
Scalable Graph Embedding for Asymmetric Proximity

Chang Zhou,1∗ Yuqiong Liu,1 Xiaofei Liu,2 Zhongyi Liu,2 Jun Gao1∗
1Key Laboratory of High Confidence Software Technologies, EECS, Peking University

{zhouchang,liuyuqiong,gaojun}@pku.edu.cn ∗Corresponding Authors
2Alibaba Group, {hsiaofei.hfl,zhongyi.lzy}@alibaba-inc.com

Abstract

Graph Embedding methods are aimed at mapping each ver-
tex into a low dimensional vector space, which preserves cer-
tain structural relationships among the vertices in the orig-
inal graph. Recently, several works have been proposed to
learn embeddings based on sampled paths from the graph,
e.g., DeepWalk, Line, Node2Vec. However, their methods
only preserve symmetric proximities, which could be insuf-
ficient in many applications, even the underlying graph is
undirected. Besides, they lack of theoretical analysis of what
exactly the relationships they preserve in their embedding
space. In this paper, we propose an asymmetric proximity
preserving (APP) graph embedding method via random walk
with restart, which captures both asymmetric and high-order
similarities between node pairs. We give theoretical analysis
that our method implicitly preserves the Rooted PageRank
score for any two vertices. We conduct extensive experiments
on tasks of link prediction and node recommendation on open
source datasets, as well as online recommendation services in
Alibaba Group, in which the training graph has over 290 mil-
lion vertices and 18 billion edges, showing our method to be
highly scalable and effective.

Introduction
In recent years, Graph embedding has drawn a lot of atten-
tions from the academic fields, due to its wide usage in many
real world applications such as Recommendations (Barkan
and Koenigstein 2016; Zhang et al. 2016), Social Network
Analysis (Perozzi, Al-Rfou, and Skiena 2014), Natural Lan-
guage Processing (Tang et al. 2015) and Knowledge Bases
(Lin et al. 2015; Wang et al. 2014). Graph Embedding tech-
niques try to embed each vertex from a graph into a low di-
mensional vector space, which preserves the structural simi-
larities or distances among the vertices in the original graph.
By doing that, we can represent a graph vertex in a vector
form, and use well-studied machine learning methods in the
vector space to do further mining tasks like clustering, clas-
sification and prediction.

There are many ways of learning node representations re-
cently, most of which adopt a random walk based sampling
procedure to exploit the network structure, e.g., Deepwalk
(Perozzi, Al-Rfou, and Skiena 2014), Node2Vec (Grover

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Leskovec 2016). However, none of them can preserve
asymmetric proximities in both undirected and directed
graphs, which may be critical in many tasks, e.g., link pre-
diction in social network, recommendation in e-commerce.
In addition, they do not give theoretical analysis of what ex-
actly the proximity they preserve by embedding the vertex
from the original graph structure.

B
A

C

B A C

(a) Directed

B
A

C

B A C

A C B

(b) Undirected

Figure 1: Asymmetric Proximity in both Directed and Undi-
rected Graphs. Intuitively, Sim(A,C) is not equal with
Sim(C,A) in both cases, due to their asymmetric local
structures. Even for undirected graphs, the learning model
should treat the two sampled paths C → B → A and
A → B → C differently as directed sequences, since the
probabilities of this two sampled paths are quite different,
which means the occurrence number of (C,A) and (A,C)
in a graph could vary a lot in many real world applications
that consider the asymmetric relations.

For instance, for the application of friends recommenda-
tion in social network like Twitter, the underlying directed
graph naturally has an asymmetric similarity or closeness
metric between any two nodes. As shown in Figure 1(a), A
has the potential to be liked by C while it’s not true the other
way round. Even for the undirected graph shown in Figure
1(b), we can intuitively see that A is much more important

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2942

for C than C is for A, since the probability that A arrives
at C is far less than the one that C arrives at A, due to their
asymmetric local structures.

