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Abstract

Multiple kernel k-means (MKKM) aims to improve cluster-
ing performance by learning an optimal kernel, which is usu-
ally assumed to be a linear combination of a group of pre-
specified base kernels. However, we observe that this assump-
tion could: i) cause limited kernel representation capability;
and ii) not sufficiently consider the negotiation between the
process of learning the optimal kernel and that of clustering,
leading to unsatisfying clustering performance. To address
these issues, we propose an optimal neighborhood kernel
clustering (ONKC) algorithm to enhance the representability
of the optimal kernel and strengthen the negotiation between
kernel learning and clustering. We theoretically justify this
ONKC by revealing its connection with existing MKKM al-
gorithms. Furthermore, this justification shows that existing
MKKM algorithms can be viewed as a special case of our ap-
proach and indicates the extendability of the proposed ONKC
for designing better clustering algorithms. An efficient al-
gorithm with proved convergence is designed to solve the
resultant optimization problem. Extensive experiments have
been conducted to evaluate the clustering performance of the
proposed algorithm. As demonstrated, our algorithm signifi-
cantly outperforms the state-of-the-art ones in the literature,
verifying the effectiveness and advantages of ONKC.

Introduction

Multiple kernel clustering (MKC) learns an optimal kernel
from a group of pre-specified kernels to improve cluster-
ing performance (Zhao, Kwok, and Zhang 2009; Kumar and
Daumé 2011; Xia et al. 2014; Gönen and Margolin 2014;
Zhou et al. 2015; Liu et al. 2016; Li et al. 2016; Cao et
al. 2015a; Zhang et al. 2015; Cao et al. 2015b; Zhang et
al. 2016). These algorithms can roughly be grouped into
two categories. The first category constructs a consensus
matrix by utilizing low-rank optimization (Xia et al. 2014;
Zhou et al. 2015; Kumar and Daumé 2011). By following
the multiple kernel learning (MKL) framework (Rakotoma-
monjy et al. 2008; Cortes, Mohri, and Rostamizadeh 2012;
Liu et al. 2015; Xu et al. 2016; Xu, Tsang, and Xu 2013;
2012; Liu et al. 2013a; 2014), the other category of methods
optimize the combination coefficients of each base kernel
by minimizing a clustering-related criterion (Yu et al. 2012;
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Lu et al. 2014). This category has received intensive atten-
tion during the past few years, and progress continues being
made along this line of research (Gönen and Margolin 2014;
Du et al. 2015; Liu et al. 2016; Li et al. 2016). In (Gönen
and Margolin 2014), the kernel combination weights are al-
lowed to adaptively change with respect to samples to bet-
ter capture their individual characteristics. By replacing the
squared error in k-means with an �2,1-norm based one, (Du
et al. 2015) presents a robust multiple kernel k-means al-
gorithm that simultaneously finds the best clustering labels
and the optimal combination of multiple kernels. The work
in (Liu et al. 2016) designs a matrix-induced regularization
to reduce the redundancy and enhance the diversity of the
selected kernels. (Li et al. 2016) proposes a MKC algorithm
with a “local” kernel alignment, which only requires that the
similarity of a sample to its k-nearest neighbours be aligned
with the ideal similarity matrix. Our work in this paper fo-
cuses on the second category.

One common assumption taken by the above clustering
algorithms in the second category is that the optimal kernel
is expressed as a linear combination of base kernels. This
assumption is not only helpful to reduce the computational
load of learning algorithms but also achieves promising clus-
tering performance in partial practical applications (Yu et al.
2012; Gönen and Margolin 2014). Nevertheless, although
this assumption bears the aforementioned good properties,
we observe that it: i) over reduces the feasible set of opti-
mal kernels, which could result in the learned kernel with
limited representability; and ii) does not well take into ac-
count the effect of clustering on learning the optimal kernel,
and ignores the possibility that these two learning processes
may need to negotiate with each other in order to achieve the
optimality. Both factors could adversely affect the learned
kernel, resulting in unsatisfying clustering performance.

