recovery Algorithm

Given a sensing vector a ∈ R
n and the measurement y =

〈a,x0〉2, to recover the underlying t-sparse signal x0 ∈ R
n,

we maximize the covariance between y and 〈a,x〉2 over the
candidate space K = {x ∈ R

n : ‖x‖0 ≤ t, ‖x‖2 ≤ 1}.
Namely, we are interested in the optimization problem

max
x∈K

E(〈a,x0〉〈a,x〉)2. (4)

Maximizing (4) over the candidate space is a typical non-
convex program which cannot be solved in polynomial time.
To mitigate the computational issue, we take into account the
sampling strategy of (2). Roughly speaking, our main pro-
cedures are a) projecting the high-dimensional signal of Rn

to a low-dimensional space R
d = R

Õ(t) by our sampling
scheme, and optimizing model (4) in the low-dimensional
space without the constraint set K, which can be done via
a closed-form solution, and b) recovering the underlying
sparse signal by compressive sensing techniques. To this
end, our algorithm has an initialization step and a refine-
ment step for procedure a), and a step of sparse recovery for
procedure b).

Figure 2: Illustration of agreement region of ẑ (AgrReg(ẑ))
and Ψx0 modulo a global sign. In the red shadow area,
sign(wT

i Ψx0) = ±sign(wT
i ẑ) for all ai’s. It is not hard

to see that the agreement region becomes larger as ẑ gets
closer to Ψx0.

Initialization Step: In the low-dimensional space R
d, we

approximate the expectation in the objective function of (4)
with the empirical average. By our sampling oracle of (2),
the objective function can be approximately rewritten as

Ey〈a,x〉2 ≈ 1

m

m∑
i=1

yi〈ΨTwi,x〉2

=
1

m

m∑
i=1

yi〈wi,Ψx〉2 � 1

m

m∑
i=1

yi〈wi, z〉2.
(5)

Fortunately, the problem of maximizing (5) has a closed-
form solution, which is the leading eigenvector of matrix
1
m

∑m
i=1 yiwiw

T
i . Our theoretical analysis shows that the

initialization step outputs a solution of error ε by a high prob-
ability, provided that the sample size isO(ε−2t poly(log n)).
Recovery via Refinement: Although the initialization step
enjoys solid theoretical guarantee, the sample complexity of
O(ε−2t poly(log n)) implies infinitely many measurements
when the error ε goes to zero, even in the noise-free set-
ting. To alleviate this issue, we are inspired from the fact that
the problem of phase retrieval is as easy as solving a linear
system, provided that the phases of those measurements are
known a priori. To exploit this, we note that the output of
initialization step already contains certain label information.
Specifically, we first run the initialization step and obtain a
solution ẑ with small constant error, which implies a small
constant angle between ±Ψx0 and ẑ. For this step, we only
needO(t poly(log n)) samples. We then safely label all wi’s
lying in the agreement region of Ψx0 and ẑ with correct
phases modulo a global sign (See Figure 2), and solve the
resultant linear system by the least squares methods.
Sparse Recovery: As the operator Ψ is an almost isomet-
ric mapping from R

n to R
d for any t-sparse signal, we

can hopefully recover the signal in the original Rn space
by standard compressed sensing techniques. Our three-stage
approach is summarized in Algorithm 1.
Time Complexity: The initialization step computes the
leading eigenvector of a d × d matrix and runs in O(d2)
time. The refinement step solves a least squares problem,
which requires at most O(d3) time. For the step of sparse
recovery, solving an �1 norm minimization problem needs
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O(dn log(1/ε)) time by alternating direction method of
multipliers (Hong and Luo 2012), where ε indicates the er-
ror. As d = O(t poly(log n)) � n, the running time of
our algorithm is O(tnpoly(log n) log(1/ε)), which is sig-
nificantly faster than dimension lifting methods for sparse
recovery (Bahmani and Romberg 2015).