For the undirected graph in Figure 1(b), let p1 be the path
of C → B → A sampled from C, and p2 be the path of A →
B → C sampled from A. We can see that, the probabilities
of the p1 (0.5) and p2 (0.08) are quite different, while the
methods proposed in (Perozzi, Al-Rfou, and Skiena 2014;
Grover and Leskovec 2016) all regard these two sampled
paths as the same, which take the path as a sequence of
words, and use skip-gram model proposed in (Mikolov et al.
2013) to update the embedded node vectors. Since p1 alone
does not necessarily mean the probability that A can pre-
dict C deserves as high as the probability of sampling this
path, the proximity of (A,C) could be over-estimated by
their methods.

Another important question about these graph embedding
methods is that, what exactly is the relationships they pre-
serve by embedding each vertex in the new latent space?
Node similarity has been studied for a very long time, and
there are plenty of ways defining node similarities or close-
nesses, as can be found in (Liben-Nowell and Kleinberg
2007). A correlation with the traditional similarity measure-
ment will give us a better understanding about what proper-
ties of the embeddings should have and how the method will
behave.

In this paper, we propose a scalable asymmetric proximity
preserving (APP for short) graph embedding method based
on random walk with restart, by only allowing stochastic
gradient updates on the forward direction of the sampled
path. We give a theoretical analysis that the asymmetric
structural relationship we try to preserve from the original
graph is the Rooted PageRank proximity between any two
vertices. We conduct extensive experiments to show the ef-
fectiveness of our method for link prediction tasks on open
source real world datasets, and we also evaluate our method
for the recommendation tasks in one of the online services
of Alibaba Group, in which the training graph has over 290
million vertices and 18 billion edges.

Related Work
Graph Embedding Methods
Graph embedding can be viewed as an dimensionality re-
duction approach, which maps each vertex into a latent vec-
tor space while preserves the topological proximities, e.g.,
similarities and distances, of vertex pairs introduced by the
original graph.

These pair-wise proximities can be expressed as matrices,
e.g., the first-order adjacency matrix and the higher-order
predefined node similarity matrix. While both linear and
non-linear dimensionality reduction methods such as PCA
and IsoMap have been studied extensively in the literature
(Wold, Esbensen, and Geladi 1987; Tenenbaum, De Silva,
and Langford 2000; Roweis and Saul 2000), they suffer from
severe computational problems and therefore cannot scale to
large graphs.

Recently, more computationally efficient models in word
representation learning for natural language processing

are proposed (Mikolov et al. 2013; Pennington, Socher,
and Manning 2014). The Skip-Gram model introduced by
(Mikolov et al. 2013) has been also used in the graph embed-
ding community recently. DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014) samples multiple paths from the graph, each of
which is regarded as a word sequence. For each vertex in the
sequence, it predicts the nearby vertices in both direction,
and updates the vector according to the Skip-Gram model.
It cannot capture asymmetric relationships in a graph, which
restricts its applications. Line (Tang et al. 2015) introduces
the 2-nd order proximity between a pair of vertices, which
encodes the similarity measured by their local neighbor-
hood. It samples individual edges in the graph, and updates
the corresponding vector according to SGD in the Skip-
Gram model. Line is also unable to capture the asymmetric
relationships in undirected graphs since it will update node
vectors from both sides of the sampled edges. In addition,
node pairs from two hop away will be regarded as nega-
tive labels, which makes it fail to preserve the higher-order
similarities. Higher order proximity is considered by many
traditional similarity measurements, e.g., SimRank (Jeh and
Widom 2002), Rooted PageRank (Haveliwala 2002), Katz
(Katz 1953), which have been proved to be effective in many
real world tasks. Node2vec offers a flexible sampling strat-
egy, with two parameters controlling the shape of the sam-
pled paths. However, it still ignores the asymmetric nature of
the path sampling procedure and trains the model symmet-
rically. Besides, none of them gives any theoretical analysis
about what vertex-pair relations they preserve.

Asymmetric graph embedding is also studied in (Ou et al.
2016), which reformats and factorizes the node-similarity
matrix in a graph, using a partial generalized SVD algo-
rithm. However, the similarity metrics are pre-defined, e.g.,
Katz, which is hard to generalize. In addition, the incremen-
tal update cannot be well supported by their matrix factor-
ization method, which is crucial in highly dynamic applica-
tions, e.g., Social Networks and Recommendation Systems.