To address these issues, we propose an optimal neigh-
borhood kernel clustering algorithm to enhance the repre-
sentability of the learned optimal kernel. In specific, instead
of rigorously requiring the optimal kernel being a linear
combination of base kernels, our algorithm allows the op-
timal kernel to reside in the neighborhood of the latter. In
this way, our algorithm effectively enlarges the region from
which an optimal kernel can be chosen, and therefore is in
a better position than the traditional ones to identify a more
suitable kernel for clustering. Moreover, as a by-product, we
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theoretically show that the optimal kernel in our algorithm
is dependent on both the linear combination of base kernels
and the clustering result at the previous iteration. This sug-
gests that our algorithm is able to strengthen the connection
between learning the optimal kernel and clustering automat-
ically. The above two learning processes negotiate with each
other to achieve better clustering performance. After that,
we design the optimization objective of the proposed op-
timal neighborhood kernel clustering with multiple kernels
and develop an efficient algorithm with proved convergence
to solve the resultant optimization problem. Comprehensive
experimental study has been conducted on 16 multiple ker-
nel learning (MKL) benchmark data sets to compare the
clustering performance of the proposed algorithm with sev-
eral state-of-the-art ones. As indicated, our algorithm signif-
icantly outperforms the compared ones, validating the effec-
tiveness and advantage of the proposed optimal neighbor-
hood kernel clustering.

Related Work

Multiple Kernel k-means clustering (MKKM)

Let {xi}ni=1 ⊆ X be a collection of n samples, and φ(·) :
x ∈ X �→ H be a feature mapping which maps x onto a
reproducing kernel Hilbert spaceH. The objective of kernel
k-means clustering is to minimize the sum-of-squared loss
over the cluster assignment matrix Z ∈ {0, 1}n×k, which
can be formulated as the following optimization problem,

min
Z∈{0,1}n×k

n,k∑

i=1,c=1

Zic‖φ(xi)− μc‖22 s.t.

k∑

c=1

Zic = 1,

(1)
where nc =

∑n
i=1 Zic and μc =

1
nc

∑n
i=1 Zicφ(xi) are the

number and centroid of the c-th (1 ≤ c ≤ k) cluster.
The variables Z in Eq.(1) is discrete, which makes the op-

timization problem difficult to solve. However, this problem
is usually approximated through relaxing Z to take arbitrary
real values H, as done in the following Eq.(2),

min
H∈Rn×k

Tr
(
K(In −HH�)

)
s.t. H�H = Ik, (2)

where Ik is an identity matrix with size k × k. The optimal
H for Eq.(2) can be obtained by taking the k eigenvectors
that correspond to the k largest eigenvalues of K.

In a multiple kernel setting, each sample has multiple
feature representations via a group of feature mappings
{φp(·)}mp=1. Specifically, each sample is represented as
φγ(x) = [

√
γ1φ1(x)

�, · · · , √γmφm(x)�]�, where γ =

[γ1, · · · , γm]� denotes the coefficients of each base kernel
that needs to be optimized during learning. Correspondingly,
the kernel function over the above mapping function can be
calculated as

κγ(xi,xj) = φγ(xi)
�φγ(xj) =

∑m

p=1
γpκp(xi,xj).

(3)
By replacing the kernel matrix K in Eq.(2) with Kγ com-
puted via Eq.(3), the following optimization objective is ob-

tained for MKKM,

min
H∈Rn×k,γ∈R

m
+

Tr
(
Kγ(In −HH�)

)

s.t. H�H = Ik,

m∑

p=1

γ2
p = 1,

(4)

where an �2-norm constraint is imposed on γ to make this
optimization bounded, and avoid only one single kernel be-
ing activated and all the others assigned with zero weights.
This problem can be solved by alternately updating H and
γ: i) Optimizing H given γ. With the kernel coefficients γ
fixed, the H can be obtained by solving a kernel k-means
clustering optimization problem in Eq.(2); ii) Optimizing γ
given H. With H fixed, γ can be analytically obtained via
solving the following optimization problem

min
γ∈R

m
+

∑m

p=1
γpTr

(
Kp(In −HH�)

)
s.t.

