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Abstract

Graphs provide a powerful means for representing complex
interactions between entities. Recently, new deep learning ap-
proaches have emerged for representing and modeling graph-
structured data while the conventional deep learning methods,
such as convolutional neural networks and recurrent neural
networks, have mainly focused on the grid-structured inputs
of image and audio. Leveraged by representation learning ca-
pabilities, deep learning-based techniques can detect struc-
tural characteristics of graphs, giving promising results for
graph applications. In this paper, we attempt to advance deep
learning for graph-structured data by incorporating another
component: transfer learning. By transferring the intrinsic ge-
ometric information learned in the source domain, our ap-
proach can construct a model for a new but related task in
the target domain without collecting new data and without
training a new model from scratch. We thoroughly tested our
approach with large-scale real-world text data and confirmed
the effectiveness of the proposed transfer learning framework
for deep learning on graphs. According to our experiments,
transfer learning is most effective when the source and tar-
get domains bear a high level of structural similarity in their
graph representations.

Introduction

Recently, many deep neural network models have been
adopted successfully in various fields (LeCun, Bengio, and
Hinton 2015; Schmidhuber 2015). In particular, convolu-
tional neural networks (CNN) (Krizhevsky, Sutskever, and
Hinton 2012) for image and video recognition and recurrent
neural networks (RNN) (Sutskever, Vinyals, and Le 2014)
for speech and natural language processing (NLP) often de-
liver unprecedented levels of performance. Deep learning
has also triggered advances in implementing human-level
intelligence (e.g., in the game of Go (Silver et al. 2016)).

CNN and RNN extract data-driven features from in-
put data (e.g., image, video, and audio data) structured in
typically low-dimensional regular grids (see Fig. 1, top).
Such grid structures are often assumed to have statistical
characteristics (e.g., stationarity and locality) to facilitate
the modeling process. Learning algorithms then take ad-
vantage of this assumption and boost performance by re-
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ducing the complexity of parameters (Schmidhuber 2015;
Bruna et al. 2013; Henaff, Bruna, and LeCun 2015).

In reality, there exist a wide variety of data types in which
we need more general non-grid structures to represent and
model complex interactions among entities. Examples in-
clude social media mining and protein interaction studies.
For such applications, a graph can provide a natural way
of representing entities and their interactions (Deo 2016).
For graph-structured input, it is more challenging to find
the statistical characteristics that can be assumed for grid-
structured input (Bruna et al. 2013; Henaff, Bruna, and Le-
Cun 2015).

Theoretical challenges including the above and practical
limitations, such as data quantity/quality and training effi-
ciency, make it difficult to apply conventional deep learn-
ing approaches directly, igniting research on adapting deep
learning to graph-structured data (Bruna et al. 2013; Henaff,
Bruna, and LeCun 2015; Jain et al. 2015; Li et al. 2015).
In many graph analysis methods, the structural properties
derived from input graphs play a crucial role in uncover-
ing hidden patterns (Koutra, Vogelstein, and Faloutsos 2013;
Lee, Kim, and Yoon 2015). The representation learning ca-
pability of deep networks is useful for automatically detect-
ing data-driven structural features, and deep learning ap-
proaches have reported promising results.

In this paper, we attempt to advance deep learning for
graph-structured data by incorporating another key compo-
nent: transfer learning (Pan and Yang 2010). By overcoming
the common assumption that training and test data should be
drawn from the same feature space and distribution, transfer
learning between task domains can alleviate the burden of
collecting data and training models for a new task. Given the
importance of structural characteristics in graph analysis, the
core of our proposal is to transfer the data-driven structural
features learned by deep networks from a source domain to
a target domain, as informally shown in Fig. 1 (bottom). In
the context of graphs, we call the transferred information the
intrinsic geometric information.

Starting from this intuitive baseline, we need to fill in
many details to implement transfer learning for deep learn-
ing on graph data. In particular, we need to answer two im-
portant questions: (Q1) under what condition can we expect
a successful knowledge transfer between task domains and
(Q2) how do we actually perform the transfer most effec-
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Figure 1: Conventional CNN works on a regular grid domain (top); proposed transfer learning framework for CNN, which can
transfer intrinsic geometric information obtained from a source graph domain to a target graph domain (bottom).

tively? This paper tries to address these questions.
To demonstrate the effectiveness of our approach, we

tested it with large-scale public NLP datasets for text classi-
fication (Zhang, Zhao, and LeCun 2015). Each dataset con-
tained a corpus of news articles, Internet reviews, or ontol-
ogy entries. We represented a dataset (e.g., Amazon reviews)
with a graph to capture the interactions among the words in
the dataset. We then used the spectral CNN (SCNN) (Bruna
et al. 2013; Henaff, Bruna, and LeCun 2015) to model the
graph using neural networks. The learned model can be
used for classifying unseen texts from the same data source
(Amazon). Furthermore, our experimental results confirmed
that our transfer learning methodology allows us to implic-
itly derive a model for classifying texts from another source
(e.g., Yelp reviews) without collecting new data and without
repeating all the learning procedures from scratch.

Our specific contributions can be summarized as follows:

• We proposed a new transfer learning framework for deep
learning on input data in non-grid structure such as
graphs. To the best of the authors’ knowledge, this work is
the first attempt of its kind. Adopting our approach will re-
lieve the burden of re-collecting data and re-training mod-
els for related tasks.