Monte Carlo approach for Rooted PageRank
Rooted PageRank (Haveliwala 2002) can be regarded as
a similarity measurement between two vertices, and it’s
widely studied in both information retrieving and data min-
ing fields. Personalized PageRank vector p is defined as the
solution of the following equation (Haveliwala 2002),

p = (1− c) · pA+ c · r (1)

Here A denotes the transition matrix of the graph with
normalized rows and c ∈ (0, 1) is the teleportation proba-
bility. In addition, r is a preference vector inducing a proba-
bility distribution over the vertices. For a Rooted PageRank
vector w.r.t. v, r is a one-hot vector which is all zero except
the position of v to be 1.

Due to the complexity of the iteration-style computa-
tion, Monte Carlo approach is usually adopted when cal-
culating Rooted PageRank values (Gupta et al. 2013; Fog-
aras et al. 2005; Bahmani, Chowdhury, and Goel 2010;
Avrachenkov et al. 2007). To compute a rooted pagerank
vector for v, the Monte Carlo approach randomly samples N

2943

independent paths started from v, with stoping probability of
c. Then the rooted pagerank value can be approximated as,

pprv(u) =
#PathEndsAt(u)

N
(2)

The proof of the correctness and the bound can be found
in (Fogaras et al. 2005).

Asymmetric Embedding Approach
To preserve the asymmetric proximity, each vertex v needs
to have two different roles, the source role and the target
role, represented by vector �sv and �tv , respectively. For each
sampled path which starts from u and ends with v, (u, v) is
defined as a sampled vertex pair. We then define the proba-
bility that the source node u predicts the target node v as the
softmax function:

p(v|u) = exp (�su · �tv)∑
n∈V exp (�su · �tn)

(3)

where V is the vertex set of the graph. However, the ob-
jective of Equation 3 is hard to optimize, due to the costly
summation over all inner product with every vertex of the
graph. To improve the training efficiency, we adopt the Skip-
Gram with Negative Sampling(SGNS) method (Mikolov et
al. 2013), which turns to optimize the following objective
function for each observed (u, v) pair:

logσ(�su · �tv) + k · Etn∼PD
[logσ(− �su · �tn)] (4)

where we randomly samples k negative pairs according to
a vertex distribution of PD(n). Let #Sampledu(v) be the
number of sampled pair (u, v), we can then write down the
global objective as follows:

� =
∑

u

∑

v

#Sampledu(v) · (logσ(�su · �tv)

+k · Etn∼PD
[logσ(− �su · �tn)])

(5)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid func-
tion. Note that, we usually have #Sampledu(v) �=
#Sampledv(u), which means the observed numbers of pos-
itive pairs of (u, v) and (v, u) are different. This asymmetric
property is not captured by other random walk based em-
bedding methods, in which the multipliers are the same for
both (u, v) and (v, u). In graph, we sample a negative vertex
according to the uniform distribution, PD(v) ∼ 1

|V | , where
|V | is the total number of vertices.

Algorithm 1 describes our sampling and asymmetric
learning strategy. We follow the Monte-Carlo End-Point
sampling method mentioned in (Fogaras et al. 2005),
SampleEndPoint randomly samples a path p starting from
v with a stopping probability of α, and returns the end-
ing node u in p. This sampling method can be used to es-
timate Rooted PageRank value between each vertex pair,
and we use this to simulate the probability of v arrives
at u. Note that, this sampling procedure can be used in
both undirected/directed and weighted/unweighted graphs.

In weighted graphs, the transition probability between ver-
tices is calculated using normalized weight.

Once we get the source and target vector of each vertex,
we can represent the proximity of vertex pair (u, v) as the
inner product of su and tv .

Compared with methods like DeepWalk and Node2Vec,
we treat each sampled path as a directed sequence, in which
we observe positive vertex pairs only along the forward di-
rection. This strategy strictly conforms to the nature of the
asymmetric probabilities of path sampling, so that we can
capture the asymmetric proximity caused by the difference
of local graph structure, which will be further explained later
in this section.