∑m

p=1
γ2
p = 1.

(5)

MKKM with Matrix-induced Regularization
(MKKM-MR)

By observing that existing MKKM algorithms do not suf-
ficiently consider the correlation among base kernels, the
work in (Liu et al. 2016) proposes to reduce the redundancy
and enhance the diversity of selected kernels by incorporat-
ing a matrix-induced regularization, as fulfilled in the fol-
lowing Eq.(6)

min
H∈Rn×k,γ∈R

m
+

Tr
(
Kγ(In −HH�)

)
+

λ

2
γ�Mγ

s.t. H�H = Ik, γ
�1m = 1,

(6)

where M is a matrix to measure the correlation of each pair-
wise base kernels and λ is a parameter to trade off the clus-
tering cost function and the regularization term.

Note that both MKKM and the newly proposed MKKM-
MR algorithms take the common assumption that the op-
timal kernel is a linear combination of base kernels. In the
following, we propose an optimal neighborhood kernel clus-
tering with multiple kernels to improve the representation
capability of the optimal kernel and enhance the negotiation
between learning the optimal kernel and clustering.

The Proposed Optimal Neighborhood Kernel

Clustering with Multiple Kernels

As seen from Eq.(4) and Eq.(6), the optimal kernel Kγ in
both MKKM and MKKM-MR is expressed as

∑m
p=1 γpKp.

This assumption rigorously requires that the optimal kernel
is on a hyperplane parameterized by γ, which substantially
hurts the representation capability of the optimal kernel. On
the other hand, this expression, i.e.,

∑m
p=1 γpKp, does not

sufficiently or explicitly consider the effect of clustering ma-
trix H on learning the optimal kernel. This makes the un-
derlying connections between learning the optimal kernel
and clustering loosen, and ignores the possibility that the
above two learning processes may need to negotiate with
each other in order to achieve the optimality.
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Following the above analysis, we can see that existing
MKKM algorithm and its variants do not take a sufficient
consideration of the form of the optimal kernel, which could
lead to unsatisfying clustering performance. This motivates
us to derive an optimal neighborhood kernel clustering algo-
rithm to improve this situation.

The Proposed Formulation

To address the above-mentioned issues, we propose to incor-
porate the optimal neighborhood kernel learning (Liu et al.
2009; 2013b) into existing MKKM algorithms to enhance
the representability of the optimal kernel and strengthen the
negotiation between kernel learning and clustering. Specifi-
cally, our algorithm seeks an optimal kernel G in the neigh-
bor of Kγ , and uses it for clustering. This idea can be ful-
filled as follows

ace-9pt

minH,γ,G Tr
(
G(In −HH�)

)
+

ρ

2
‖G−Kγ‖2F +

λ

2
γ�Mγ

s.t. H ∈ R
n×k, H�H = Ik,

γ�1m = 1, γp ≥ 0, ∀p,
G � 0,

(7)
where G is an optimal kernel which is required to be PSD,
Kγ =

∑m
p=1 γpKp, the distance of G and Kγ is measured

by ‖G−Kγ‖2F, M is a matrix with element Mpq measuring
the correlation between Kp and Kq , and ρ, λ are regulariza-
tion parameters.

Compared with the objective in Eq.(6), Eq.(7) has an extra
variable G to optimize. Actually, the linear combination of
base kernels Kγ can be treated as a noisy observation of the
ideal kernel G, and we expect to seek a better kernel in the
neighborhood of Kγ for clustering. By this way, our algo-
rithm effectively enlarges the region from which an optimal
kernel can be chosen, and therefore is in a better position
than the traditional ones to identify a more suitable kernel
for clustering. More importantly, as will be seen in Eq.(9),
the update of G is dependent on both the combined kernel
Kγ and the clustering matrix H at the previous iteration,
which is different from existing MKKM algorithms. This
indicates that in our algorithm the clustering matrix H is ex-
plicitly utilized to learn an optimal kernel, which, in turn, is
used for clustering. These two learning processes are seam-
lessly coupled and are allowed to negotiate with each other
to achieve better clustering.

