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Abstract

In many applications of classifier learning, training data suf-
fers from label noise. Deep networks are learned using huge
training data where the problem of noisy labels is particularly
relevant. The current techniques proposed for learning deep
networks under label noise focus on modifying the network
architecture and on algorithms for estimating true labels from
noisy labels. An alternate approach would be to look for loss
functions that are inherently noise-tolerant. For binary clas-
sification there exist theoretical results on loss functions that
are robust to label noise. In this paper, we provide some suf-
ficient conditions on a loss function so that risk minimization
under that loss function would be inherently tolerant to la-
bel noise for multiclass classification problems. These results
generalize the existing results on noise-tolerant loss functions
for binary classification. We study some of the widely used
loss functions in deep networks and show that the loss func-
tion based on mean absolute value of error is inherently robust
to label noise. Thus standard back propagation is enough to
learn the true classifier even under label noise. Through ex-
periments, we illustrate the robustness of risk minimization
with such loss functions for learning neural networks.

Introduction

Recently, deep neural networks have exhibited very impres-
sive performance in many classification problems. However,
in all such cases one needs very large training data. La-
belling the training data patterns and ensuring correctness
of the labels thus becomes a serious challenge in many ap-
plications of deep neural networks.

When the class labels in the training data are noisy (i.e.,
may be incorrect) then it is referred to as label noise. Human
labelling errors, measurement errors, subjective biases of la-
bellers are among the reasons for label noise. In many large
scale classification problems, labelled data is often obtained
through crowd sourcing or by automatically using informa-
tion on the web. This is another main reason for unreliability
of labels in the training data.

Robust learning of classifiers in the presence of label
noise has been investigated from many viewpoints. In this
paper, we study it in the framework of risk minimization

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which is a popular method for classifier learning. For ex-
ample, Bayes classifier minimizes risk under 0–1 loss func-
tion. The standard backpropagation-based learning of neural
networks is also risk minimization under different loss func-
tions (such as squared error or cross entropy). The robust-
ness of risk minimization depends on the loss function used.
We call a loss function noise-tolerant if minimizer of risk
(under that loss function) with noisy labels would be same
as that with noise-free labels.

In this paper we present some novel analytical results on
noise-tolerance of loss functions in a multiclass classifica-
tion scenario. We derive sufficient conditions on a loss func-
tion so that it would be noise-tolerant for different types of
label noise. We then examine some of the popular loss func-
tions used for learning neural networks and show that loss
function based on mean-absolute error (MAE) satisfies our
sufficient conditions. Empirical investigations are presented
to compare robustness of learning neural networks under
label noise using different loss functions based on mean-
absolute error, mean-square error and categorical cross en-
tropy. The empirical results well demonstrate the utility of
the theoretical results presented here.

Related Work

Learning in presence of label noise is a long standing prob-
lem in machine learning. A detailed survey is available in
(Frénay and Verleysen 2014).

There are many approaches to learning under label noise.
Data cleaning approaches rely on finding points which are
corrupted by label noise. Once these points are identified,
they can be either filtered out or their labels suitably altered.
Several heuristics have been used to guess such noisy points
(Angelova, Abu-Mostafa, and Perona 2005; Brodley and
Friedl 1999; Zhu, Wu, and Chen 2003). There have also been
attempts at (heuristically) modifying existing learning algo-
rithms to make them robust (Khardon and Wachman 2007;
Jin et al. 2003; Battista Biggio and Laskov 2011).

Another prominent approach is to treat the (unknown) true
labels as hidden variables and to estimate a generative or dis-
criminative model. Lawrence and Schölkopf proposed such
a method, based on maximum-likelihood estimation of the
model using the EM algorithm, in the context of fisher linear
discriminant classifier. Similar methods have been proposed
to make logistic regression robust to label noise (Bootkra-
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jang and Kabán 2012). Recently many algorithms based on
such ideas are proposed in deep learning literature to miti-
gate the adverse effect of label noise. Mnih and Hinton use a
generative model for label corruption, estimated through an
approximate EM algorithm, and show its effectiveness in a
binary classification problem. Sukhbaatar et al. proposed a
modified architecture of a neural network to learn with noisy
labels by effectively estimating label corruption probabili-
ties. Motivated by similar ideas, a method to estimate a gen-
erative model incorporating label corruption is proposed in
(Xiao et al. 2015). This method is applicable for multiclass
classification and can handle fairly general cases of label
noise. Methods based on bootstrapping are also proposed
for learning deep networks under label noise (Reed et al.
2014). While all these methods are seen to deliver good per-
formance, they do not guarantee, in any probabilistic sense,
robustness to label noise.