Algorithm 1 APP Embedding Algorithm
1: Input: G(V, E, W), Jumping Factor α, Learning Rate η
2: Output: Embedded Vector of �sv , �tv for each v ∈ V
3: function PPREMBEDDING(G, α)
4: Initialize: �sv , �tv , ∀v ∈ V
5: for each v ∈ V do
6: for i = 0; i < #Sample; i++ do
7: u = SampleEndPoint(v)
8: StochasticGradientDescent(v, u, 1)
9: for j = 0; j < k; j ++ do

10: p = RandomUniform(V)
11: StochasticGradientDescent(v, p, 0)
12: end for
13: end for
14: end for
15: end function
16: function STOCHASTICGRADIENTDESCENT(v, u,

label)
17: �sv = �sv - η (σ(�sv · �tu)− label) · �tu
18: �tu = �tu - η (σ(�sv · �tu)− label) · �sv
19: end function

Optimization with Path Sharing: The basic algorithm
only produces one valid vertex pair in a single walk, which
can be optimized by path sharing techniques. In fact, as a
sampled path p = v1, v2, ..., vL, any suffix subpath, e.g.,
v2, ..., vL, can be viewed as an independently sampled path,
thus producing (vi, vL) as positive samples, where i =
1, 2, 3, ..., L − 1. Another strategy considers the prefix sub-
path as valid, e.g., v1, ..., vL−1, which is proved to be effec-
tive in (Liu et al. 2016). These sampling-saving strategies
can dramatically reduce the average number of samplings
per vertex to 2R

L(L−1) , where R is the samples number needed
by Algorithm 1 and L is the expected walk length for each
path, which is controlled by α.

Proof of Rooted PageRank Proximity Preserving: Now
we prove that, our approach learns an embedding that im-
plicitly preserves the Rooted PageRank score of any pair of
vertices. Similar to (Levy and Goldberg 2014), for a suffi-
ciently large vector dimensionality, we can regard the global
objective as a function of each independent �su · �tv term. And
for any vertex u, the sum of rooted pagerank value (Simu(v)
here) over all the vertices equals 1, then we have,

2944

� =
∑

u

∑

v

#Sample · Simu(v) · (logσ(�su · �tv)

+
k

|V |
∑

n

logσ(− �su · �tn))

= #Sample{
∑

u

∑

v

Simu(v) · logσ(�su · �tv)

+
∑

u

∑

n

∑

v

Simu(v) · k

|V | · logσ(− �su · �tn)}

= #Sample{
∑

u

∑

v

Simu(v) · logσ(�su · �tv)

+
∑

u

∑

n

k

|V | · logσ(− �su · �tn)}

= #Sample{
∑

u

∑

v

(Simu(v) · logσ(�su · �tv)

+
k

|V | · logσ(− �su · �tv))}

(6)

To maximize this objective, we let the partial derivative of
each independent x = �su · �tv be zero,

∂�

∂x
= #Sample{−(Simu(v) +

k

|V |)σ(x)
+Simu(v)}

(7)

This gives us,

x = log(
|V |Simu(v)

k
) (8)

According to Equation 8, since k and |V | are both con-
stants, we can see that �su · �tv tries to preserve the logarith-
mic Simu(v) with a constant shift, in which Simu(v) in our
case represents the Rooted PageRank value of v as for u.

Analysis: We only need O(2|V |d + |E|) space over-
heads since we use the per-observation stochastic gradient
updates on the fly as the random paths generate. And it’s
also easy to verify that the time complexity of our method is
O(|V |dRLk), where d is the dimension number, R is the
number of samples per vertex, L is the expected sample
length, and k is the iteration number. And if we use the path
sharing strategy, the complexity drops at O(|V |dRk/L). We
can see that, our embedding method is both space and time
efficient, which can scale to extremely large industrial graph
data, as we evaluate in the experiment section.

An advantage of APP over the matrix factorization based
ones is that, it does not need pre-computed proximity matrix,
and it can naturally support incremental update, refine the
model as the graph changes, which is a very nice property
for the real world applications.