Alternate optimization

In the following, we design an efficient algorithm to solve
the optimization problem in Eq.(7). In specific, we design a
three-step algorithm to solve it in an alternate manner:

i) Optimizing H with fixed γ and G. Given γ and G, the
optimization in Eq.(7) w.r.t H reduces to a standard kernel
k-means problem as follows

min H Tr
(
G(In −HH�)

)
s.t. H ∈ R

n×k, H�H = Ik.

(8)

ii) Optimizing G with fixed γ and H. Given γ and H,
the optimization in Eq.(7) w.r.t G can be rewritten as,

minG
1

2
‖G−B‖2F s.t. G 	 0, (9)

where B = Kγ − 1
ρ (In −HH�).

This optimization problem in Eq.(9) is to find the pro-
jection of B in PSD space. According to the Theorem 2 in
(Zhou et al. 2015), its optimal solution can be readily writ-
ten as G = UBΣ

+
BV

�
B , where B = UBΣBV

�
B is the SVD

of B, and Σ+
B is a diagonal matrix by keeping the positive

elements of ΣB and setting the rest ones as zeros.
iii) Optimizing γ with fixed H and G. Given H and G,

the optimization in Eq.(7) w.r.t γ is a quadratic programming
with linear constraints as follows,

minγ
ρ+ λ

2
γ�Mγ − a�γ s.t. γ�1m = 1, γp ≥ 0, ∀p,

(10)
where M is a m ×m matrix with Mpq = Tr(KpKq), and
a = [a1, · · · , am]� with ap = ρTr(GKp).

Algorithm 1 Proposed Optimal Neighborhood Kernel Clus-
tering with Multiple Kernels
1: Input: {Kp}mp=1, ρ, λ and ε0.
2: Output: H, μ and G.
3: Initialize γ(0) = 1m/m, G(0) = Kγ(0) and t = 1.
4: repeat

5: Kγ(t) =
∑m

p=1 γ
(t−1)
p Kp.

6: Update H(t) by solving Eq.(8) with given G(t).
7: Update G(t) with Kγ(t) and H(t) by Eq.(9).
8: Update γ(t) by solving Eq.(10) with given H(t) and G(t).
9: t = t+ 1.

10: until
(

obj(t−1) − obj(t)
)
/obj(t) ≤ ε0

In sum, our algorithm for solving Eq.(7) is outlined in Al-
gorithm 1, where obj(t) denotes the objective value at the
t-th iteration. It is worth pointing out that the objective of Al-
gorithm 1 is guaranteed to be monotonically decreased when
optimizing one variable with others fixed at each iteration
(Bezdek and Hathaway 2003). At the same time, the objec-
tive is lower-bounded by zero. As a result, our algorithm is
guaranteed to converge. Also, as shown in the experimental
study, it usually converges in less than 30 iterations.

Discussion and Extension

In this subsection, we analyze the relationship between our
algorithm and existing ones such as MKKM and the work in
(Liu et al. 2016). The critical difference between most of ex-
isting MKKM algorithms and ours lies at the form of the op-
timal kernel. In detail, existing MKKM algorithms adopt the
assumption that the optimal kernel is a linear combination of
base kernels. Differently, our algorithm further relaxes this
assumption and only requires that the optimal kernel resides
in the neighborhood of the linear combination of base ker-
nels. As seen, existing MKKM algorithms (Huang, Chuang,
and Chen 2012; Liu et al. 2016) can be treated as a spe-
cial case of ours when the parameter ρ approaches to +∞.
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Also, though both of our work and the work in (Liu et al.
2016) aim to improve the multiple kernel clustering perfor-
mance, their motivations are totally different. The work in
(Liu et al. 2016) finds an optimal combination coefficients
by incorporating a matrix-induced regularization to reduce
the redundancy and enhance the diversity of the selected ker-
nels. Differently, our work designs an optimal neighborhood
kernel clustering (ONKC) algorithm to improve the kernel
representation capability and facilitate the negotiation be-
tween optimal kernel learning and clustering. In summary,
our algorithm extends the existing MKKM algorithms to a
more general framework, with richer kernel representability
and more negotiation between the kernel learning and clus-
tering.