All the above methods focus on changing the learning al-
gorithm so that one can estimate the true labels of the train-
ing examples and thus be able to learn under label noise. As
opposed to this, one can also look for methods that are in-
herently noise tolerant. Such algorithms treat noisy data and
noise-free data the same way but achieve noise robustness
due to properties of the algorithm. Such methods have been
mostly investigated in the framework of risk minimization.

Robustness of risk minimization depends on the loss func-
tion. For binary classification, it is shown that 0–1 loss is
robust to symmetric or uniform label noise while most of
the standard convex loss functions are not robust (Long and
Servedio 2010; Manwani and Sastry 2013). The problem
of learning from positive and unlabeled data can be cast as
learning under label noise and it is seen that none of the com-
mon convex surrogate losses are good for this problem (du
Plessis, Niu, and Sugiyama 2014). Unhinged loss, a convex
loss (which is not convex potential), is robust to symmet-
ric label noise (van Rooyen, Menon, and Williamson 2015).
Natarajan et al. proposed a method for robust risk minimiza-
tion through an implicit estimation of noise probabilities.
In a similar spirit, Scott, Blanchard, and Handy proposed
a method of estimating Type 1 and Type 2 error rates of
any specific classifier under the noise-free distribution given
only the noisy training data. Recently, a general sufficient
condition on a loss function is derived so that risk minimiza-
tion is robust to label noise (Ghosh, Manwani, and Sastry
2015). It is shown that the 0–1 loss, ramp loss and sigmoidal
loss satisfy this condition.

All the above are for the case of binary classification.
Recently Patrini et al. proposed a robust risk minimization
approach for learning neural networks for multiclass classi-
fication by estimating label corruption probabilities. In our
work here we also investigate robustness of risk minimiza-
tion in the context of multiclass classification. We provide
analytical results on conditions under which risk minimiza-
tion is robust to different types of label noise. Our results
generalize the existing results for 2-class problems. The cur-
rently known noise-tolerant loss functions (such as 0–1 loss
or ramp loss) are not commonly used while learning neu-
ral networks. In this paper, we examine some common loss
functions for learning neural networks for multiclass classi-

fication and show that the one based on mean absolute error
is noise-tolerant. Through empirical studies we demonstrate
the relevance of our theoretical results.

Preliminaries and Problem Statement

In this section we introduce some notation and define the
notion of noise tolerance of a loss function.

Risk Minimization

Let X ⊂ R
d be the feature space from which the examples

are drawn and let Y = [k] = {1, · · · , k} be the class labels.
In a typical classifier learning problem, we are given train-
ing data, S = {(x1, yx1), . . . , (xN , yxN

)} ∈ (X × Y)N ,
drawn iid according to an unknown distribution, D, over
X × Y . We represent a classifier as h(x) = pred ◦ f(x)
where f : X → C, C ⊆ R

k. Here, h (which predicts the
class label given f(x)) maps X to Y . Even though the final
classification decision on a feature vector x is pred ◦ f(x),
we use the notation of calling f itself as the classifier.

A loss function is a map L : C×Y → R
+. Given any loss

function, L, and a classifier, f , we define the L-risk of f by

RL(f) = ED[L(f(x), yx)] = Ex,yx [L(f(x), yx)] (1)

where, as a notation throughout this paper, the E denotes
expectation and its subscript indicates the random variables
or the distribution with respect to which the expectation is
taken. Under risk minimization framework, the objective is
to learn a classifier, f , which is a global minimizer of RL.
Note that the L-risk, RL, depends on L, the loss function.
When L happens to be the 0–1 loss, RL would be the usual
Bayes risk.