Algorithm 1 Robust Recovery of Sparse Signal by Phase
Retrieval

Input: A set of sensing vectors {ai ∈ R
n : i =

1, 2, ...,m} drawn according to sampling oracle (2),
where wi’s ∈ R

d are i.i.d. sampled from the Gaussian
distribution N (0, I); A set of measurements {yi : i =
1, 2, ...,m} generated by (1).
Initialize: Solve (6) and obtain the optimal ẑ:

ẑ := argmax
z

1

m

m∑
i=1

yi(w
T
i z)

2, s.t. ‖z‖2 ≤ 1. (6)

Refine:
1. Determine the index set Ω = {i : wi ∈ AgrReg(ẑ)}
according to AgrReg(ẑ) in Figure 2 or (9).
2. Construct design matrix and b, where WΩ: is to extract
the rows of W in the index set Ω:
W =

[
wT

1 ; . . . ;w
T
m

]
Ω:

; b =
[√

y1;
√
y2; . . . ;

√
ym

]
Ω:

.
3. Allocate phases to vector b according to ẑ, modulo a
global sign.
4. Solve the least squares problem

z̃ := argmin
z

‖Wz− b‖22, (7)

Recover: Sparse recovery by

x̃ := argmin
x

‖x‖1, s.t. ‖z̃−Ψx‖2 ≤ O(
√

η/m). (8)

Output: Sparse estimator x̃.

Recovery Guarantee

The analysis on the optimization problems (6), (7), and (8)
leads to the following guarantee on Algorithm 1.
Theorem 1. Let {ai}mi=1 ∈ R

n be random vectors sampled
i.i.d. according to the sampling model in the preliminaries
section, and d ≥ Ct log(n/t). Assume that the measure-
ments {yi}mi=1 follow the model yi = 〈ΨTwi,x0〉2 + ηi.
Let x0 ∈ R

n be the underlying t-sparse signal such that
‖Ψx0‖ = 1, and m ≥ c0d log

4
(

d
δε

)
. Then with probability

at least 1− δ, the output x̃ of Algorithm 1 satisfies

min±x0

‖x̃± x0‖2 ≤ √η/m.

Theorem 4 implies strong guarantee on the recoverability
of Algorithm 1: The algorithm can approximately recover
the underlying signal with small error under the adversarial
noise, if the sample size is of order O(t poly(log n)). When
there is no noise, our algorithm exactly recovers the target
vector modulo a global sign.

We compare our result with several related line of re-
search in the prior work. The first is the paper of Candès

et al. (Candès, Li, and Soltanolkotabi 2015), that gives sam-
ple complexity bound in the order of O(n log n) in the non-
sparse case, via Wirtinger flow. Later, Chen et al. (Chen and
Candès 2015) improved the result to O(n) by truncating
those measurements of large magnitude. The noise model in
their work is restricted to the Possion distribution. In com-
parison, our work improves over these results in two-fold:
a) we take into account the sparsity structure of the under-
lying signal, reducing the sample complexity to only having
a logarithm dependence on the ambient dimension n; b) our
noise model may have arbitrary structure, so even adversar-
ial errors are allowed.

There are several recent work that studies the problem
of compressive phase retrieval. One of them is the paper
of Bahmani and Romberg (Bahmani and Romberg 2015),
which requires O(t poly(log n)) samples and much time to
approximately recover the target signal under the same sam-
pling model as ours. Compare to this, our algorithm has
comparable sample complexity, while our time complex-
ity Õ(tn) is significantly lower than that of their approach.
Dong et al. (Yin et al. 2015) used sparse-graph codes to for-
mulate a PhaseCode-style algorithm with similar complex-
ity; however, its measurement matrix is designed particu-
larly and does not cohere with the real applications, such as
imaging through scattering media. Cai et al. (Cai, Li, and Ma
2015) proposed applying Wirtinger flow based method to the
problem of sparse phase retrieval, with sample complexity
O(t2 poly(log n)). In comparison, our result improves over
theirs in the order of t.

Proof Outline

Consider the optimization problem in the initialization step:

max
‖z‖2≤1

1

m

m∑
i=1

((wT
i Ψx0)

2 + ηi)(w
T
i z)

2.