Meanwhile, our algorithm is readily extendable by finely
designing appropriate criterion to measure the neighborhood
between G and Kγ . Designing proper criteria to satisfy var-
ious requirements of clustering tasks is interesting and worth
exploring in future. In addition, the proposed ONKC is gen-
eral, and can be readily extended to other kernel-based algo-
rithms such as kernel κ-means, spectral clustering, etc.

Compared with MKKM, our algorithm needs to optimize
the optimal neighborhood kernel G by performing SVD at
each iteration, which brings a little extra computation cost.
Overall, the computational complexity of existing MKKM
and ours is comparable.

Experiments

Data sets

We evaluate the clustering performance of the proposed al-
gorithm on 16 benchmark data sets from various applica-
tions, including image recognition, gesture recognition, pro-
tein subcellular localization. The detailed information of
these data sets is listed in Table 1. From this tabler, we ob-
serve that the number of samples, kernels and categories of
these data sets show considerable variations, which provides
a good platform to compare the performance of different
clustering algorithms.

We then show how to construct base kernels for these
data sets. For the first nine data sets, all kernel matrices are
pre-computed and publicly available from websites1,2,3. For
each of the rest data sets, we generate 12 base kernels by
following the approach in (Du et al. 2015), including seven
Gaussian kernels, four polynomial kernels and one cosine
kernel.

Compared algorithms

The proposed algorithm is compared with nine multiple ker-
nel clustering related algorithms, most of which are newly
proposed. They include

• Average multiple kernel k-means (A-MKKM): A
new kernel is generated by uniformly weighting all base
kernels, and this new kernel is taken as the input of kernel
k-means.
1
http://mkl.ucsd.edu/dataset/

2
http://ss.sysu.edu.cn/˜py/

3
http://www.robots.ox.ac.uk/˜vgg/data/flowers/

Table 1: Datasets used in our experiments.
Dataset #Samples #Kernels #Classes
psortPos 541 69 4
psortNeg 1444 69 5

plant 940 69 4
nonplant 2732 69 3
Digital 2000 3 10

Flower17 1360 7 17
ProteinFold 649 12 27
Flower102 8189 4 102
Caltech102 1530 25 102
warpAR10P 130 12 10

YALE 165 12 15
TOX171 171 12 4
Carcinom 174 12 11

warpPIE10P 210 12 10
JAFFE 213 12 10

movement 360 12 15

• Single best kernel k-means (SB-KKM): Kernel k-
means is performed on each single kernel separately and
the best result is reported.

• Multiple kernel k-means (MKKM) (Huang, Chuang,
and Chen 2012): The algorithm performs kernel k-means
and updates kernel coefficients alternately, as shown in
Eq.(4).

• Localized multiple kernel k-means (LMKKM) (Gönen
and Margolin 2014): LMMKM combines the base kernels
by sample-adaptive weights.

• Robust multiple kernel k-means (RMKKM) (Du et al.
2015): RMKKM improves the robustness of MKKM by
replacing the sum-of-squared loss with an �2,1-norm one.

• Co-regularized spectral clustering (CRSC) (Kumar
and Daumé 2011): CRSC provides a co-regularization
way to perform spectral clustering.

• Robust multiview spectral clustering (RMSC) (Xia
et al. 2014): RMSC constructs a transition probability
matrix from each single view, and uses them to recover a
shared low-rank transition matrix for clustering.

• Robust Multiple Kernel Clustering (RMKC) (Zhou et
al. 2015): RMKC learns a robust yet low-rank kernel for
clustering by capturing the structure of noises in multiple
kernels.

