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Abstract

The key question in transfer learning (TL) research is how to
make model induction transferable across different domains.
Common methods so far require source and target domains to
have a shared/homogeneous feature space, or the projection
of features from heterogeneous domains onto a shared space.
This paper proposes a novel framework, which does not re-
quire a shared feature space but instead uses a parallel corpus
to calibrate domain-specific kernels into a unified kernel, to
leverage graph-based label propagation in cross-domain set-
tings, and to optimize semi-supervised learning based on la-
beled and unlabeled data in both source and target domains.
Our experiments on benchmark datasets show advantageous
performance of the proposed method over that of other state-
of-the-art TL methods.

1 Introduction

Transfer learning (TL) aims to address the label-sparse prob-
lem arising in many real-world applications as acquiring a
large quantity of labeled data is extremely expensive and
labor-intensive. TL methods address this problem by trans-
ferring the trained models from label-rich domain (source
domain) to a relevant but label-sparse domain (target do-
main) according for the task of interest. Using topic classifi-
cation of web blogs as an example (as in (Pan et al. 2011)),
obtaining a large set of labeled instances is often difficult
especially when the web blogs are newly released. On the
other hand, large collections of labeled news stories in rele-
vant topics may be easily found on the internet. Thus if we
can successfully transfer the classification models or the in-
duced features from the news-story domain to the web blog
domain, then the label-sparse problem in the target domain
would be effectively addressed. Another motivating example
is to transfer the text classification models from a label-rich
language (e.g., English) to a label-sparse or label-sparser
language (e.g., Italian or Turkish). Unlike English or a few
internationally dominating languages, most of the other lan-
guages in the world have much less labeled documents in
comparison. This means that TL would have a tremendous
impact on the true success of text classification for all lan-
guages in the world if we can solve TL in all the cross-
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lingual settings. Notice an important difference between the
two examples we have introduced, i.e., in the first example
both source and target domain share the same feature space
(the same vocabulary of English), while in the second ex-
ample the two domains have different feature spaces (i.e.,
the vocabularies of two different languages). Nevertheless,
TL across different feature spaces (heterogeneous) is usu-
ally a tougher problem than TL within the common feature
space (homogeneous).

The literature of TL methods (Pan and Yang 2010) re-
veals promising results in a variety of real-world applica-
tions, such as text classification (Pan et al. 2011; Duan,
Xu, and Tsang 2012), image classification (Zhu et al. 2011;
Kulis, Saenko, and Darrell 2011), sentiment analysis (Glo-
rot, Bordes, and Bengio 2011; Zhou et al. 2014), recom-
mendation systems (Li, Yang, and Xue 2009), and more. Let
us outline the major differences among existing approaches
based on their basic assumptions in relating source and tar-
get domain, as well as on how labeled and unlabeled data in
both domains are jointly leveraged during the TL process.

The Naive Bayes Transfer Classifier (NBTC) (Pan et al.
2011) is a representative work on TL for text classification,
under the assumption that source and target domain share
the same feature space as well as the topic labels. However,
the topic distribution and the distributions of topics condi-
tioned on words may differ in two domains. The goal of
NBTC is to adapt source-domain distributions to the target-
domain distributions. A major limitation of the NBTC ap-
proach, and any other methods under the same assumption
of a shared feature space between the two domains, is that
they cannot handle TL across heterogeneous feature spaces.
For example, those methods are not applicable for perform-
ing TL from text classification to image classification (and
vice versa), or from classification of English documents to
that of other languages.

Yet another kind of approaches, Transductive Transfer
Learning (TTL), tackles TL problem from a different an-
gle. TTL focuses on cross-domain kernel construction and
the utilization of unlabeled data in both source and target
domains during the learning procedure. Adaptation Regular-
ization based Transfer Learning (ARTL)(Long et al. 2014) is
a representative work of TTL methods. It constructs a uni-
fied kernel and applies graph-based label propagation tech-
nique under certain regularized constraints to infer labels
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in target domain. This kernel-based approach is highly ef-
fective even given limited training data. However, ARTL or
any existing TTL-based methods, to the best of our knowl-
edge, is not applicable to the heterogeneous feature setting,
which is the focus of this paper. The difficulty arises in cross-
domain kernel construction. How could a kernel value be-
tween data from different domains be computed if they are
not in the same feature space?

