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Abstract

Linear Discriminant Analysis (LDA) is a well-known method
for dimension reduction and classification with focus on dis-
criminative feature selection. However, how to discover dis-
criminative as well as representative features in LDA model
has not been explored. In this paper, we propose a latent
Fisher discriminant model with representative feature discov-
ery in an semi-supervised manner. Specifically, our model
leverages advantages of both discriminative and generative
models by generalizing LDA with data-driven prior over the
latent variables. Thus, our method combines multi-class, la-
tent variables and dimension reduction in an unified Bayesian
framework. We test our method on MUSK and Corel datasets
and yield competitive results compared to baselines. We
also demonstrate its capacity on the challenging TRECVID
MED11 dataset for semantic keyframe extraction and con-
duct a human-factors ranking-based experimental evaluation,
which clearly demonstrates our proposed method consistently
extracts more semantically meaningful keyframes than chal-
lenging baselines.

Introduction

Linear Discriminant Analysis (LDA) (Fisher 1936) is a pow-
erful tool for dimensionality reduction and classification that
projects high dimensional data into a low-dimensional space
where the data achieves maximum class separability (Duda,
Hart, and Stork 2000; Fukunaga 1990; Wu, Wipf, and Yun
2015). The basic idea in classical LDA, known as Fisher
Linear Discriminant Analysis (FDA) is to obtain the pro-
jection matrix by minimizing the within-class distance and
maximizing the between-class distance simultaneously to
yield the maximum class discrimination. It has been proved
analytically that the optimal transformation is readily com-
puted by solving a generalized eigenvalue problem (Fuku-
naga 1990). In order to deal with multi-class scenarios (Rao
1948; Duda, Hart, and Stork 2000), LDA can be easily ex-
tended from binary case to multi-class problems, which finds
a subspace with d − 1 dimensions, where d is the num-
ber of classes in the training dataset. Because of its effec-
tiveness and computational efficiency, it has been applied
successfully in many applications, such as face recognition
(Belhumeur, Hepanha, and Kriegman 1997) and microarray
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gene expression data analysis. Moreover, LDA was shown to
compare favorably with other supervised dimensionality re-
duction methods through extensive experiments (Sugiyama
et al. 2010).

However, as a supervised approach, LDA expects man-
ually annotated training sets, e.g., instance/label pairs. As
we known, it is labor-intensive and time-consuming to label
each instance, which is surprisingly prohibitive especially
for large scale data. Correspondently, it is reasonable to ex-
tend supervised LDA into a semi-supervised method, and
many approaches (Joachims 1999; Cai, He, and Han 2007;
Zhang and Yeung 2008; Sugiyama et al. 2010) have been
proposed. Unfortunately, most of these methods still need
instance/label pairs, i.e. training a classifier with a few la-
beled instances. In practice, many real applications require
bag-level labels (Andrews, Tsochantaridis, and Hofmann
2002), such as molecule activity (Maron and Lozano-Prez
1998), image classification (Maron and Ratan 1998) and
event detection (Perera et al. 2011). Recently, MI-SVM or
latent SVM (Andrews, Tsochantaridis, and Hofmann 2002;
Felzenszwalb et al. 2010) has been widely used for classifi-
cation tasks, such as object detection. In a sense, MI-SVM
can learn discriminative features effectively under maxi-
mum margin framework. However, MI-SVM does not con-
sider data distribution while inferring latent variables. On
the contrary, LDA leverages data distribution by computing
between-class and within-class covariances to learn a dis-
criminant projection. Thus it is possible to incorporate the
data driven prior into LDA to discover both representative
and discriminative features.