Noise Tolerance of Loss Functions

When there is label noise, the learner does not have ac-
cess to the clean training data (represented by S above).
The noisy training data available to the learner is Sη =
{(xn, ŷxn), n = 1, · · · , N} where,

ŷxn
=

{
yxn

with probability (1− ηxn
)

j, j ∈ [k], j �= yxn
with probability η̄xnj

Note that, for all x, conditioned on yx = i, we have∑
j �=i η̄xj = ηx.
In general, for any x, its true label (that is, label under

distribution D) is denoted by the random variable yx while
the noise corrupted label is denoted by ŷx. We use Dη to
denote the joint probability distribution of x and ŷx.

The noise is termed symmetric or uniform if ηx =
η, and η̄xj =

η
k−1 , ∀j �= yx, ∀x, where η is a constant.

Noise is said to be class-conditional or asymmetric if the
dependence of ηx on x is only through yx and similarly for
η̄xj . In this case, with a little abuse of notation, we write
ηx = ηyx , η̄xj = η̄yxj . Thus, for example, η̄ij would be the
probability that a class-i pattern would have label as class-j
when the label is corrupted.

In general, when noise rate ηx as well as η̄xj is a function
of x, it is termed as non-uniform noise. A simple special
case is when η̄xj = ηx

k−1 , ∀j �= yx. We define it as simple
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non-uniform noise. Furthermore, when ηx is fixed for each
class, we call it simple class conditional noise.

The L-risk, RL(f), given by eq.1 is for the noise-free
case. Let f∗ be the global minimizer (over the chosen func-
tion class) of RL(f). When there is label noise, the data is
drawn according to distribution Dη . Then L-risk of a classi-
fier f under noisy data is

Rη
L(f) = EDη

[L(f(x), ŷx)] = Ex,ŷx [L(f(x), ŷx)]

(We use Ex,yx(Ex,ŷx) and ED(EDη ) interchangeably). Let
f∗
η be the global minimizer (over the chosen function class)

of Rη
L(f). Risk minimization under loss function L, is said

to be noise-tolerant if (Manwani and Sastry 2013)
PrD[pred ◦ f∗(x) = yx] = PrD[pred ◦ f∗

η (x) = yx]

Risk minimization under a given loss function is noise tol-
erant if the f∗

η has the same probability of misclassification
as that of f∗ on the noise free data. When the above is sat-
isfied we also say that the loss function L is noise-tolerant.
For this, it is sufficient if f∗ = f∗

η .

Theoretical Results
We call a loss function L symmetric if it satisfies, for some
constant C,

k∑
i=1

L(f(x), i) = C, ∀x ∈ X , ∀f. (2)

In the following, we prove distribution independent suffi-
cient conditions for loss function to be robust under differ-
ent kinds of label noises. In Theorem 1, we prove sufficiency
results for symmetric label noise, followed by simple non-
uniform noise and class-conditional noise in Theorems 2, 3.
Theorem 1 In a multi-class classification problem, let loss
function L satisfy Eq 2. Then L is noise tolerant under sym-
metric or uniform label noise if η < k−1

k .
Proof 1 Recall that for any f ,

RL(f) = Ex,yxL(f(x), yx) (3)

For uniform noise, we have, for any f ,1

Rη
L(f) = Ex,ŷxL(f(x), ŷx)

= ExEyx|xEŷx|x,yx
L(f(x), ŷx)

= ExEyx|x

⎡
⎣(1− η)L(f(x), yx) +

η

k − 1

∑
i�=yx

L(f(x), i)

⎤
⎦

= (1− η)RL(f) +
η

k − 1
(C −RL(f))

=
Cη

k − 1
+

(
1− ηk

k − 1

)
RL(f).

Thus, for any f ,

Rη
L(f

∗)−Rη
L(f) = (1− ηk

k − 1
)(RL(f

∗)−RL(f)) ≤ 0

because η < k−1
k and f∗ is a minimizer of RL. This proves

f∗ is also minimizer of risk under uniform noise.
1In the following, Eyx|xEŷx|x,yx etc. denote expectation with

respect to the corresponding conditional distributions. Note that
ExEyx|x = Ex,yx = ED .