One common stream of approaches, Feature Representa-
tion Transfer Learning (FRTL), which can be used in hetero-
geneous settings addresses the problems by learning a com-
mon feature space, and then performing model transfer or
parameter adaptation within that subspace. An important as-
sumption adopted by most existing FRTL approaches is the
availability of cross-domain parallel data. i.e., correspond-
ing instances that have both source and target representa-
tions. There are various way to learn the common feature
representation. For example, (Argyriou et al. 2007) tried to
induce a shared projection matrix for both source and target
domain. (Glorot, Bordes, and Bengio 2011) applied a deep
learning technique, the stack denoised autoencoder (SDA),
for a non-linear projection onto the shared latent space in
cross-domain sentiment classification. (Chandar et al. 2015)
proposed a correlational neural network (CorrNet) approach
that combines autoencoders (AE) and canonical correlation
analysis (CCA) in the way that AE learns a generalized rep-
resentation for each domain while CCA captures the joint
representation of the two domains by maximizing the corre-
lation in-between. Notice that above state-of-the-art neural
network methods (CorrNet) usually require large amount of
parallel data to achieve competitive results. Such large size
of parallel data may not be realistic to obtain given fixed
budgeted resources in real world applications. (e.g. human
labeling for parallel sentences in low-resource languages)

In this paper, we propose a novel framework called Ker-
nel Induction for Heterogeneous Feature TL (KerTL). Our
approach addresses the limitation of TTL methods by in-
troducing a powerful kernel completion technique. This en-
ables our approach not only to enjoy same degree of smooth
label propagation as in TTL from source to target domain
but also to require only a modest amount of parallel data as
opposed to neural-network based methods. Furthermore, us-
ing low-rank spectral transformation of the component ker-
nels to obtain the global approximation of kernel diffusion
leads to additional power and computational efficiency of
our framework.

2 Proposed Framework
Let us first formally define the Transfer Learning (TL) prob-
lem of interest, and then show how to formulate TL as an
optimization problem with graph regularization.

TL Definitions

For any single data domain D = X × Y , denote by D =
O ∪ U the training set consisting of both labeled examples
O = {xi, yi} and unlabeled examples U = {xi} drawn
from X × Y and X respectively. If the context is clear, we
abuse the notation of x to denote a feature vector in D with-
out distinguishing whether it comes from O or U .

In this paper, we focus on TL involving two domains with
heterogeneous features but a shared label space. Specifically,
we are given a source domain Ds = Xs × Y and a target
domain Dt = Xt × Y where Xs is allowed to differ from
Xt. We in addition assume the accessibility to a parallel set
PL = {(x(pls)

i ,x
(plt)
i )} where x

(pls)
i ∈ Ds, x(plt)

i ∈ Dt.
Each feature pair in PL corresponds to “one” datum’s rep-
resentation in two domains. Given Ds, Dt and PL, our goal
is to make predictions on the unlabeled target-domain data
Ut with low expected error.

Notice that all data points are already specified in Ds∪Dt.
The parallel set PL only suggests inter-domain relations,
namely which data in Ds have counter-parts in Dt.

TL with the Graph Laplacian

The aforementioned parallel-data-based TL problem can
be formulated in a way that is compatible with graph-
based SSL. Specifically, we view all (both labeled and un-
labeled) data points in Ds ∪Dt as nodes in a graph, whose
edges encode inter-node similarities summarized in a |Ds ∪
Dt|×|Ds ∪ Dt| adjacency matrix W (Section 3). Our task
therefore becomes making predictions on the target-domain
unlabeled nodes (Ut) in the graph. With limited supervision
available, it is desirable to propagate from labeled nodes to
unlabeled ones with respect to the manifold structure of the
graph, on the assumption that nodes sharing high similarities
should also share similar labels.