In this paper, we propose a Latent Fisher Discriminant
Analysis model (or LFDA in short) with representative fea-
ture discovery. On the one hand, we hope our model can han-
dle semi-supervised learning problems. On the other hand,
we can generalize discriminative FDA to select representa-
tive features as well. More specifically, our method unifies
the discriminative nature of FDA with a data driven Gaus-
sian mixture prior over the training data under the Bayesian
framework. By combining these two terms into one model,
we infer latent variables and learn projection matrix in an
alternative manner until convergence. To further leverage
the compactness of each component with Gaussian mix-
ture model, we assume that all instances in each component
have the same label. Thus, our model relaxes the instance
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level inference into component level inference by maximiz-
ing a joint likelihood, which can capture representative fea-
tures effectively. To sum up, our method combines multi-
class, latent variables and dimension reduction in an uni-
fied bayesian framework. We demonstrate the advantages of
our model on MUSK and Corel datasets for classification
problems, and on TRECVID MED11 dataset for semantic
keyframe extraction on five video events (Perera et al. 2011).

Related Work
LDA has been a popular method for dimension reduction
and classification. It searches a projection matrix that simul-
taneously maximizes the between-class dissimilarity and
minimizes the within-class dissimilarity to increase class
separability, typically for classification applications. And
many methods (Belhumeur, Hepanha, and Kriegman 1997;
Chen et al. 2000; Baudat and Anouar 2000; Merchante,
Grandvalet, and Govaert 2012) have been proposed to ei-
ther leverage or extend LDA because of its effectiveness
and computational efficiency. Belhumeur et al proposed
PCA+LDA (Belhumeur, Hepanha, and Kriegman 1997) for
face recognition. Recently, sparsity induced LDA is also
proposed (Merchante, Grandvalet, and Govaert 2012; Wu,
Wipf, and Yun 2015).

However, many real-world applications only provide la-
bels on bag-level, such as object detection (Felzenszwalb
et al. 2010) and image classification (Maron and Ratan
1998). In the last decades, semi-supervised methods have
been proposed to utilize unlabeled data to aid classifica-
tion or regression tasks under situations with limited labeled
data, such as Transductive SVM (TSVM) (Vapnik 1998;
Joachims 1999) and Co-Training (Blum and Mitchell 1998).
One of the main trend is to extend LDA to handle semi-
supervised problems (Cai, He, and Han 2007; Zhang and
Yeung 2008; Sugiyama et al. 2010) in a transductive man-
ner, which attempts to utilize unlabeled data to aid clas-
sification or regression tasks under situations with limited
labeled data. For example, Semi-supervised Discriminant
Analysis (Cai, He, and Han 2007) was proposed, which
made use of both labeled and unlabeled samples. Sugiyama
et. al. proposed a semi-supervised dimensionality reduc-
tion method (Sugiyama et al. 2010), which can preserve
the global structure of unlabeled samples in addition to
separating labeled samples in different classes from each
other. Chen and Corso proposed a semi-supervised approach
(Chen and Corso 2012) to learn discriminative codebooks
and classify instances with nearest neighbor voting. Re-
cenly, latent SVM or MI-SVM has attracted great atten-
tion for semi-supervised problems, such as multiple instance
learning and object detection (Zhang and Yeung 2008;
Felzenszwalb et al. 2010). It basically infers the latent vari-
ables by maximizing a posterior probability and shows great
improvement on object detection (Felzenszwalb et al. 2010).

Another trend prefers to extent LDA into an unsupervised
scenarios. For example, Ding and Li proposed to combine
LDA and K-means clustering into the LDA-Km algorithm
(Ding and Li 2007) for adaptive dimension reduction. In this
algorithm, K-means clustering was used to generate class
labels and LDA is utilized to perform subspace selection.

However, directly casting LDA as a semi-supervised method
to handle bag-level labels is still a challenge for multi-class
problems.

Latent Fisher discriminant analysis

Let X = {x1,x2, ...,xn} represent n bags, with the cor-
responding labels L = {l1, l2, ..., ln} as the training data.
For each bag xi ∈ X , it can have one or multiple instances
(Andrews, Tsochantaridis, and Hofmann 2002), and its la-
bel li is categorical and assumes values in a finite set, e.g.
{1, 2, ..., C}. Let xi ∈ R

d×ni , which means it contains ni

instances (or frames), denoted as xi = {x1
i , x

2
i , ..., x

ni
i }with

its jth instance xj
i ∈ R

d (however, its label is not given).
Given the data X and its corresponding instance level labels
Z(X ), LDA searches for a discriminative feature transfor-
mation f : X → Y to maximize the ratio of between-class
variance to the within-class variance, where y ∈ R

d′
and

d′ ≤ d. In general, d′ is decided by C, namely d′ = C − 1.
However, we do not know the instance-level labels Z(X )
for the data X . In our case, only the bag-level labels L are
available. Thus, we think for any instance ∀x ∈ X , it has
a corresponding label z(x), which can be inferred from the
training pairs (X ,L).