• Multiple kernel k-means with matrix-induced regu-
larization (MKKM-MR) (Liu et al. 2016): MKKM-MR
learns the optimal combination weights by introducing a
matrix-induced regularization to reduce the redundancy
and enhance the diversity among the selected kernels.

The Matlab implementation of KKM, MKKM and LMKKM
are publicly available from the website4. For RMKKM,
CRSC, RMSC, RMKC and MKKM-MR, we use their Mat-
lab codes which are freely downloaded from authors’ web-
sites in our experiments.

4
https://github.com/mehmetgonen/lmkkmeans
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Table 2: ACC, NMI and purity comparison of different clustering algorithms on 12 benchmark data sets.
Datasets A-MKKM SB-KKM MKKM LMKKM RMKKM CRSC RMSC RMKC MKKM-MR Proposed

(Huang et al. 2012) (Gönen and Alpaydın 2014) (Du et al. 2015) (Kumar and Daumé) 2011 (Xia et al. 2014) (Zhou et al. 2015) (Liu et al. 2016)

ACC
Digital 88.75 75.40 47.00 47.00 40.45 84.80 90.40 88.90 90.40 91.05

Flower17 51.03 42.06 45.37 42.94 48.38 52.72 53.90 52.35 60.00 60.88
ProteinFold 28.10 33.86 27.23 23.49 30.98 34.87 33.00 28.82 36.46 37.90
Flower102 27.29 33.13 21.96 22.57 28.17 37.26 32.97 33.54 39.91 41.56
Caltech102 35.56 33.14 34.77 27.97 29.67 33.33 31.50 35.56 35.82 37.32
warpAR10P 39.23 43.08 41.54 27.69 31.54 33.08 30.77 39.23 40.77 47.69

YALE 52.12 56.97 52.12 53.33 58.79 55.15 56.36 56.97 60.00 61.21
TOX171 47.95 47.95 47.95 47.95 52.05 51.46 49.71 47.95 52.05 54.97
Carcinom 68.21 73.41 68.21 65.32 74.57 68.79 68.79 68.21 71.68 73.99

warpPIE10P 41.90 77.14 71.90 42.86 34.76 57.62 31.43 41.90 55.24 81.43
JAFFE 81.22 80.75 73.24 82.16 84.51 70.89 57.28 81.22 80.75 83.57

movement 46.94 50.28 45.28 45.00 50.83 50.00 49.17 48.06 50.00 53.06

NMI
Digital 80.59 68.38 48.16 48.16 46.87 73.51 81.80 80.88 83.22 83.96

Flower17 50.19 45.14 45.35 44.12 50.73 52.13 53.89 50.42 57.11 58.58
ProteinFold 38.53 42.03 37.16 34.92 38.78 43.34 43.91 39.46 45.32 46.93
Flower102 46.32 48.99 42.30 43.24 48.17 54.18 53.36 49.73 57.27 59.13
Caltech102 59.90 59.07 59.64 55.17 55.86 58.20 58.40 59.90 60.38 61.41
warpAR10P 36.07 42.61 40.07 27.35 29.60 34.41 26.14 36.07 41.81 50.55

YALE 57.72 58.42 54.16 55.59 59.70 56.89 59.11 57.69 61.29 62.27
TOX171 27.15 26.57 26.93 27.15 31.23 28.51 33.66 27.15 27.15 28.91
Carcinom 68.32 72.79 71.48 68.32 69.76 67.39 67.90 68.32 70.85 74.45

warpPIE10P 49.20 78.67 76.23 49.73 39.95 60.64 33.28 49.20 59.18 82.01
JAFFE 78.25 78.53 72.73 79.43 82.63 71.07 64.41 78.25 78.01 81.15

movement 61.17 62.67 59.73 58.23 61.98 58.52 61.32 61.17 61.79 64.23

purity
Digital 88.75 76.10 49.70 49.70 44.20 77.75 82.90 88.90 90.40 91.05

Flower17 51.99 44.63 46.84 45.81 51.54 56.47 53.24 53.01 61.03 61.69
ProteinFold 36.17 41.21 33.86 32.71 36.60 40.78 42.36 36.46 42.65 45.24
Flower102 32.28 38.78 27.61 28.79 33.86 44.08 40.24 38.87 46.39 47.64
Caltech102 37.12 35.10 37.25 29.41 31.70 35.75 33.27 37.12 37.65 39.08
warpAR10P 40.00 43.08 43.85 29.23 31.54 33.08 30.77 40.00 40.77 47.69