For brevity we assume a binary label space Y = {−1, 1}.
Denote by y the true label and by f(x) the corresponding
predicted value. Predicted values over all nodes in Ds ∪Dt

are further concatenated to form a long vector f = [fs,ft]
�

of length |Ds ∪Dt|. Our problem is then formalized as:

min
f

∑
(x,y)∈Os∪Ot

�(f(x), y) + γf�Lf , (1)

whereL is the graph Laplacian characterizing smoothness of
graph and γ is a positive scalar controlling the regularization
strength. Laplacian L is defined as L = W1−W .

The term in (1) is the empirical loss between predicted
labels and true labels on subsets Os and Ot. While the
last term indicates the normalization penalty with respect
to the manifold structure of all data. Specifically, we can
show that this Laplacian can be reformulated as f�Lf =
1
2

∑
i,j wij(fi − fj)

2, which reveals the motivation of the
penalty: nodes that have strong similarities (with large wij)
should have close prediction scores (fi and fj).

3 Graph Construction

The adjacency matrix W and its associated LaplacianL play
a key role in our formulation. In the homogeneous setting,
there are widely-accepted routines to compute W using ei-
ther cosine or radial basis function (RBF) measurements.
Nonetheless, under the heterogeneity assumption, all those
methods would become inappropriate in evaluating similari-
ties for the inter-domain part. This implies the need of com-
pleting (instead of directly computing) the inter-domain sim-
ilarities through both the pre-computed intra-domain sim-
ilarities and the information from the parallel data, which
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is one of the key contributions in our work. In the follow-
ing, we start from homogeneous graph construction and then
move on to the more generic framework of tackling hetero-
geneous scenarios.

Homogeneous Graph Construction

Given a pair of data points xi,xj in homogeneous fea-
ture space X , one could compute the pair-wise similar-
ity wij using different functions, among which two typi-
cal choices are cosine measurement and RBF measurement
wij = exp(−‖xi−xj‖2

σ2 ). The choice of similarity function
is usually domain-specific. For example, with text data (term
frequency), cosine measurement is empirically often a bet-
ter choice in characterizing documents with similar (propor-
tional) word counts.

Besides, one would usually consider “dropping out” some
weights (i.e. truncating a subset of wij’s to 0) which is called
“sparsification” in order to emphasize local information and
to lower the computation cost. A common practice is to keep
weights only of each node’s k nearest neighbors (kNN).
Compared to ε-graphs where one specifies a fixed threshold
for truncating all edge weights, the kNN graph allows “adap-
tive” neighborhood radius for both strongly and weakly con-
nected points (Zhu, Lafferty, and Rosenfeld 2005), and often
leads to better classification results.

Heterogeneous Graph Construction

The construction for intra-domain similarities stays valid
within the heterogeneity setting. However, the inter-domain
scores cannot be directly computed (neither 〈xi,xj〉 (co-
sine) nor ‖xi − xj‖ (RBF) can be calculated as xi and xj

are in different feature spaces). To simplify our discussion,
suppose the data are in a well-arranged order such that the
adjacency matrix W is in the following form:

W =

[
Ws,s Ws,t

Wt,s Wt,t

]
, (2)

where Ws,s, Wt,t represent the intra-domain parts, and
Ws,t = W�

t,s represent the inter-domain parts.
Suppose xi and xj are a pair of parallel data, which

means they are two alternative views of one datum. Then,
it is always reasonable to set wij = 1 since a datum and
itself should always be similar to itself. However, these en-
tries are the only observable cells in Ws,t and Wt,s. All the
remaining cells should be completed using information from
intra-domain similarities and parallel data.

Such off-diagonal matrix completion problem has strong
resemblance with the bipartite graph edge completion prob-
lem, where nodes in Ds and Dt form a bipartite graph and
the goal is to complete the bipartite edges (Ws,t) in the mid-
dle (Liu and Yang 2015). In the following, we use Ŵs,t to
denote the completed matrix and Ws,t for the original (ob-
served) version.