Denote by fx0
(z) the objective function whose subscript x0

indicates that f is a random function with distribution de-
pending on x0. We claim that for any z that is far away from
±Ψx0, fx(z) cannot be small. To see this, we begin with an
analysis on the expectation of the objective function fx0

(z).
Lemma 2 (Expectations). Let ‖Ψx0‖2 = 1. Suppose that
{wi}mi=1 are drawn i.i.d. from the Gaussian distribution
N (0, I). Then for any z ∈ R

d, we have

Efx0
(z) = ‖z‖22

(
1 +

2zTΨx0x
T
0 Ψz

‖z‖22
+

1

m

m∑
i=1

ηi

)
,

In particular, if we further have ‖z‖2 = 1, then
E[fx0(Ψx0)− fx0(z)] ≥ 1

2 min±x0 ‖z±Ψx0‖22.
Proof. Note that E(wT

i Ψx0)
2wiw

T
i = I + 2Ψx0x

T
0 Ψ

T .
So we have

E(wT
i ψx0)

2(wT
i z)

2 = zT [E(wT
i Ψx0)

2wiw
T
i ]z

= ‖z‖22 + 2zTΨx0x
T
0 Ψ

T z.

We also have E(wT
i z)

2 = ‖z‖22. So

Efx0(z) = ‖z‖22
(
1 +

2zTΨx0x
T
0 Ψ

T z

‖z‖22
+

1

m

m∑
i=1

ηi

)
.
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Furthermore, if ‖z‖2 = 1, then

E[fx0
(Ψx0)− fx0

(z)] = 2〈Ψx0,Ψx0〉2 − 2〈z,Ψx0〉2

= 2 sin2
(
min±x0

θ(z,±Ψx0)

)
≥ 1

2
min±x0

θ2(z,±Ψx0) ≥ 1

2
min±x0

‖z±Ψx0‖22.

Lemma 2 asserts that the optimal solution ẑ to the ex-
pected form of (6)

max
z

E

[
1

m

m∑
i=1

yi(w
T
i z)

2

]
, s.t. ‖z‖2 ≤ 1,

is exactly the desired vector Ψx0 modulo a global sign. By
concentration of measure, the output of initialization step
will be sufficiently close to Ψx0 when the sample com-
plexity m is large enough. To this end, the following result
shows that fx0

(z) does not deviate far away from Efx0
(z)

uniformly for all z ∈ {z : ‖z‖2 ≤ 1}, when m is large. The
proof can be found in the supplementary material.
Lemma 3 (Concentration of Measure). Let z ∈ {z ∈ R

d :
‖z‖2 ≤ 1} and {wi}mi=1 be random vectors i.i.d. sam-
pled from the Gaussian distribution N (0, I). Suppose that
m ≥ c0d log

4
(
1
δ

)
ε−2 with a constant c0, then with proba-

bility at least 1−δ, supz |fx0
(z)− Efx0

(z)| ≤ ε, where the
supremum is over all z ∈ {z ∈ R

d : ‖z‖2 ≤ 1}.
Now we prove the correctness of initialization step.

Theorem 4. Let {ai}mi=1 ∈ R
n be random vectors sampled

i.i.d. from the sampling model in the preliminaries section.
Assume that {yi}mi=1 follow the model yi = (aTi x0)

2 + ηi.
Let δ > 0 and m ≥ c0d log

4
(
1
δ

)
ε−2. Then with probabil-

ity at least 1 − δ, the solution ẑ to the convex program (6)
satisfies min±x0

‖ẑ±Ψx0‖22 ≤ ε.

Proof. The proof is an immediate result of Lemmas 2 and 3.
Specifically, note that the optimal solution ẑ to (6) satisfies
‖ẑ‖2 = 1. Thus

0 ≤ fx0(ẑ)− fx0(Ψx0) (ẑ is the optimal solution)

≤ Efx0(ẑ) +
ε

4
− Efx0(Ψx0) +

ε

4
(By Lemma 3)

= E[fx0(ẑ)− fx0(Ψx0)] +
ε

2

≤ −1

2
min±x0

‖ẑ±Ψx0‖22 +
ε

2
(By Lemma 2).

Thus we obtain that min±x0
‖ẑ±Ψx0‖22 ≤ ε.