Remark 1 Theorem 1 shows that symmetric losses are ro-
bust to uniform label noise. This does not depend on the
data distribution. The only condition is that noise rate is less
than k−1

k which is not restrictive. This theorem (along with
the next one) generalizes the existing results for the 2-class
case (Ghosh, Manwani, and Sastry 2015, Theorem 1).

Theorem 2 Suppose loss L satisfies Eq 2. If RL(f
∗) = 0,

then L is also noise tolerant under simple non uniform noise
when ηx < k−1

k , ∀x.
If RL(f

∗) = ρ > 0 then, under simple non-uniform noise,
RL(f

∗
η ) is upper bounded by ρ/(1− kηmax

k−1 ), where ηmax is
maximum noise rate over x ∈ X . (Recall that f∗ is mini-
mizer of RL and f∗

η is minimizer of Rη
L).

Proof 2 Under simple non-uniform noise, for any f ,

Rη
L(f) = ExEyx|xEŷx|x,yx

L(f(x), ŷx)

= ED

⎡
⎣(1− ηx)L(f(x), yx) +

∑
i�=yx

ηxL(f(x), i)

k − 1

⎤
⎦

= ED(1− ηx)L(f(x), yx)

+ ED
ηx

k − 1

(
C − L(f(x), yx)

)

= EDC ′ηx + ED

(
(1− kηx

k − 1
)L(f(x), yx)

)

where C ′ = C
k−1 . Hence we have

Rη
L(f

∗)−Rη
L(f) =ED

{
(1− kηx

k − 1
)

(L(f∗(x), yx)− L(f(x), yx))
} (4)

Since RL(f
∗) = 0 and L is non-negative by definition, we

have L(f∗(x), yx) = 0, ∀x. In addition, since (1− kηx

k−1 ) >

0, we have Rη
L(f

∗)−Rη
L(f) ≤ 0, for any f . Thus minimizer

of noise free case is also a minimizer of noisy case. This
completes proof of first part of theorem.

For the second part of the theorem, we have,

Rη
L(f

∗
η )−Rη

L(f
∗) ≤ 0

⇒ ED(1− kηx
k − 1

)(L(f∗
η (x), yx)− L(f∗(x), yx)) ≤ 0

⇒ min
ηx

(1− kηx
k − 1

)EDL(f∗
η (x), yx) ≤ EDL(f∗(x), yx)

⇒ RL(f
∗
η ) ≤ ρ/(1− kηmax

k − 1
)

(5)

where EDL(f∗(x), yx) = RL(f
∗) = ρ. Note that, in the

above, we used ηx < k−1
k , and hence 0 < (1 − kηx

k−1 ) ≤
1, ∀x. This completes the proof.

Remark 2 Theorem 2 establishes a sufficient condition for
risk minimization to be robust to simple non uniform label
noise. The condition needs RL(f

∗) to be zero. If L is the 0–1
loss then RL is the Bayes risk and then the sufficient condi-
tion is that the classes are separable (under noise-free case).
However, even if the classes are separable, for a general loss
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function (e.g., sigmoidal loss), RL(f
∗) may not be zero. The

second part of Theorem 2 gives a bound on RL(f
∗
η ) in such

cases. This part is useful even when classes are not separable
and the optimal Bayes risk is non-zero. In case of high noise
rate the bound might be loose, but one should note that, this
is a distribution independent bound. In the binary classifi-
cation case, if data is separable, robustness can be achieved
even though minimum value of L-risk is not zero if the loss
function is ‘sufficiently steep’ (Ghosh, Manwani, and Sastry
2015, Theorems 2, 4). It appears possible to prove a similar
result in multiclass case also.