Random Walk Completion Let us consider the task of
completing the missing (p, q)-th entry in Ws,t. Although the
value of (ws,t)pq is unknown, some other entry (r, q) in the
same column might have been observed and hence (ws,t)pq

should be close to (ws,t)rq if the two “must-links” (p, q) and
(r, q) are similar. Such similarity is provided as (ws,s)pr.
This suggests completing (ws,t)pq by aggregating all ele-
ments in the q-th column of Ws,t weighted by the p-th row in
Ws,s. Namely (ŵs,t)pq ←

∑
r(ws,s)pr(ws,t)rq . The above

can be expressed in the matrix form

Ŵs,t ←Ws,sWs,t. (3)

When Ws,s is normalized as a column-stochastic matrix,
equation (3) amounts to one-step random walk for each col-
umn in Ws,t.

Alternatively, completion can be carried out row-wisely

Ŵs,t ←Ws,tWt,t. (4)

Combining (3) and (4) leads to one-step simultaneous ran-
dom walk in both the source and target domain:

Ŵs,t ←Ws,sWs,tWt,t. (5)

By further allowing varying number of random walk steps
on both sides (k steps on both sides in total), and by aggre-
gating the effect of all different steps, we obtain

Ŵ
(k)
s,t =

k∑
i=0

(
k

i

)
W i

s,sWs,tW
k−i
t,t . (6)

Compared to one-step random walk completion, (6) takes
into account multi-step transduction over the graph, which
is particularly desirable in our case where missing entries in
Ws,t may not have observed entries as its direct neighbor.

t

Diffusion Kernel Completion We propose the following
diffusion kernel completion

Ŵs,t = exp (αsWs,s)Ws,t exp (αtWt,t) . (7)

This is equivalent to the aggregation of infinite number of
weighted Random Walk Completions. Specifically,

Ŵs,t =

∞∑
k=0

Ŵ
(k)
s,t (αs, αt). (8)

where Ŵ
(k)
s,t denotes the weighted Random Walk Comple-

tion:

Ŵ
(k)
s,t (αs, αt) =

k∑
i=0

(
k

i

)
αi
sW

i
s,sWs,tα

k−i
t W k−i

t,t . (9)

positive scalars αs and αt are corresponding to the weights
for the source- and target- domain graphs, respectively. Due
to space limit, we do not provide the proof details.

Low Rank Approximation of Diffusion Kernel As in
many other matrix completion tasks, it can be useful to im-
pose low-rank assumptions on Ŵs,t. The compressed sens-
ing theory (Candès and Recht 2009) implies there is still
hope to recover Ŵs,t even if our intra-domain matrices are
non-informative (e.g. identity matrices). To some extent, the
low-rank factorization process is a denoising procedure try-
ing to recover the missing signals.
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Therefore, we first take the low-rank eigen-decomposition
on both exp(αsWs,s) and exp(αtWt,t) such that

exp(αsWs,s) ≈ Qs exp(αsΛs)Q
�
s (10)

exp(αtWt,t) ≈ Qt exp(αtΛt)Q
�
t , (11)

where Λs,Λt are the ks, kt leading eigen-values for Ws,s,
Wt,t respectively, and Qs, Qt are the corresponding stacked
eigen-vectors for Ws,s, Wt,t.

The diffusion kernel completion (7) is then modified as

Ŵs,t =
(
Qs exp(αsΛs)Q

�
s

)
Ws,t

(
Qt exp(αtΛt)Q

�
t

)
.

(12)

4 Optimization Algorithms
The proposed graph construction method gives us a joint ad-
jacency matrix W for all data points in both the source and
target domains, along with its associated graph Laplacian.
To recap, our task is to solve the optimization problem:

min
f

h(f) ≡
∑

i∈O∫∪O�

�(fi, yi) + γf�Lf , (13)

It is not hard to verify that (13) is a convex optimization
problem when �(·, ·) is convex. This enables us to adopt
a wide range of optimization techniques. In particular, we
compute the exact solution for the square loss and use Ada-
grad which is a widely-tested sub-gradient method (Duchi,
Hazan, and Singer 2011) for other losses (e.g. logistic and
hinge loss).