We then prove the correctness of refinement step, i.e.,
model (7). We need the following lemma on the probabil-
ity of Gaussian vector falling in the disagreement region.
Lemma 5 ((Balcan, Blum, and Vempala 2014)). Denote by
D an isotropic log-concave distribution in R

n. Then there
exist constant c and c′ such that for any two vectors u and v
in R

n we have that

cθ(u,v) ≤ Pr
x∼D

[sign(uTx) �= sign(vTx)] ≤ c′θ(u,v).

Lemma 5 states that the disagreement probability only de-
pends on the angle between two vectors, being independent
of ambient dimension. Now we are ready to prove the the
correctness of refinement step.

Proof. Let z0 = Ψx0. By Theorem 4, with m ≥
c0d log

4
(
1
δ

)
the initialization step outputs a solution

with small constant error ε. Since min±z0
θ(ẑ,±z0) ≤

2min±z0
‖ẑ ± z0‖2 ≤ 2

√
ε, the agreement region of ẑ and

±z0 contains the set

AgrReg(ẑ) = {w ∈ R
d : sign(ẑ ·w) = sign(v ·w),

∀v satisfies θ(ẑ,v) ≤ 2
√
ε}∪

{w ∈ R
d : sign(−ẑ ·w) = sign(v ·w),

∀v satisfies θ(−ẑ,v) ≤ 2
√
ε} (9)

which, by Lemma 5, has probability at least 1 − c
√
ε on

the event that wi’s lie in this region for a constant c. So in
average, there will be m(1 − c

√
ε) ≥ c0d log

4
(
1
δ

)
(1 −

c
√
ε) many points falling in AgrReg(ẑ). Using a Cher-

noff bound, the number of examples falling in the agree-
ment region grows in the same order of its expectation, i.e.,
c′d log4

(
1
δ

)
(1 − c

√
ε) for some constant c′, with proba-

bility at least 1 − δ. By standard analysis on sub-Gaussian
matrix, the smallest singular value of W is in the order of
Θ(
√
m) (Vershynin 2010). On the other hand, the optimal

solution to the least squares problem (7) is z̃ = W†b. So
‖z̃− z0‖2 ≤ √η‖W†‖ = √η/σm(W) = O(

√
η/m).

Finally, a straightforward application of results on com-
pressive sensing leads to the result of Theorem 1.

Numerical Experiments

In this section, we implement numerical simulations to eval-
uate the performance of the proposed Algorithm 1 and com-
pare it with other competing methods.

Synthetic Simulations

We first investigate the recovery performance of the pro-
posed algorithm 1. We fix the dimension of the ground-
truth sparse real signal x0 to be 256 (i.e. n = 256). The
non-zero indices of x0 are independently and randomly se-
lected within uniform distribution; entry values are drawn
i.i.d. from N (0, 1) and normalized, i.e. ‖x0‖2 = 1. Denote
the estimated signal as x̃; since CPR focuses on the direction
of the target signal, we evaluate the recovery performance by
measuring the relative error defined by min±x̃

‖x̃−x0‖2

‖x0‖2
. The

entries of noise vector η are drawn i.i.d from the Gaussian
mixture distribution of four Gaussian components with iden-
tical variance σ2. We denote σ2 as the noise level and in our
experiment we choose 10−2 or 10−4. The sensing vectors
{wi}mi=1 are generated i.i.d. from wi ∼ N (0, I) on R

d and
the compressive matrix Ψ with restricted isometry property
is also Gaussian with i.i.d. N (0, 1

d ) entries.
There are three parameters on the recovery accuracy, i.e.

the support size t, the low dimension d = O(t log(n/t))
and the sample size m. We select the support size t in set
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Table 2: The performance of 100 trials of different algo-
rithms with n = 256.

relative error
t TWF ECPR SparsePR Ours
6 0.6081 0.0568 0.0566 0.0605
8 0.5142 0.0629 0.0626 0.0624

10 0.4367 0.0559 0.0556 0.0533
12 0.3092 0.0576 0.0590 0.0585
14 0.1524 0.0575 0.0577 0.0580

average running time (s)
t TWF ECPR SparsePR Ours
6 0.0816 4.0276 4.0301 0.0102
8 0.0918 5.0880 5.0919 0.0166