Theorem 3 Suppose L satisfies Eq 2 and 0 ≤ L(f(x), i) ≤
C/(k−1), ∀i ∈ [k]. If RL(f

∗) = 0, then, L is noise tolerant
under class conditional noise when η̄ij < (1 − ηi), ∀j �= i,
∀i, j ∈ [k].
Proof 3 For class-conditional noise, we have

Rη
L(f) = ED(1− ηyx)L(f(x), yx) + ED

∑

i�=yx

η̄yxiL(f(x), i)

= ED(1− ηyx)(C −
∑

i �=yx

L(f(x), i))

+ ED
∑

i �=yx

η̄yxiL(f(x), i)

=CED(1− ηyx)− ED
∑

i�=yx

(1− ηyx − η̄yxi)L(f(x), i)

(6)

Since f∗
η is the minimizer of Rη

L, we have Rη
L(f

∗
η )−Rη

L(f
∗) ≤ 0

and hence from Eq.(6) we have

ED
∑

i �=yx

(1− ηyx − η̄yxi)(L(f
∗(x), i)− L(f∗

η (x), i)) ≤ 0 (7)

Since we are given RL(f
∗) = 0, we have L(f∗(x), yx) =

0. Given the condition on L in the theorem, this implies
L(f∗(x), i) = C/(k − 1), i �= yx. As per the assumption on
noise in the theorem, (1− ηyx − η̄yxi) > 0. Also, L has to satisfy
L(f∗

η (x), i) ≤ C/(k − 1), ∀i. Thus for Eq.(7) to hold, it must
be the case that L(f∗

η (x), i) = C/(k − 1), ∀i �= yx which, by
symmetry of L, implies L(f∗

η (x), yx) = 0. Thus minimizer of true
risk is also a minimizer of risk under noisy data. This completes the
proof.

Remark 3 Note that 1 − ηyx > η̄yxi implies ηyx < (k −
1)/k. Thus the condition on noise rates for this theorem is
more strict. For i �= j, η̄ij is the probability that a feature
vector of class-i is labelled as class-j. If we set η̄ii = 1− ηi
which is the probability of a feature vector of class-i having
correct label, then the condition is that the matrix [η̄ij ] of
label noise probabilities should be diagonal dominant. The
condition on the loss function in the theorem is satisfied by
some of the symmetric losses such as 0–1 loss and MAE
loss. The condition that RL(f

∗) = 0 is restrictive. However,
experimentally, even though minimum risk might not be 0,
symmetric losses show good robustness even under class-
conditional noise.

Some Loss Functions for Neural Networks

We assume standard neural network architecture with soft-
max output layer. If input to network is x, then input to soft-

max layer is f(x). Softmax layer computes:

ui =
exp(f(x)i)∑k
j=1 exp(f(x)j)

, i ∈ [k]

where f(x)i represents ith component of f(x). We have∑k
i=1 ui = 1. We define u = [u1, · · · , uk]. The label for

the training patterns is in ‘one-of-K’ representation. If the
class of x is j then yx is given as ej where eji = 1 if i = j,
otherwise 0. We can now define some popular loss functions
namely, categorical cross entropy (CCE), Mean square error
(MSE) and Mean absolute error (MAE) as below.

L(f(x), ej) =

⎧⎪⎨
⎪⎩

∑k
i=1 eji log

1
ui

= log 1
uj

CCE
||ej − u||1 = 2− 2uj MAE
||ej − u||22 = ||u||22 + 1− 2uj MSE

For these loss functions, we have

k∑
i=1

L(f(x), ei) =

⎧⎪⎨
⎪⎩

∑k
i=1 log

1
ui

CCE∑k
i=1(2− 2ui) = 2k − 2 MAE

k||u||22 + k − 2 MSE

Thus, among these, only MAE satisfies symmetry condi-
tion given by Eq.(2). While MSE does not satisfy Eq.(2),
one can show, using 1

k ≤ ||u||22 ≤ 1, that k − 1 ≤∑k
i Lmse(f(x), i) ≤ 2k − 2. This boundedness makes it

more robust than an unbounded loss such as CCE.
Informally, a loss function is said to be classification cal-

ibrated if a classifier having low enough risk under that loss
would also have low risk under 0–1 loss. Logistic loss and
exponential loss in multi-class settings have been proved
to be classification calibrated (Weston and Watkins 1998;
Tewari and Bartlett 2007; Bartlett, Jordan, and McAuliffe
2006). One can show that, MAE, MSE losses are also clas-
sification calibrated.