YALE 53.94 57.58 52.73 54.55 59.39 56.36 56.97 57.58 60.21 61.82
TOX171 48.54 47.95 47.95 48.54 52.05 51.46 50.29 49.12 52.05 54.97
Carcinom 72.25 76.88 77.46 75.14 76.30 73.99 73.99 72.25 76.30 79.19

warpPIE10P 44.76 78.10 71.90 44.76 37.62 60.48 32.38 44.76 56.19 81.43
JAFFE 81.22 81.22 75.59 82.16 84.51 71.36 58.22 81.22 80.75 83.57

movement 48.89 52.78 49.44 45.83 53.06 50.56 50.00 49.72 50.56 53.61

Experimental settings

In all our experiments, all base kernels are first centered and
then scaled so that for all i and p we have Kp(xi,xi) =
1 by following (Cortes, Mohri, and Rostamizadeh 2012;
Liu et al. 2016). For all data sets, it is assumed that the true
number of clusters is known and set as the true number of
classes. The parameters of RMKKM, RMSC and RMKC
are selected by grid search according to the suggestions in
their papers. For the proposed algorithm, its regularization
parameters λ and ρ are both chosen from a large enough
range [2−15, 2−13, · · · , 215] by grid search.

The clustering performance of all compared algorithms
are evaluated in terms of three widely used criteria, includ-
ing clustering accuracy (ACC), normalized mutual informa-
tion (NMI) and purity. For all algorithms, we repeat each
experiment for 50 times with random initialization to reduce
the affect of randomness caused by k-means, and report the
best result.

Experimental results

The experimental study aims to verify the advantages and ef-
fectiveness of optimal neighborhood kernel clustering with
multiple kernels. This study includes the following two
parts: i) demonstrating the advantages of optimal neighbor-
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Figure 1: (a) The effect of ρ on clustering accuracy. (b) The
effect of λ on clustering accuracy. (c) The objective value of
our algorithm at each iteration.

hood kernel clustering over the widely used linear combina-
tion of base kernels; and ii) showing the effectiveness of the
proposed algorithm by conducting comprehensive experi-
ments to compare with state-of-the-art clustering algorithms
in the literature.

For the first part, to demonstrate the superiority of optimal
neighborhood kernel clustering, we compare the A-MKKM,
MKKM (Huang, Chuang, and Chen 2012) and MKKM-MR
(Liu et al. 2016) with the proposed algorithm on four bioin-
formatics data sets. Note that the first three algorithms take
the common assumption that the optimal kernel is a linear
combination of base kernels. Differently, our algorithm re-
laxes this assumption and allows the optimal kernel to be

2270



Table 3: ACC, NMI and purity comparison of different clus-
tering algorithms on four bioinformatics data sets.

Datasets A-MKKM MKKM MKKM-MR Proposed
(Huang et al. 2012) (Liu et al. 2016)

ACC
psortPos 57.12 60.81 59.70 64.33
psortNeg 41.00 51.18 51.11 53.60

plant 61.70 56.38 61.38 64.57
nonplant 49.38 54.32 56.59 59.57

NMI
psortPos 28.86 35.37 34.13 44.33
psortNeg 17.63 30.99 29.58 32.78

plant 26.82 20.02 26.41 30.94
nonplant 16.55 15.83 23.43 26.04

purity
psortPos 60.81 66.91 65.25 69.69
psortNeg 43.14 55.47 53.95 57.48

plant 61.70 56.38 61.81 64.57
nonplant 72.18 71.45 75.33 78.34

resided in the neighborhood of a linear combination of base
kernels.