10 0.1063 6.4807 6.4871 0.0267
12 0.1169 8.2197 8.2098 0.0350
14 0.1295 10.3199 10.3323 0.0477

{2, 4, 6, ..., 20} and vary the values of d and m to investigate
the influence of their choices on the recovery accuracy of
our method. All experiments are implemented over 100 tri-
als and for the “Recover” step in Algorithm 1 we utilize the
SPAMS toolbox (Mairal et al. 2009). Figure 3 shows the 0.9
quantiles of the relative error versus k for different choices
of d and m, and the corresponding average running time. As
shown in Figure 3, the recovery error is satisfactory and rel-
atively stable with noise for different sparsity levels. With
the increase of sample size m, the recovery error signifi-
cantly drops due to its contribution to a more accurate initial
guess and better refinement results. Besides, larger embed-
ding dimension d also contributes more to the improvement
of recovery accuracy. It may be intuitive to think that the
high noise level would have negative impact on the recovery
performance, however, our algorithm still has significant ro-
bustness against high-level noise. As for the efficiency per-
formance, it mainly depends on the values of m and d: m
dominates the computational cost of refinement step while d
is straightforwardly related to Steps 1 and 3. Note that there
is a tradeoff between recovery accuracy and efficiency, re-
flected by m and d: the larger m and d are, the better the
accuracy will be and the more time the algorithm will cost.

We also compare our algorithm to other state-of-the-art
methods, including ECPR (Bahmani and Romberg 2015),
SparsePR (Iwen, Viswanathan, and Wang 2015) and TWF
(Chen and Candès 2015). The generation scheme of ground-
truth signal x0, compressive matrix Ψ and sensing vectors
wis is the same as in the first experiment apart from the pa-
rameter choices. In specific, we choose d = �2t(1+log n

t )�,
m = 10d, σ2 = 10−2 in different t ∈ {6, 8, 10, 12, 14}.
Table 2 shows the 0.9 quantiles of the relative error in 100
trails, and also reports the average running time for all com-
peting methods. As shown in Table 2, the error results of
TWF are much larger (> 0.6) than the other three methods
(< 0.1), which results from that it does not explore the inher-
ent sparse structure of real signals. Our algorithm is compa-
rable with ECPR and SparsePR in the recovery performance,
and all of them can achieve excellent recovery accuracies.
However, our algorithm is exceedingly faster than the other
algorithms, i.e. 200 ∼ 300 times than ECPR and SparsePR.
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Figure 3: The recovery and efficiency performance of 100
trails w.r.t. different sparsity levels t for different choices of
m and d with n = 256. Specifically, d1 = �2t(1 + log n

t )�
and d2 = �2t log n

t �, where �·� denotes the smallest integer
larger than a real number.

Real Experiment: Image Recovery

We implement our algorithm in the image recovery problem.
We select an image of crescent Uranus taken by Voyager 2

shown in Figure 1 and vectorize it into a vector. Then we
draw a Gaussian compressive matrix Ψ and sensing vec-
tors wi as the synthetic simulations, and we recover the
whole image using our 3-stage algorithm with mixed Gaus-
sian noise level σ2 = 10−2. As shown in Figure 1, the re-
covered image is of high quality and little distortion. Note
that the additional light dots (emerging when zooming in
the recovered image) in the recovered image can be effec-
tively removed by various filtering methods, such as median
filtering. Also note that the comparable compressive algo-
rithms ECPR and SparsePR would be restricted on the lap-
top computer for the lifted signals would not fit into the lim-
ited memory budget.

Conclusions

In this paper, we investigate the problem of compressive
phase retrieval. There are three challenges in this field:
efficiency, robustness and sample complexity. Prior work
mostly covers one or two of these aspects, which limits their
applicability to real applications. To address the three chal-
lenges simultaneously, we propose a fast and robust algo-
rithm for compressive phase retrieval, which is able to han-
dle any bounded yet unstructured noise. For a t-sparse sig-
nal in R

n, our algorithm can recover the ground truth with a
small error using Õ(t) samples and finish in Õ(tn log(1/ε))
time, based on a series of theoretical analysis. Synthetic and
real experiments validate the superiority of our algorithm in
both recovery accuracy and computational efficiency.
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