Consistency under Symmetric Label Noise

We showed that risk minimization with symmetric losses is
robust to label noise. Since there is only a finite training set,
one can only minimize Empirical Risk. We now prove con-
sistency of empirical risk minimization under label noise.
Theorem 4 Consider empirical risk minimization (ERM)
under symmetric label noise over a given function class of
finite VC dimension. If the loss L used for ERM is robust
to label noise (i.e., satisfies eq. 2), then the error rate of
minimizer of empirical risk with noisy samples converges
uniformly to the error rate of the minimizer of risk under
noise-free distribution.
Proof 4

We denote by erD[g] the error rate (i.e., 0-1 risk) of clas-
sifier g in the noise-free case. Under noise we denote it as
erDη

[g]. Let ĝ∗ (ĝ∗η) be the minimizer of empirical risk over
n noise-free (noisy) samples. Let g∗ (g∗η) be the minimizer
of risk. Since VC bounds are distribution independent, we
have,

erD[ĝ∗] ≤erD(g∗) + ε(n, vc)

erDη
[ĝ∗η ] ≤erDη

(g∗η) + ε(n, vc)
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Table 1: Standard Datasets and Architecture
Dataset (ntr, nte, c, d) Hidden layer Architecture

MNIST (60k, 10k, 10, 28× 28) Conv layer + max pooling (dr = 0.25)+
two layers 1024 units (dr=0.25, 0.5)

CIFAR 10 (50k, 10k, 10, 3× 32× 32) (Krizhevsky and Geoffrey 2009)
2 Conv layers + max pooling (dr=0.2)+
2 Conv layers + max-pooling (dr=0.2)+

1 layer 512 units (dr=0.5)
Reuters RCV1 (213k, 213k, 50, 2000)(Lewis et al. 2004) One layer 256 units (dr=0.5)

Reuters newswire (8982, 2246, 46, 2k) One layer 128 units (dr=0.5)

20 newsgroup by-date (11314, 7532, 20, 5k) Input directly connected to Softmax layer
with max-norm constraint

Imdb Sentiment (20k, 5k, 2, 5k) (Maas et al. 2011) One embedding layer 50 units (dr=0.2)+
Conv layer + one layer 250 units (dr=0.5)

The term ε(n, vc) or simply ε goes to 0 with vc
n , where vc

is the VC dimension of the function class (Vapnik 1995).
Under symmetric label noise η, we derived how error rate

changes. (Note that 0-1 loss is symmetric). Thus,

erDη
= erD(1− kη

k − 1
) + c′η

Then we have the following,

erDη
[ĝ∗η ]− erDη

[g∗η ] =

(erD[ĝ∗η ]− erD[g∗η ])(1−
kη

k − 1
) ≤ ε

⇒ erD[ĝ∗η ]− erD[g∗η ] = erD[ĝ∗η ]− erD[g∗] ≤ ε

1− kη
k−1

where we have used erD[g∗η ] = erD[g∗] which follows be-
cause L is robust to label noise. This completes the proof.

Empirical Results

In this section we illustrate the robustness of symmetric loss
functions. We present results with two image data sets and
four text data sets. In each case we learn a neural network
classifier using the CCE, MSE and MAE loss functions.
We add symmetric or class conditional noise with different
noise rates to the training set. For learning, we minimize the
empirical risk, with different loss functions, using stochas-
tic gradient descent through backpropagation (Bergstra et
al. 2010; Chollet 2015). The learnt networks are tested on
noise-free test sets.

Experimental Setting

The specific image and text data sets used are shown in Ta-
ble 1. In the table, for each data set, we mention size of
training and test sets (ntr, nte), number of classes (c) and
input dimension (d). Since some are image data while oth-
ers are text data and feature space dimensions are all differ-
ent, we have used different network architectures for each
data set. These are also specified in Table 1. All networks
used Rectified Linear Unit (ReLU) in the hidden layers and
have softmax layer at the output with the size of the layer be-
ing the number of classes. All networks are trained through
backpropagation with momentum term and weight decay.