The experimental results are reported in Table 3. As seen,
on all datasets, our algorithm consistently and significantly
outperforms MKKM-MR, which is considered as the state-
of-the-art among MKKM based algorithms (Liu et al. 2016).
In specific, our algorithm exceeds the second best one by
3.52%, 2.42%, 2.87% and 2.98% on psortPos, psortNeg,
plant and nonpl in terms of ACC. Similar results can also
be observed in terms of NMI and purity. This experiment
clearly shows the advantages of optimal neighborhood ker-
nel clustering. By assuming that the optimal kernel resides
in the neighborhood of a linear combination of base kernels,
our algorithm is able to search a more appropriate kernel in
a large space for clustering. Meanwhile, the negotiation be-
tween the process of kernel learning and that of clustering
makes the learned kernel better serve the clustering. Both
factors contribute to the improvement of our algorithm.

For the second part, we conduct comprehensive ex-
periments to compare our algorithm with several newly
proposed ones on 12 benchmark data sets. The ACC, NMI
and purity of the above-mentioned algorithms are reported
in Table 2. From these results, we have the following
observations:
• Our algorithm demonstrates the best clustering perfor-

mance in terms of clustering accuracy, NMI and purity
on most of the data sets. Taking the ACC as an example,
it exceeds the second best one by 1.5%, 4.61%, 1.21%,
2.92%, 4.29% and 2.23% on Caltech102, warpAR10P,
YALE, TOX171, warpPIE10P and movement, respec-
tively.

• The proposed algorithm significantly outperforms exiting
MKKM based algorithms, including MKKM, LMKKM
and MKKM-MR, on all 12 data sets in terms of ACC,
NMI and purity. This again validates the advantages and
effectiveness of optimal neighborhood kernel clustering.

• As two strong baselines, A-MKKM and SB-KKM usu-
ally demonstrate comparable or even better performance

than most of algorithms in comparison. However, our
algorithm consistently and significantly outperforms
these baselines on all data sets, which indicates its
superiority in clustering performance.
From the above experiments, we conclude that the pro-

posed algorithm: i) effectively enhances the representation
capability of the learned kernel; and ii) is able to learning a
better kernel for clustering by strengthening the negotiation
between optimal kernel learning and clustering.

Parameter selection and convergence

The proposed algorithm introduces two regularization pa-
rameters λ and ρ to balance three terms in Eq.(7). We then
experimentally show the effect of each parameter on the per-
formance of our algorithm by fixing the other on psortPos.

Figure 1(a) plots the ACC of our algorithm by varying
ρ in a large range [2−15, 2−13, · · · , 215] with λ = 2−7.
From this figure, we observe: i) with the increase of ρ,
the ACC first increases to a maximum and then decreases,
validating the effectiveness of optimal neighborhood kernel
clustering; and ii) our algorithm shows stable performance
across a wide range of ρ. Similarly, Figure 1(b) presents the
ACC of our algorithm by varying λ from 2−15 to 215 with
ρ = 2−4. Again, our algorithm demonstrates stable perfor-
mance across a wide range of λ. These results indicate that
the performance of our method is stable across a wide range
of parameters.

An example of the objective value of our algorithm at each
iteration is plotted in Figure 1(c). As observed from this ex-
ample, the objective value is monotonically decreased and
the algorithm quickly converges in less than thirty iterations.

Conclusions

This work proposes the optimal neighborhood kernel clus-
tering with multiple kernels—a more flexible and effec-
tive algorithm which enhances the representability of the
learned optimal kernel and strengthens the negotiation be-
tween the kernel learning and clustering. A three-step algo-
rithm with proved convergence is designed to solve the re-
sultant optimization problem. Comprehensive experimental
results clearly demonstrates the superiority of our algorithm.
In the future, we plan to extend our algorithm to a more gen-
eral framework, and use it as a platform to revisit existing
multiple kernel clustering algorithms and uncover their rela-
tionship.
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