Latent Fisher discriminant analysis model generalizes
LDA with latent variables. Suppose the projection matrix is
P , and y = f(x) = Px, then our latent Fisher LDA pro-
poses to minimize the following ratio:

(P∗) = argmin
P,Z

J(P , Z)

= argmin
P,Z

trace
(PTΣw(X ,L, Z)P
PTΣb(X ,L, Z)P + βPTP

)

(1)

where Z are the latent variables for the data X , and β is
a weighing parameter for regularization term. The variable
z ∈ Z(X ) defines the possible latent values for a sam-
ple x ∈ X . In our case, z ∈ {1, 2, ..., C}. Σb(X ,L, Z)
is between-class scatter matrix and Σw(X ,L, Z) is within-
class scatter matrix, defined respectively as follows:

Σw(X ,L, Z) = ΣC
k=1Σ{x∈X |δ(z(x)=k)}(x− x̄k)(x− x̄k)

T

(2)

Σb(X ,L, Z) = ΣC
k=1mk(x̄k − x̄)(x̄k − x̄)T (3)

where δ(z(x) = k) is the indicator function, mk is
the number of training samples for each class k, x̄k =∑

{x∈X |δ(z(x)=k)} x

mk
is the mean of the k-th class and x̄ is the

total mean vector given by x̄ = 1∑C
k=1 mk

ΣC
k=1mkx̄k. Note

that LDA (Fisher 1936) is dependent on a categorical vari-
able z (i.e. the class label) for each instance x to compute Σb

and Σw. If z is given for any x, we can use LDA to find the
discriminative transform P , using eigenvectors of Σ−1

w Σb

to capture both compactness of each class and separations
between classes.

However, in our case, given the training data X , we only
know bag-level labels L, not the instance-level labels Z.
To minimize J(P , Z), we need to infer z(x) for any given
x. This problem is a chicken and egg problem, and can be
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solved by alternating algorithms, such as EM (Dempster,
Laird, and Rubin 1977). In other words, solve P in Eq. (1)
with fixed z, and vice versa in an alternating strategy.

Updating z

Suppose we have found the projection matrix P . Then, we
can project X into its corresponding subspace Y = PX ,
where Y = {y1,y2, ...,yn} is the one to one mapping of
X = {x1,x2, ...,xn}. Instead of inferring latent variables
at instance-level as latent SVM, we propose to infer latent
variable z at clustering-level in the projected space Y . That
means all elements in the same cluster have the same label.
Such assumption is reasonable because elements in the same
cluster are close to each other. On the other hand, cluster-
level inference can speed up the learning process. We ex-
tend mixture discriminative analysis model in (Hastie and
Tibshirani 1996) by incorporating latent variables over all
instances for an given class. Thus, we assume each class i is
a K components of Gaussians,

p(t|λi) =

K∑
j=1

πj
i g(y|μj

i ,Σ
j
i ) (4)

where t, y ∈ R
d′

(i.e. vector or feature); πi = {πj
i }Kj=1

are the mixture weights, and g(y|μj
i ,Σ

j
i ) is the j-th com-

ponent Gaussian with μj
i as mean and Σj

i as covariance.
λi = {πi, μi,Σi} are the parameters for class i with μi =

{μj
i}Kj=1 and Σi = {Σj

i}Kj=1 which we need to estimate.
Given the training data (Y ,L), we can compute the data-

driven prior using Gaussian mixture model (GMM) in Eq.
(4). In our case, for each class i ∈ {1, 2, . . . , C}, we col-
lect all instances whose yi belongs to this class i, then we
use mixtures of Gaussians in Eq. (4) for clustering analysis.
As a result, we can estimate λi and get its K components
Si = {S1

i , S
2
i , ..., S

K
i } with EM algorithm, as well as its

data-driven prior distribution πi = {π1
i , π

2
i , ..., π

K
i }. With a

little abuse of symbols, we may μj
i to indicate the j-th clus-

ter of i-th class, and each cluster Sj
i has nj

i elements, which
satisfies

∑K
j=1 n

j
i = ni.