We have also used dropout regularization and the dropout
rates are also shown in Table 1.

The results reported are averages over six runs. Label
noise is added in the training set by changing the label of
each example independently. For symmetric noise, we fix η
and randomly change the label of each example. For class
conditional noise, for each experiment, we generate a fixed
label noise probability matrix, [η̄ij ], randomly and use that
to decide the new labels. We ensure that the matrix is diago-
nal dominant as needed for our theoretical results.

Results and Discussion

In figure 1, we compare the robustness of MAE and CCE
losses on MNIST image data set and RCV1 text data set.
We have used symmetric label noise with η = 0, 0.4, 0.8.
The figure shows the evolution of training and test accura-
cies of the network with number of epochs of training. As
the graphs in Fig. 1(a)–(c) show, MAE loss is highly robust
to symmetric label noise. The test accuracy achieved with
MAE even under 80% noise is close to that with zero noise.
On noise-free data, the accuracy achieved with CCE loss is
a little bit higher than that with MAE. However, even at 40%
noise, the test accuracy with CCE loss drops sharply. Simi-
lar trend can be seen on the RCV1 data. (See Fig. 1(e)–(g)).
Here, eventhough the drop in accuracy of CCE loss is not
as sharp, it is clearly seen that MAE is much more robust.
In Fig. 1 (d) and (h) we show results under class-conditional
noise (CC). In these problems we have no idea whether the
minimum risk is zero. However, as can be seen from the
figure, the symmetric MAE loss exhibits a good level of ro-
bustness under class conditional noise also.

Table 2, shows average test accuracy and standard devia-
tion (over six runs) of the learnt networks for different noise
rates. We show results for noise rate η = 0.0, 0.3, 0.6.
(For the 2-class Imdb dataset, noise rate used is η =
0.0, 0.15, 0.3). We also show results for class conditional
noise. As can be seen from the table, MAE exhibits good ro-
bustness. When the accuracy of MAE at 0% noise is high
(e.g., MNIST and RCV1), it drops very little even under
60% noise rate. However, when accuracy achieved at 0%
noise is poor (showing perhaps that the optimal risk is large
or that number of examples is inadequate), the accuracy
drops with noise. However, in all cases the drop in accu-
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Figure 1: Train-Test Accuracies for log loss and MAE over epochs, for MNIST Datasets under (a) 0% noise (b) 40% noise (c)
80% noise (d) CC noise; and RCV1 Datasets under (e) 0% noise (f) 40% noise (g) 80% noise (h) CC noise. Legends shown in
(a) and (e).

racy with MAE is much less than that with CCE. This is
in accordance with our results on robustness of symmetric
losses. We also see that robustness achieved by MSE (which
is a bounded loss though it is not symmetric) is in between
that of MAE and CCE. As can be seen from the last col-
umn of the table, MAE exhibits fair amount of robustness
under class conditional noise also. We observed that higher
dropout rates reduce sensitivity of CCE to label noise. This
is expected as dropout works like regularizer (Srivastava
et al. 2014). Interestingly, even without dropout, in many
datasets MAE showed good robustness under label noise.
On MNIST data with zero dropout, MAE retained almost
same accuracy. We did not include these results in the table
because it is customary to have high dropout rate.

Conclusion

In this paper, we derived some theoretical results on robust-
ness of loss functions in multi-class classification. Such ro-
bust loss functions are useful because we can learn a good
classifier (without any change in the algorithm or network
architecture) even when training set labels are noisy. While
we discussed these in the context of learning neural net-
works, our theoretical results are general and apply to any
multi-class classifier learning through risk minimization. For
learning neural networks, we showed that the commonly
used CCE loss is sensitive to label noise while MAE loss is
robust. We presented extensive empirical results to illustrate
this. However, training a network under MAE loss would be
slow because the gradient can quickly saturate while train-
ing. On the other hand, training under CCE is fast. Thus, de-
signing better optimization methods for MAE is an interest-
ing problem for future work. This would allow one to really

exploit the robustness properties of MAE (and other such
symmetric losses) proved here.
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