Extendability: We can see from Equation 6 that, if a
proximity satisfies that

∑
v Simu(v) is a constant number,

and can also be approximated by Monte Carlo approach,
then we can learn embedding which preserves this proxim-
ity within the same framework. We leave this topic as future
works.

Experiment
In this section, we conduct extensive experiments to evaluate
the performance of our method via tasks like link prediction
and node recommendation.

Data Sets and Experiment Setting

Dataset. We collect four open-source data graphs to com-
pare the performance of the graph embedding methods.

Arxiv 1: Arxiv GR-QC is a collaboration network gener-
ated from the e-print arXiv. Nodes represent authors of pa-
pers and edges represent collaborations between authors.

Cora 2: It is a citation network of academic papers where
nodes represent academic papers and each directed edge in-
dicates the citation relationship between papers.

Epinions 3: This is the trust network from the online social
network Epinions. Nodes are users of Epinions and directed
edges represent trust between the users.

Amazon 4: In Amazon network, nodes represent products
and edges represent co-purchasing relation between prod-
ucts. We convert the original Amazon graph to an undirected
graph, since the co-purchasing relation is symmetric.

We also evaluate our method on an extremely large pri-
vate data AliItemGraph, which is an item graph converted
by the item click sequence from the user browsing sessions.
AliItemGraph has 290 million vertices (items) and over 18
billion edges. We learn the source and target embedded vec-
tors for each item and use them for an online recommen-
dation service in Alibaba Group, which we will describe in
more detail later.

Some statistics about these graphs are summarized in Ta-
ble 1.

DataSet # Nodes # Edges Type
arxiv 5,242 28,980 undirected
cora 23,166 91,500 directed

epinions 75,879 508,837 directed
amazon 262,111 1,799,584 undirected

aliItemGraph 290million 18billion directed

Table 1: Statistics of Graph DataSets

Competitors. We evaluate our method against the following
methods that can measure the node-pair similarity: Deep-
Walk, Line, Node2Vec, Common Neighbors (CNbrs for
short), Adamic Adar (Adar for short) and Jaccard Coeffi-
cience. For Deepwalk, Node2Vec and Line, we use the inner
product of the embedded vectors to estimate the proximity
of node pairs (u, v). And we use the inner product of su and
tv for APP. Note that, although Line also has two vectors
learned for each vertex, namely a context vector and a ver-
tex vector, we do not observe any improvement using both
of them in our test, so we only use its vertex vectors. To have

1http://snap.stanford.edu/data/ca-GrQc.html
2http://konect.uni-koblenz.de/networks/subej cora
3http://konect.uni-koblenz.de/networks/soc-Epinions1
4http://snap.stanford.edu/data/amazon0302.html

2945

a fair comparison, the number of sampled paths of all these
methods are made the same, and the number of dimensions
is set to 128. In fact, we observe no significant improvement
as the dimension size of our method goes beyond 32 for
small datasets in both tasks. For Line, we use its 2-nd order
proximity. For other methods, we calculate the similarity di-
rectly according to their similarity definitions, as illustrated
in Table 2, where N(v) represents the set of neighbors for
v. For directed graphs, N(v) could be the number of either
incoming neighbors or outgoing neighbors.

Method Definition
Common Nbrs |N(u)

⋂
N(v)|

Jaccard |N(u)
⋂

N(v)|
|N(u)

⋃
N(v)|

Adamic Adar
∑

t∈N(u)
⋂

N(v)
1

log|N(t)|

Table 2: Definitions of Traditional Node Similarity Metrics

Link Prediction
Given a network with some edges removed, link prediction
aims to predict the occurrence of links, which is a funda-
mental problem in networks. For link prediction, we remove
30% of edges which are chosen randomly as ground truth in
the test set, and take the remaining graph as the training set.
We also randomly sample an equal number of node pairs
that have no edge connecting them as negative samples in
our test set.