Note that our computation could be fast when using the
low-rank approximation. The computational bottleneck of
our method during optimization lies in the multiplication
of L and f when calculating the gradient of (13). Recall
L is a function of W , the gradient computation can be car-
ried out in linear time over |Dt| and |Ds| when the diagonal
blocks Ws,s, Wt,t take kNN forms, making their multipli-
cation with f cost as much as O(k|Ds|) and O(k|Ds|), re-
spectively. Similarly, the time complexity of doing matrix-
vector multiplication with the off-diagonal block Ŵs,t will
be O(dmin(|Ds|, |Dt|)) where d is the low-rank dimension.

5 Experiments

Datasets

Amazon Product Reviews (APR) The APR dataset (Pret-
tenhofer and Stein 2010) was designed for evaluations of
sentimental classification with transfer learning in cross-
language and cross-domain settings. It consists of Amazon
product reviews on books (B), DVDs (D) and music (M),
and written in English (EN), German (GE), French (FR) and
Japanese (JP). For each language on each product type (B,
D or M), there are 2000 labeled reviews for training and
2000 labeled reviews for testing, respectively. Parallel data
are also provided for each language pair, which we will de-
scribe with an example task in the next.

Following the settings in (Zhou et al. 2014), we treat En-
glish as the source language, and the remaining three lan-
guages (German, French and Japanese) as the target lan-
guages. For each language pair (EN-GE, EN-FR or EN-
JP), we have 6 cross-product-type pairs, constituting over-
all 18 cross-language and cross-product-type combinations

(e.g. EN-B-FR-D as shown in the first column of Table 2).
Specifically, EN-B-FR-D represents TL task with English
reviews on Books as source domain, and French reviews on
DVD products as target domain. The parallel dataset for the
EN-B-FR-D task is obtained by running Google translation
over the 2,000 French book reviews in the training set, and
by treating the system-produced translations as the English
behalf of the parallel data.

MNIST Handwritten Images The MNIST dataset con-
sists of 70, 000 images in total, with digits from 0 to 9 as the
class labels (one per image). We follow the setting in (Chan-
dar et al. 2015), to treat left half of each image (28 × 28
pixels) as a source-domain instance, while right half of the
image as a target-domain instance. Raw pixel values are
used as features. We randomly sampled 3, 000 images from
the full set as the unlabeled parallel set, 2, 000 images as
the source-domain training set, 1, 024 images as the target-
domain training set, and another of 2, 000 images as the test
set (only the target-domain portion is used). We call the clas-
sification with respect to each target label (a digit from 0 to
9) as a task in image recognition. Although the source and
target domains have same feature dimensions, the features
are indeed heterogeneous (direct cosine/RBF computation
of two half images would not indicate label similarity). The
idea would be more clear if we cut images in a 1/3 and 2/3
fashion, but for the ease of comparison with existing meth-
ods, we keep the same cutting scheme (Chandar et al. 2015).

Constructing unbalance training sets and size-varying
parallel sets To simulate the label-sparse condition of tar-
get domain as in TL problem, we construct unbalanced train-
ing set for our experiments on the APR and MNIST data
sets. Recall that in TL each training set has the source-
domain part and the target-domain part, respectively. For
each task in APR, we use the full set of 2000 source do-
main labeled instances, and a randomly sampled subset of
m target domain labeled instances (m = 2, 4, 8, 16, 32) from
the full set as the final training data. The remaining target-
domain labeled instances (2000 − m) are used for valida-
tion (hyper-parameter tuning). In the MNIST data set, the
source domain training pool has the full size of 2, 000 in-
stances. Another m instances (for m = 2, 4, 8, 16, 32) ran-
domly sampled from the target-domain training set are used
to complete the full training set.

As for the parallel data set in each task, we also ran-
domly sampled from the available pool with the sample
sizes of l = 64, 128, 256, 512, 1024, 2000 for APR (l =
64, 128, 256, 512, 1024, 2048, 3000 for MNIST). The size-
reduced samples allow us to evaluate transfer learning under
the label-unbalanced and parallel-data-sparse conditions.
For each value of m and l, we repeated the random sam-
pling 10 times, and averaged the performance of the target-
domain classifiers over the randomly sampled training sets
and parallel data for each task in the evaluation.