Note that the basic idea here is to select the most discrim-
inative or representative cluster in each class, and then in-
fer its latent variables by maximizing a posterior probabil-
ity or a joint likelihood. Suppose we have the discrimina-
tive weights (or posterior probability) corresponding to its
K components in each class, wi = {w1

i , w
2
i , ..., w

K
i }, which

are the posterior probability determined by LFDA and will
be discussed later in the next part. We maximize one of the
following two objectives:

Maximizing a posterior probability:

μj
i = argmax

μj
i∈μi,j∈[1,K]

wi = argmax
μj
i∈μi,j∈[1,K]

p(zi|μi,P) (5a)

Maximizing the joint probability with prior:

μj
i = argmax

μj
i∈μi,j∈[1,K]

(πi ◦ wi) (5b)

where zi is the latent label assignment, πi is the data-
driven prior for each class i, wi is the posterior (or weight)
determined by kNN voting (see further) in the subspace
and ◦ is the pointwise production or Hadamard product.
We treat Eq. (5a) as the latent Fisher discriminant analysis
model (LFDA), because it takes the same strategy as latent
SVM model (Andrews, Tsochantaridis, and Hofmann 2002;
Felzenszwalb et al. 2010). As for Eq. (5b), we extend LFDA
by combining both representative and discriminative factors
together, and find the cluster Sj

i in class i by maximizing
Eq. (5b). In a sense, Eq. (5b) considers the prior distribution
from the training dataset, thus, we treat it as the joint la-
tent Fisher discriminant analysis model (JLFDA) or LFDA
with prior. In a nutshell, we propose a way to formulate dis-
criminative and generative models together under Bayesian
framework. We comparatively analyze both of these models
in experiments.

Consequently, if we select the cluster Sj
i with the mean

μj
i which maximizes the above equation (for example, Eq.

(5a)) for class i, we can relabel all samples y ∈ Sj
i positive

for class i and the rest negative, subject to y = Px and
y ∈ Sj

i . And further we can decide the label of x with the
assumption z(y) = z(x). Thus, for any x ∈ X , we decide
its label z(x) based on the following

z(x) = li, if y = Px ∈ Sj
i which maximizes Eq. (5) (6)

Then, we update the training data X+ = {x+
1 ,x

+
2 , ...,x

+
n },

with labels L+ = {z+1 , z+2 , ..., z+n }, where x+
i = Sj

i

for class i with nj′
i elements, and its labels z+i =

{z1i , z2i , ..., zn
j′
i

i } on instance level. In a sense, we are do-
ing a kind of selection, which finds the most discriminative
and representative component for each class from mixture
of Gaussians. Obviously, x+

i ⊆ xi and X+ is a subset of X .
The difference between X+ and X lies that every element
x+
i ∈ x+

i has label z(x+
i ) decided by Eq. (6), while xi ⊂ X

only has bag level label.