We summarize the AUC scores for all methods in Ta-
ble 3. We can see that, for link prediction task, the learn-
ing methods usually outperform the traditional methods in
terms of the AUC metrics. This is because for Adar, CNbrs
and Jaccard, there are too many zero similarities since they
only exploit local structures, making it impossible to tell
the negative pairs from the positive ones that are connected
two more hops away. Among the learning approaches, our
method APP achieves the best for all the datasets, which
shows the benefit of preserving both asymmetric and higher-
order proximities in the raw graph.

DataSet arxiv cora epinions amazon
Adar 0.8570 0.6431 0.7898 0.8079

CNbrs 0.8568 0.6430 0.7896 0.8078
Jaccard 0.8570 0.6428 0.7888 0.8078

DeepWalk 0.8865 0.9355 0.8226 0.9503
Line 0.7503 0.6936 0.8670 0.6844

Node2Vec 0.8101 0.7338 0.8647 0.9617
APP 0.8873 0.9443 0.9256 0.9765

Table 3: Area Under Curve (AUC) scores for Link Predic-
tion

As the negative node pairs sampled above are so random
that the impact of the asymmetric link may still be limited,
we further change the way of generating negative samples to
amplify the performance gaps among the models’ abilities to
predict asymmetric links. For directed graphs, e.g., cora and

epinions, we reverse the node pair in the positive samples
and use it to replace an original negative sample if its edge
is not bi-directional. After the replacement, 94% of the neg-
ative samples in cora are replaced with the non-existing re-
verse edges. And the number for epinions is 60%. The new
results are listed in Table 4. Since the other three methods
can only model the symmetric proximity, their AUC scores
are near 0.5 as expected, especially for cora. And for APP,
it’s far better than the other three, as it considers asymmetric
proximities.

DataSet cora epinions
DeepWalk 0.5360 0.6892

LINE 0.5130 0.6729
Node2Vec 0.5170 0.6889

APP 0.7674 0.8076

Table 4: Area Under Curve (AUC) scores on Biased Nega-
tive Samples

Node Recommendation
As for many applications like friends recommendation, in-
stead of picking up the top-k highest intimate node-pairs
from a large candidate random node-pairs, it’s needed to
calculate the top-k possible candidates for each individual
person, to build up personalized services. So we evaluate
the performance of these methods in node recommendation
tasks. We remove 10% of the edges in the original graph as
test set, and use the rest of the graph as the training data. We
use Precision@k and Recall@k as the evaluation metrics
for node recommendation methods, where

Precision@k =
|PredSet ∩ TestSet|

|PredSet|

Recall@k =
|PredSet ∩ TestSet|

|TestSet|
As illustrated in Table 5, we first observe that the existing

embedding methods are not as good as traditional methods
in node recommendation tasks. However, compared with
other methods including the traditional ones, our method
still achieves the overall best performance. And we can sig-
nificantly outperform Line, DeepWalk and Node2vec, espe-
cially for the directed graphs. This shows the benefit of pre-
serving asymmetric and high-order proximity in our method.

Note that, for traditional methods, e.g., Adamic Adar,
Commmon Neighbors, Jaccard, the size of their recommen-
dation list could be smaller than k, since they cannot pro-
duce meaningful results when two nodes share no common
neighbors, while embedding methods can always select the
top-k value. This can explain that their precision is some-
times competitive with our method, especially when k be-
comes large, while our recall is significantly higher in most
cases. In fact, we can setup a threshold for our method to
remove the un-satisfied results in the top-k list, according to
the ROC curve, which in practice may have a 10% − 20%
improvement in precision.