Table 1 summarizes the statistics of the datasets we used
in our experiments.
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Data sets APR MNIST

Source domain training set 2000 2000
Target domain training set 2000 1024
Target domain test set 2000 2000
Parallel data size 2000 3000

Table 1: Data Statistics

Methods for Comparison

We include six methods as baselines for comparison. Two of
them are representative methods (SVM and SSL described
below) in supervised classification where only the target-
domain labeled data are used for training classifiers. We also
include two state-of-the-art methods (HFA and MMDT) in
transfer learning, which can use labeled data in both the
source domain and the target domain for training but cannot
leverage parallel data. The remaining two methods (HHTL
and CorrNet) are the state-of-the-art TL methods which can
use both the labeled data in both domains as well as parallel
data in addition. Some details of these baseline methods are
described below.

• Support Vector Machine (SVM): We used the L2-SVM
from LIBLINEAR (Fan et al. 2008). 1

• Semi-Supervised Learning (SSL) (Zhu, Lafferty, and
Rosenfeld 2005): We implemented the graph-based la-
bel propagation method for Semi-Supervised Learning
framework.

• Heterogeneous Feature Augmentation (HFA) (Li et al.
2014): This method embeds heterogeneous domain data
into shared high-dimensional space, and deploys a Mul-
tiple Kernel Learning solver (Kloft et al. 2011). We used
the code from the website 2.

• Max Margin Domain Transform (MMDT) (Hoffman et
al. 2013): This method uses an asymmetric transforma-
tion matrix to map features across domains, which is op-
timized with respect to all the target categories. We used
the code from the website 3.

• Hybrid Heterogeneous Transfer Learning (HHTL) (Zhou
et al. 2014): This method uses a parallel corpus to learn
the hidden layers which are shared by both the source do-
main and the target domain, and allow classifiers to be
trained on the labeled data in both domains after project-
ing them onto the shared hidden layer. We used the code
provided by the authors.

• Correlational neural network (CorrNet) (Chandar et al.
2015): This method uses autoencoders to simultaneously
minimize classification errors in both domains, and to
capture cross-domain correlations based on a parallel
dataset. Similar to HHTL, classifiers are trained after the
data are mapped onto the shared latent space. We used the
code from the website 4.
1https://www.csie.ntu.edu.tw/∼ cjlin/liblinear/
2https://github.com/transmatrix-github/HFA release
3https://github.com/jhoffman/MaxMarginDomainTransforms
4https://github.com/apsarath/CorrNet

Detailed Experimental Settings

Our experimental results involve two random factors. The
first comes from the random sampling of the target domain
labeled training sets, and the second comes from the random
sampling of the parallel datasets, as we described in Section
5. All the experiments with random samples are repeated 10
times with different random seeds. Mean and standard devi-
ation of the Area under Curve (AUC) of ROC are reported
for evaluation and comparison.

In HHTL and CorrNet, after learning the projected matri-
ces, we trained linear SVMs (Fan et al. 2008) on the pro-
jected training data. For all the methods using SVM classi-
fiers (in SVM, HFA, MMDT, HHTL and CorrNet), we set
the regularization parameter C = 1.

For hyper-parameter tuning, we set the default hyper-
parameters of HFA and MMDT the same as in their pa-
pers. We adopted the hyper-parameter of HHTL on the APR
data, with a grid search of the optimal regularization coef-
ficient among λ = 0.001, 0.01, 1, 10, and 100, and the cor-
ruption probability among p = 0.5, 0.6, 0.7, 0.8, and 0.9 on
the MNIST dataset. Similarly, for CorrNet on the MNIST
dataset we used a grid search for the number of hidden units
as 20, 50, 100, and 200, and λ = 0.2, 2, and 20 on the APR
dataset. For KerTL, we used the cosine similarity and RBF
kernel on the APR and MNIST datasets, respectively. We
keep the top 128 eigenvectors in the eigen-decomposition
part for efficient computation, and set the regularization co-
efficient γ to be 2−10.