Updating projection P
After we decide labels for the new training data X+, we can
use LDA to minimize J(P , Z). Note that Eq. (1) is invariant
to the scale of the vector P . Hence, we can always choose P
such that the denominator is simply PTΣbP = 1. For this
reason we can transform the problem of minimizing Eq. (1)
into the following constrained optimization problem (Duda,
Hart, and Stork 2000; Fukunaga 1990; Ye 2007):

P∗ = argmin
P

trace
(PTΣw(X+,L, Z)P + βPTP)

s.t. PTΣb(X+,L, Z)P = 1 (7)

where 1 is the identity matrix in R
d′×d′

. The opti-
mal Multi-class LDA consists of the top eigenvectors
of

(
Σw(X+,L, Z) + β

)†
Σb(X+,L, Z) correspond-

ing to the nonzero eigenvalues (Fukunaga 1990), here
(Σw(X+,L, Z) + β)† denotes the pseudo-inverse of
(Σw(X+,L, Z)+β). After we calculated P , we can project
X+ into subspace Y+. Note that in the subspace Y+, any
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y+ ∈ Y+ preserves the same labels as in the original space.
In other words, Y+ has corresponding labels L+ at element
level, namely z(y+) = z(x+).

In general, multi-class LDA (Ye 2007) uses kNN to clas-
sify new input data. We compute wi using the following
kNN strategy: for each sample x ∈ X , we get y = Px by
projecting it into subspace Y . Then, for y ∈ Y , we choose
its N nearest neighbors from Y+, and use their labels as a
vote for each cluster Sj

i in each class i. Then, we compute
the following posterior probability:

wj
i = p(zi = 1|μj

i ) ∝ p(μj
i |zi = 1)p(zi = 1)

= p(zi = 1)
p(μj

i , zi = 1)∑C
i=1 p(μ

j
i , zi = 1)

(8)

It counts all y ∈ Y that fall into N nearest neighbor of μj
i

with label zi. Note that kNN is widely used as the classifier
in the subspace after LDA transformation. Thus, Eq. (8) con-
sider all training data to vote the weight for each discrimina-
tive cluster Sj

i in every class i. Hence, we can find the most
discriminative cluster Sj

i , s.t. wj
i > wk

i , k ∈ [1,K], k 
= j.

Algorithm

The basic idea behind our method is that we use Gaussian
mixture model to partition all instances in each class, which
can get the data driven prior for each component. Then, we
infer the latent variable at the component level, which can
be used further to label each instance in that cluster. Finally,
given the labeled data, we can use LDA to find a discrim-
inative transformation. Such processes repeat until conver-
gence. We summarize the above discussion in pseudo code
in Algorithm 1. To put simply, we update P and z in an al-
ternative manner, and accept the new projection matrix P
with LDA on the relabeled instances. Such algorithm can al-
ways converge very fast (e.g. 10 iterations). After we learned
matrix P and {λi}Ci=1 by maximizing Eq. (5), we can use
them to select representative and discriminative features (i.e.
frames from video datasets) by nearest neighbor searching.

Convergence analysis

Our method updates latent variable z and then P in an al-
ternating manner. Such strategy can be attributed to the hard
assignment of EM algorithm. Recall the EM approach:

P∗ = argmax
P

p(X ,L|P) = argmax
P

C∑
i=1

p(X ,L, zi|P)

= argmax
P

C∑
i=1

p(X ,L|zi)p(zi|P) (9)

then the likelihood can be optimized using iterative use of
the EM algorithm.
Theorem 1. Assume the latent variable z is inferred for
each instance in X , then maximizing the above function is
equivalent to maximizing the following auxiliary function

P = argmax
P

C∑
i=1

p(zi|X ,L,P ′)ln
(
p(X ,L|zi)p(zi|P)

)

(10)

Algorithm 1

Input: training data X and its labels L at video level, β, K, N , T
and ε.
Output: P , {λi}Ci=1

1: Initialize P and wi;
2: for Iter = 1 to T do
3: for i = 1; i <= C; i++ do
4: Project all the training data X into subspace Y using

Y=PX ;
5: For each class, using the Gaussian mixture model to

partition its elements in the subspace, and learn λi =
{πi, μi,Σi};

6: Maximize Eq. (5) to find Sj
i with center μj

i ;
7: Relabel all elements positive in the cluster Sj

i for class i
according to Eq. (6);

8: end for
9: Update z and construct the new subset X+ and its labels

L+ for all C classes;
10: Do Fisher linear discriminant analysis and update P ;
11: if P converge (change less than ε), then break;
12: Compute N nearest neighbors for each training data, and

calculate discriminative weight wi for each class i accord-
ing to Eq. (8).