2946

DataSet arxiv amazon
P@10 R@10 P@20 R@20 P@50 R@50 P@10 R@10 P@20 R@20 P@50 R@50

CNbrs 0.092 0.493 0.065 0.635 0.044 0.793 0.080 0.551 0.052 0.677 0.034 0.773
Adar 0.110 0.587 0.082 0.712 0.051 0.819 0.084 0.579 0.056 0.686 0.036 0.753

Jaccard 0.053 0.259 0.042 0.319 0.033 0.364 0.085 0.579 0.056 0.686 0.037 0.735
DeepWalk 0.095 0.598 0.060 0.757 0.029 0.894 0.061 0.423 0.038 0.534 0.018 0.633

Line 0.080 0.551 0.054 0.659 0.024 0.772 0.021 0.100 0.012 0.172 0.011 0.350
Node2Vec 0.082 0.508 0.052 0.660 0.026 0.823 0.071 0.497 0.047 0.659 0.023 0.809

APP 0.122 0.697 0.065 0.829 0.035 0.973 0.095 0.660 0.059 0.824 0.027 0.928

Table 5: Precision and Recall for top-k Node Recommendation, Undirected Graph

DataSet epinions cora
P@10 R@10 P@20 R@20 P@50 R@50 P@10 R@10 P@20 R@20 P@50 R@50

CNbrs 0.023 0.061 0.017 0.093 0.011 0.148 0.023 0.142 0.017 0.198 0.011 0.268
Adar 0.026 0.072 0.018 0.103 0.012 0.161 0.023 0.142 0.017 0.198 0.011 0.268

Jaccard 0.021 0.057 0.016 0.086 0.011 0.137 0.021 0.134 0.016 0.185 0.011 0.259
DeepWalk 0.015 0.049 0.011 0.066 0.006 0.094 0.025 0.180 0.019 0.270 0.011 0.400

Line 0.004 0.014 0.004 0.025 0.003 0.049 0.012 0.084 0.009 0.124 0.005 0.184
Node2Vec 0.010 0.032 0.007 0.045 0.004 0.067 0.022 0.160 0.018 0.256 0.010 0.400

APP 0.024 0.075 0.018 0.112 0.013 0.182 0.030 0.223 0.023 0.340 0.014 0.525

Table 6: Precision and Recall for top-k Node Recommendation, Directed Graph

We also observe in our test that proximity measured by
�su · �tv can be 30% better than �su · �sv for our method in this
task, which further illustrates the importance of asymmetric
proximity preserving.

Evaluation for Online Recommendation Services. We
also evaluate our method on one of the personalized on-
line recommendation services in Alibaba Group 5. There
are tens of millions of shops resided in Alibaba, and these
shops will offer several item sets (S) on their homepages,
each of which contains a small number (< 60) of candidate
items according to their own marketing strategies. Our task
is to expose the top 6 items within each item set to the cus-
tomers with mobile devices, when they visit that shop. We
train our method and the competitors with only the collabo-
rative structural data, which is an item graph constructed by
the item click sequences organized by user sessions, within
the last 7 days. Note that, the graph contains both inter and
inner shop item connections. Based on this offline training
data, we use APP method to produce each vertex with two
embedded vectors. We set the dimensions to be 200.

The online recommender follows the traditional item-
based collaborative filtering (Sarwar et al. 2001; Adomavi-
cius and Tuzhilin 2005), which takes the tested methods as
different similarity measurements. For each customer u, u
has a footprint item set T , consisting of the most recent items
u has viewed. Then we score each item i in S according to
the average proximity of each (t, i) pair, where t ∈ T .

Because the computing resources are limited, and the
other embedding methods are not showing better perfor-
mance than the traditional methods, e.g., Adamic Adar, for

5https://www.taobao.com/

Figure 2: CTR for Item Recommendation

node recommendation tasks in previous toy test, we only
compare our method with traditional node-pair similarity
measurement for their simplicity and efficiency. We directly
compute the top-k list along with their proximity scores for
each item where k is a small number, e.g., 400.

We run the A/B test for all these methods with the same
traffic flow, and report the Click Through Rate(CTR) for a
continuous 12 days, in Figure 2. We can see that our method
is significantly better than the traditional similarity measure-
ments for this service. Despite that our method can preserve
asymmetric and higher-order proximities, APP can get much
higher recall in this service, where traditional top-k methods
suffer from severe problem that the top-k list is too small
w.r.t. the number of shops such that each item in the foot-
print set has very low probability to match any of the item in
the specific item set.