Results

TL methods vs. non-TL methods In the first set of ex-
periments we fixed the training-set size in the target domain
as m = 2, and the parallel-set size as l = 1024. Figure
1 shows the averaged AUC scores of those methods. All
the TL methods which leverage parallel data (HHTL, Corr-
Net and KerTL) significantly outperformed the methods that
cannot take advantage of parallel data (SVM, SSL, HFA and
MMDT). Among the TL methods, our KerTL outperforms
all the other methods on both the APR and MNIST data sets.
Tables 2 and 3 show the task-specific performance scores on
the two data sets, respectively. Again, the performance of
KerTL dominates across most of those tasks. On the MNIST
dataset (Table 3) in particular, KerTL improved the result
of CorrNet (which is the strongest baseline) from 93.2% to
96.2% in AUC, which is equivalent to reducing the error rate
from 6.8% to 3.8%, i.e., a 44.1% reduction in error. Such an
improvement is indeed significant.

TL methods with varying-sized parallel data The sec-
ond set of experiments compares the performance of TL
methods (HHTL, CorrNet and KerTL) with varying sized
parallel data, while the training-set size is fixed as m = 2 in
the target domain. As shown in Figure 2, KerTL outperforms
HHTL and CorrNet in most regions of the parallel-set sizes,
on both the ARP and NMIST data sets. We also observed
that the performance of HHTL was very sensitive to the set-
tings of its hyper-parameters. When we fixed those parame-
ter values and varied the sizes of the parallel data, HHTL’s
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Figure 1: Comparison of all methods on APR and MNIST.

Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

EN-B-GE-D 0.564 0.558 0.550 0.563 0.707 0.604 0.715
EN-B-GE-M 0.500 0.542 0.536 0.528 0.711 0.659 0.730
EN-B-FR-D 0.525 0.513 0.522 0.513 0.747 0.729 0.748
EN-B-FR-M 0.541 0.540 0.544 0.542 0.687 0.717 0.738
EN-B-JP-D 0.528 0.527 0.541 0.524 0.643 0.692 0.713
EN-B-JP-M 0.534 0.537 0.541 0.505 0.611 0.665 0.724
EN-D-GE-B 0.502 0.509 0.499 0.482 0.772 0.692 0.796
EN-D-GE-M 0.500 0.542 0.517 0.531 0.737 0.672 0.755
EN-D-FR-B 0.548 0.549 0.547 0.514 0.743 0.739 0.785
EN-D-FR-M 0.541 0.540 0.537 0.543 0.724 0.696 0.741
EN-D-JP-B 0.549 0.561 0.558 0.516 0.694 0.719 0.717
EN-D-JP-M 0.534 0.537 0.536 0.506 0.683 0.747 0.713
EN-M-GE-B 0.502 0.509 0.520 0.476 0.704 0.668 0.786
EN-M-GE-D 0.564 0.558 0.519 0.561 0.728 0.631 0.740
EN-M-FR-B 0.548 0.549 0.542 0.515 0.745 0.672 0.789
EN-M-FR-D 0.525 0.513 0.508 0.511 0.755 0.670 0.764
EN-M-JP-B 0.549 0.561 0.526 0.529 0.622 0.675 0.739
EN-M-JP-D 0.528 0.527 0.551 0.487 0.655 0.707 0.708

Average 0.532 0.537 0.533 0.519 0.704 0.687 0.745
± Std ±0.021 ±0.018 ±0.016 ±0.023 ±0.047 ±0.037 ±0.029

Table 2: Overall results on APR dataset with target domain
training-set size of 2 and parallel set size of 1024. Bold-
faced numbers indicate the best result on each row.

performance was either unstable (on MNIST) or decreasing
(on APR) as the parallel data size increased.

Figure 2: CorrNet, HHTL and KerTL on the APR dataset
(left) and the MNIST dataset (right) with a varying quantity
of parallel data.