13: end for
14: Return P and cluster centers {λi}Ci=1 learned respectively for

all C classes;

where P ′ is the old P . This proof can be shown using
Jensen’s inequality.
Lemma 1.1. The hard assignment of latent variable z by
maximizing Eq. (5) is a special case of EM algorithm.

Proof.

C∑
i=1

p(zi|X ,L,P ′)ln
(
p(X ,L|zi)p(zi|P)

)

=
C∑
i=1

p(zi|X ,L,P ′)ln(p(zi|X ,L,P))

+
C∑
i=1

p(zi|X ,L,P ′)ln(p(X ,L|P))

=
C∑
i=1

p(zi|X ,L,P ′)ln(p(zi|X ,L,P)) + ln(p(X ,L|P))

(11)

Given P ′, we can infer the latent variable z. Because
the hard assignment of z, the first term in the right hand
side of Eq. (11) assigns zi into one class. Note that
p(z|X ,L,P)ln(p(z|X ,L,P)) is a monotonically increas-
ing function, which means that by maximizing the posterior
likelihood p(z|X ,L,P) for each instance, we can maxi-
mize Eq. (11) for the hard assignment case in Eq. (5). Thus,
the updating strategy in our algorithm is a special case of
EM algorithm, and it can converge into a local maximum
as EM algorithm. Note that in our implementation, we in-
fer the latent variable in cluster level. In other words, to
maximize p(zi|X ,L,P ′), we can include another latent
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yijμi

π i hij

Σi
wi

ni
xij
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Figure 1: Example of graphical representation only for one
class (event) in our model. hj

i is the hidden variable, xj
i is

the observable input, yji is the projection of xj
i in the sub-

space, j ∈ [1, ni], and ni is the number of total training data
for class i. The K cluster centers μi = {μ1

i , μ
2
i , ..., μ

K
i } is

determined by both πi and wi. The graphical model of our
method is similar to GMM model in vertical. By adding zi
into LDA, the graphical model can handle latent variables.

variable πj
i , j ∈ [1,K]. Specifically, we need to maximize∑K

j=1 p(zi, π
j
i |X ,L,P ′), which we can recursively deter-

mine the latent variable πi using an embedded EM algo-
rithm. Hence, our algorithm uses two steps of EM algo-
rithm, and it can converge to a local maximum. Refer to
(Wu 1983) for more details about the convergence of EM
algorithm.

Probabilistic understanding for the model

Latent SVM model (Felzenszwalb et al. 2010; Andrews,
Tsochantaridis, and Hofmann 2002) attempts to label in-
stance xi in positive bag, by maximizing p(z(xi) = 1|xi),
which is the optimal Bayes decision rule. Similarly, Eq.
(5a) takes the same strategy as latent SVM to maximize a
posterior probability. Moreover, instead of only maximizing
p(z = 1|x), we also maximize the joint probability p(z =
1, x), using the Bayes rule, p(z = 1, x) = p(x)p(z = 1|x).
In this paper, we use Gaussian mixture model to approxi-
mate the prior p(x). We argue that to maximize a joint proba-
bility is reasonable, because it considers both discriminative
(posterior probability) and representative (prior) property in
the video dataset. We give the graphical representation of
our model in Fig. 1.

Experiments and results

In this section, we perform experiments on various data sets
to evaluate the proposed techniques and compare it to other
baseline methods. For all the experiments, we set T = 20
and β = 40 if there is no other specification; and initialize
uniformly weighted wi and projection matrix P with LDA.