2947

Conclusion
In this paper, we propose a scalable graph embedding
method which can preserve asymmetric similarities between
vertex pairs. We take the sampled path as a directed se-
quence which only observes positive vertex pair along the
forward direction. Experiments show that our method is su-
perior to the existing embedding methods in both link pre-
diction and node recommendation tasks. And our method is
highly scalable that it has been tested on an industrial-scale
large graph with hundreds of millions of vertices. We also
give the theoretical analysis that our method implicitly pre-
serves the Rooted PageRank score, which is an asymmetric
high-order metric.

Acknowledgement
This work was partially supported by NSFC under Grant No.
61272156 and 61572040, National Key Research and Devel-
opment Program No. 2016YFB1000700, Shenzhen Gov Re-
search Project under Grant No. JCYJ20151014093505032,
and Alibaba-PKU jointed Program.

References
Adomavicius, G., and Tuzhilin, A. 2005. Toward the next
generation of recommender systems: a survey of the state-
of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering 17(6):734–749.
Avrachenkov, K.; Litvak, N.; Nemirovsky, D.; and Osipova,
N. 2007. Monte carlo methods in pagerank computation:
When one iteration is sufficient. SIAM Journal on Numerical
Analysis 45(2):890–904.
Bahmani, B.; Chowdhury, A.; and Goel, A. 2010. Fast in-
cremental and personalized pagerank. Proceedings of the
VLDB Endowment 4(3):173–184.
Barkan, O., and Koenigstein, N. 2016. Item2vec: Neural
item embedding for collaborative filtering. arXiv preprint
arXiv:1603.04259.
Fogaras, D.; Rácz, B.; Csalogány, K.; and Sarlós, T. 2005.
Towards scaling fully personalized pagerank: Algorithms,
lower bounds, and experiments. Internet Mathematics
2(3):333–358.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In International Conference on
Knowledge Discovery and Data Mining. ACM.
Gupta, P.; Goel, A.; Lin, J.; Sharma, A.; Wang, D.; and
Zadeh, R. 2013. Wtf: The who to follow service at twit-
ter. In Proceedings of the 22nd international conference on
World Wide Web, 505–514. ACM.
Haveliwala, T. H. 2002. Topic-sensitive pagerank. In Pro-
ceedings of the 11th international conference on World Wide
Web, 517–526. ACM.
Jeh, G., and Widom, J. 2002. Simrank: a measure of
structural-context similarity. In International Conference on
Knowledge Discovery and Data Mining, 538–543. ACM.
Katz, L. 1953. A new status index derived from sociometric
analysis. Psychometrika 18(1):39–43.

Levy, O., and Goldberg, Y. 2014. Neural word embedding
as implicit matrix factorization. In Advances in neural in-
formation processing systems, 2177–2185.
Liben-Nowell, D., and Kleinberg, J. 2007. The link-
prediction problem for social networks. Journal of the
American society for information science and technology
58(7):1019–1031.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In AAAI, 2181–2187.
Liu, Q.; Li, Z.; Lui, J.; and Cheng, J. 2016. Powerwalk: Scal-
able personalized pagerank via random walks with vertex-
centric decomposition. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge
Management, 195–204. ACM.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Ou, M.; Cui, P.; Pei, J.; and Zhu, W. 2016. Asymmetric tran-
sitivity preserving graph embedding. In International Con-
ference on Knowledge Discovery and Data Mining. ACM.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, vol-
ume 14, 1532–43.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710. ACM.
Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimen-
sionality reduction by locally linear embedding. Science
290(5500):2323–2326.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the 10th international conference
on World Wide Web, 285–295. ACM.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of the 24th International Conference on World
Wide Web, 1067–1077. ACM.
Tenenbaum, J. B.; De Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. science 290(5500):2319–2323.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
AAAI, 1112–1119. Citeseer.
Wold, S.; Esbensen, K.; and Geladi, P. 1987. Principal com-
ponent analysis. Chemometrics and intelligent laboratory
systems 2(1-3):37–52.
Zhang, F.; Yuan, N. J.; Lian, D.; Xie, X.; and Ma, W. Y.
2016. Collaborative knowledge base embedding for recom-
mender systems. In ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining.

2948