Influence of label sparsity in the target domain The
third set of experiments compares KerTL with SVM, SSL,
HFA and MMDT under the condition that the labeled train-
ing instances are extremely sparse in the target domain,
specifically with m = 2, 4, 8, 16, 32. Size of parallel datasets
are l = 1024 in those experiments.

Figure 3 shows results on APR and MNIST datasets. On
both data sets, the curves of SVM, SSL and HFA increase
rapidly when the training-set sizes are below 200. Without

Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

Digit 0 0.950 0.965 0.891 0.855 0.971 0.987 0.989
Digit 1 0.906 0.915 0.500 0.838 0.989 0.994 0.996
Digit 2 0.699 0.739 0.539 0.567 0.867 0.931 0.962
Digit 3 0.628 0.785 0.637 0.664 0.861 0.892 0.939
Digit 4 0.672 0.613 0.500 0.477 0.867 0.937 0.958
Digit 5 0.598 0.607 0.500 0.543 0.774 0.877 0.959
Digit 6 0.848 0.877 0.677 0.536 0.937 0.962 0.985
Digit 7 0.714 0.736 0.441 0.686 0.919 0.956 0.968
Digit 8 0.494 0.592 0.720 0.651 0.823 0.890 0.936
Digit 9 0.674 0.690 0.430 0.623 0.846 0.918 0.929

Average 0.718 0.752 0.584 0.644 0.885 0.934 0.962
± Std ±0.143 ±0.133 ±0.138 ±0.118 ±0.067 ±0.041 ±0.023

Table 3: Overall results on MNIST dataset with target do-
main training-set size of 2 and parallel set size of 1024.
Bold-faced numbers indicate the best result on each row.

Figure 3: SVM, SSL and KerTL on the APR dataset (left)
and the MNIST dataset (right) with a varying quantity of
labeled data in the target domain.

leveraging parallel data, MMDT does not perform well on
both data set as target domain training data increase. We sus-
pect the reason is that when source and target domain is very
different (APR and MNIST in our setting), linear transform
of the mapping with max margin criterion is not possible to
find good representation without the help of parallel data.
On the other hand, HFA is only comparable to KerTL when
target domain training data is large enough since it does not
utilize parallel data. KerTL has a nearly flat curve, substan-
tially outperforming the others in the label-sparse regions.
This implies KerTL could successfully transferred source-
domain training data especially when source and target do-
main (m = 2 ∼ 32) training data are very imbalanced.

But why the performance curve of KerTL is below that of
SVM when the training-set size in the target domain is be-
yond 200 on the APR data? We believe that it is caused by
the imperfect parallel data we used in KerTL. Recall that in
our previous example of the EN-B-FR-D task, the parallel
data are the paired English/French book reviews, assuming
that the ideal parallel set of (manually aligned) English book
reviews and French DVD reviews are not available. In other
words, the parallel data provided in APR has a domain mis-
match with respect to the reviews on different product types,
which is most helpful when the label-sparse issue is severe.

In contrast, the parallel data sets in MNIST do not have
a domain mismatch issue, as each pair in the parallel set
consists of the left-half (as the source-domain instance) and
right-half (as the target-domain instance) in the same image.
We argue that the APR way of constructing parallel data is
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more realistic than that in MNIST, because we usually can-
not get each image instance halfly labeled and halfly unla-
beled in real-word applications of image classification.

6 Conclusions

In this paper we proposed a novel framework for trans-
fer learning with cross-domain kernel induction. Our ap-
proach uses a parallel corpus to calibrate domain-specific
graph Laplacians into a unified kernel, and to optimize semi-
supervised label propagation based on the labeled and unla-
beled data in both domains. Our extensive experiments show
that all the TL methods in our evaluation significantly out-
performed non-TL ones (SVM and SSL), and that the pro-
posed method outperforms other state-of-the-art TL meth-
ods (HFA, MMDT, HHTL and CorrNet) when the target-
domain labeled data are extremely sparse and the quantity
of available parallel data is also limited. Those results indi-
cates cross-language and cross-domain kernel induction is a
promising direction to pursue in transfer learning.
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