Classification on toy data sets

The MUSK data sets1 are the benchmark data sets used in
virtually all previous approaches and have been described

1www.cs.columbia.edu/ andrews/mil/datasets.html

Data
set inst/Dim MI-

SVM LDA LFDA JLFDA

MUSK1 476/166 77.9 70.4 81.4 87.1

MUSK2 6598/166 84.3 51.8 76.4 81.3
Elephant 1391/230 81.4 70.5 74.5 82.2

Fox 1320/230 57.8 53.5 61.5 59.5

Tiger 1220/230 84.0 71.5 74.0 80.5
Average - 77.08 63.54 73.56 78.1

Table 1: Accuracy results for various methods on MUSK
and Corel datasets. Our approach outperforms LDA signif-
icantly, and we get better result than MI-SVM on MUSK1,
Elephant and Fox datasets. On average, our method outper-
forms MI-SVM, which indicates that our model is stable for
the semi-supervised classification.

in detail in the landmark paper (Dietterich, Lathrop, and
Lozano-Pérez 1997). Both data sets, MUSK1 and MUSK2,
consist of descriptions of molecules using multiple low-
energy conformations. Each conformation is represented by
a 166-dimensional feature vector derived from surface prop-
erties. MUSK1 contains on average approximately 6 confor-
mation per molecule, while MUSK2 has on average more
than 60 conformations in each bag. The Corel data set con-
sists three different categories (“elephant”, “fox”, “tiger”),
and each instance is represented with 230 dimension fea-
tures, characterized by color, texture and shape descriptors.
The data sets have 100 positive and 100 negative example
images. The latter have been randomly drawn from a pool
of photos of other animals. We first use PCA reducing its
dimension into 40 for our method. For parameter setting,
we set K=3, T = 20 and N = 4 (namely the 4-Nearest-
Neighbor (4NN) algorithm is applied for classification) on
all datasets except Elephant (we set K = 2 for it). The aver-
aged results of 10-fold cross-validation runs are summarized
in Table (1). We set LDA2 and MI-SVM as our baselines. We
can observe that JLFDA outperforms LDA and MI-SVM on
MUSK1, Elephant and Fox data sets, especially our method
shows significantly better result on MUSK1 data set. We
also show the average accuracy over the five datasets, and
it demonstrates that our model is better than MI-SVM with
higher accuracy.

Semantic keyframe extraction

Keyframe defines the starting and ending points of any
smooth transition in a video. Semantic keyframe in our pa-
per refers the keyframes which have semantic meanings. In
other words, we call tell what event or topic happened in the
video when we observe the keyframes. We conduct experi-
ments on the challenging TRECVID MED11 dataset3 with
five events (or classes): attempting a board trick, feeding an
animal, landing a fish, wedding ceremony and working on
a woodworking project. As for parameters, we set K = 10
and N = 10. We learned the representative clusters for each
class (event), and then use them to find semantic frames in

2we use the bag label as the instance label to test its perfor-
mance

3http://www.nist.gov/itl/iad/mig/med11.cfm
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videos with the same labels. Then we evaluate the semantic
frames for each video through human-factors analysis—the
semantic keyframe extraction problem demands a human-
in-the-loop for evaluation.

Video representation. For all videos, we extract HOG3D
descriptors (Klaser, Marszalek, and Schmid 2008) every 25
frames (about sampling a frame per second). To represent
videos using local features we apply a bag-of-words model,
using all detected points and a codebook with 1000 ele-
ments.

Benchmark methods. We make use of SVM as the
benchmark method in the experiment. We take the one-vs-
all strategy to train a linear SVM classifier using SVM light

(Joachims, Finley, and Yu 2009), for each kind of event.
Then we choose 10 frames for each video which are far
from the margin and close to the margin on positive side.
For the frames chosen farthest away from the margin, we
refer it SVM(1), while for frames closest to the margin we
refer it SVM(2). We also randomly select 10 frames from
each video, and we refer it RAND in our experiments.

Experimental setting. Ten highly motivated graduate
students (range from 22 to 30 years’ old) served as subjects
in all of the following human-in-the-loop experiments. Each
novel subject to the annotation-task paradigm underwent a
training process. Two of the authors gave a detailed de-
scription about the dataset and problem, including its back-
ground, definition and its purpose. In order to indicate what
representative and discriminative means for each event, the
two authors showed videos for each kind of event to the sub-
jects, and make sure all subjects understand what semantic
keyframes are. The training procedure was terminated after
the subject’s performance had stabilized. We take a pairwise
ranking strategy for our evaluation. We extract 10 frames
per video for 5 different methods (SVM(1), SVM(2), LFDA,
JLFDA and RAND) respectively. For each video, we had
about 1000 image pairs for comparison. We had developed
an interface using Matlab to display the two image pair and
three options (Yes, No and Equal) to compare an image pair
each time. The students are taught how to use the software;
a trial requires them to give a ranking: If the left image is
better than the right, then choose ‘Yes’; if the right is better
than the left, choose ‘No’. If the two images are same, then
choose ‘Equal’. The subjects are again informed that better
means a better semantic keyframe. The ten subjects each in-
stalled the software to their computers, and conducted the
image pair comparison independently.

Experimental Results. We have scores for each image
pair. Then, by sampling 10 videos from each event, we at last
had annotations of 104 videos. It means our sampling videos
got from 10 subjects almost cover all test data (105 videos).
Table 2 shows the win-loss matrix between five methods by
counting the pairwise comparison results on all 5 events. It
shows that JLFDA and LFDA always beat the three base-
lines. Furthermore, JLFDA is better than LFDA because it
considers data-driven prior, which will help JLFDA to find
more representative frames. Refer to supplementary mate-
rial for keyframes extracted with JLFDA. We compared the
five methods on the basis of Condorcet voting method. We
treat ‘Yes’, ‘No’ and ‘Equal’ as voters for each method in the
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statistical comparison of 5 different methods for five events
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Figure 2: Comparison of 5 methods for five events. Higher
value, better performance.

Method Win-Loss matrix
JLFDA FLDA RAND SVM(1) SVM(2)

JLFDA - 3413 2274 2257 3758
LFDA 2957 - 2309 2230 3554
RAND 2111 2175 - 1861 2274
SVM(1) 2088 2270 2010 - 2314
SVM(2) 3232 3316 2113 2125 -

Table 2: Win-Loss matrix for five methods. It represents how
many times methods in each row win methods in column.

pairwise comparison. If ‘Yes’, we cast one ballot to the left
method; else if ‘No’, we add a ballot to the right method; else
do nothing to the two methods. Fig. 2 shows ballots for each
method on each event. It demonstrates our method JLFDA
always beat other methods, except for the E004 dataset.

Method the number of No.1 method in each event
E001 E002 E003 E004 E005

JLFDA 6 7 7 3 7
LFDA 6 4 4 5 1
SVM(1) 4 4 4 2 4
SVM(2) 6 3 1 7 6
RAND 2 2 4 3 2

Table 3: Higher value, better results. It demonstrates that our
method is more capable at extracting semantically meaning-
ful keyframes.

We also compared the five methods based on Elo rating
system4. For each video, we ranked the five methods accord-
ing to Elo ranking system. Then, we counted the number of
No.1 method on video level in each event. The results in
Table 3 show that our method is better than others, except
E004. For example, E002 has total 20 videos (column sum-
mation), where JLFDA has ranked first on 7 videos, while
RAND ranks first on only 2 videos. Such results is consistent

4https://en.wikipedia.org/wiki/Elo rating system
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with that using Condorcet ranking method in Fig. 2. E004 is
the wedding ceremony event and our method is consistently
outperformed by the SVM baseline method. We believe this
is due to the distinct nature of the E004 videos in which the
video scene context itself distinguishes it from the other four
events (the wedding ceremonies typically have very many
people and are inside). Hence the discriminative component
of the methods are taking over, and the SVM is able to out-
perform our model.

Conclusion

In this paper, we have presented a latent Fisher discriminant
analysis model with representative feature learning, which
combines the latent variable, multi-class and dimension re-
duction in an unified framework. To the best of our knowl-
edge, this is the first paper to generalize LDA and study the
extraction of semantically representative and discriminative
features together rather than in a separate manner (either rep-
resentative or discriminative). We conduct a thorough exper-
iments on MUSK, Corel and TRECVID MED11 datasets,
and demonstrate that our method is able to consistently out-
perform competitive baselines.
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