• To address Q1, we investigated the conditions for success-
ful knowledge transfers between graph domains. We con-
jectured that two graphs with similar structural character-
istics would give better results and confirmed it by com-
paring graph similarity and transfer learning accuracy.

• To answer Q2, we tested diverse alternatives to the com-
ponents of the proposed framework: graph generation, in-
put representation, and deep network construction. In par-
ticular, to improve the SCNN model for extracting data-
driven structural features from graphs, we analyzed and
optimized the key factors that affect the performance of
SCNN (e.g., the method to quantify spectral features of a

graph).
• We performed an extensive set of experiments, using both

synthetic and real-world data, to show the effectiveness of
our approach.

Related Work

Graphs can provide a general way of representing the di-
verse interactions of entities and have been studied exten-
sively (Sonawane and Kulkarni 2014). In addition to studies
on representation and quantification of relations and similar-
ities (Koutra, Vogelstein, and Faloutsos 2013), various stud-
ies focused on large-scale graph data and use of structural
information. Recently, deep learning methods to automati-
cally extract structural characteristics from graphs have been
proposed (Duvenaud et al. 2015; Li et al. 2015).

Examples of deep learning applied to non-grid, non-
Euclidean space include graph wavelets from applying deep
auto-encoders to graphs and using the properties of auto-
matically extracted features (Rustamov and Guibas 2013),
analysis of molecular fingerprints of proteins saved as
graphs (Duvenaud et al. 2015), and a CNN-based model for
handling tree structures in the context of programming lan-
guage processing (Mou et al. 2016).

Particularly relevant to our approach is the localized
SCNN model (Boscaini et al. 2015), which is a deep learn-
ing approach that can extract the properties of deformable
shapes. The generalized SCNN model (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015), a key component of our
framework, borrowed the Fourier transform concept from
the signal processing field in order to apply CNNs in a grid
domain to a graph-structured domain. In this model, the con-
volutional operation was re-defined for graphs.

More recently, the restricted Boltzmann machine (LeCun,
Bengio, and Hinton 2015) was used to learn structural fea-
tures from graphs in an unsupervised manner for classifica-
tion (Niepert, Ahmed, and Kutzkov 2016). For efficient and
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scalable semi-supervised classification of graph-structured
data, the first-order approximation of spectral graph convo-
lutions was utilized (Kipf and Welling 2016). Our method
could adopt these approaches as its base learning model to
improve the effectiveness of transfer learning.

Proposed Method

Fig. 2 presents a diagram illustrating the overall flow of the
proposed method, which consists of five steps, A–E. The
first three steps are to produce a graph from input and to
identify unique structural features from the graph. The last
two steps are to apply transfer learning based on the learned
features and graph similarity to carry out inference.

Step A: Graph Production

We represent data elements of input data and their interac-
tions and relations as nodes and edges, respectively, in a
graph. From an input dataset, we construct an undirected,
connected, and weighted graph G = (V,E,A), where V
and E represent the sets of vertices and edges, respectively,
and A denotes the weighted adjacency matrix. Assume that
|V | = N and |E| = M .

We utilize two recent techniques to derive a graph (more
specifically, the edge set E) from input data: co-occurrence
graph estimation (CoGE) (Sonawane and Kulkarni 2014)
and supervised graph estimation (SGE) (Henaff, Bruna, and
LeCun 2015). CoGE directly quantifies the closeness of data
elements based on the frequency of co-occurrence, while
SGE automatically learns a similarity features among ele-
ments through a fully connected network model.

B: Representation of Graphs in Spectral Domain

We extract the intrinsic geometric characteristics of the en-
tire graph by deriving (non-)normalized Laplacian matrix L
of the graph constructed in step A. For a graph domain, L
provides the values for graph spectral bases in the convolu-
tion operation of SCNN (Mohar 1997; Koutra, Vogelstein,
and Faloutsos 2013).

We consider three types of L: the non-normalized Lapla-
cian (Lbasic), the random walk-based normalized Laplacian
(Lrw), and the random walk with restart based normalized
Laplacian (Lrwr) given by (Tong, Faloutsos, and Pan 2006):

Lbasic = D −A (1)

Lrw = D−1(D −A) = I −D−1A (2)

Lrwr = [I + ε2D − εA]−1 ≈ [I − εA]−1 (3)

≈ I + εA+ ε2A2 + · · · (4)

where D represents the degree matrix1 of the graph, and ε
represents the probability of restart. Note that the approxi-
mation in Eq. (3) is attained by attenuating neighboring in-
fluence, while the approximation in Eq. (4) is attained by
belief propagation and its fast approximation.
L is a symmetric matrix that can be decomposed through

the diagonalization by combining eigenvalues λl and the

1A diagonal matrix that shows the degree (i.e., the number of
edges attached) of each node.

corresponding orthogonal eigenvectors ul(n), where l is the
order of an eigenvalue, and n ∈ [1, N ] is the index of a
node (Mohar 1997).

Recall that a function f : V �→ R defined on the nodes
of graph G can be represented by a vector f ∈ R

N with
the n-th dimension of f indicating the value at the n-th ver-
tex in V (Shuman et al. 2013; Shuman, Ricaud, and Van-
dergheynst 2016). As in the Fourier transform, the eigen-
functions of L represent the function f defined by the nodes
in the graph: fG(n) =

∑N−1
l=0 f̂G(λl)ul(n) ↔ f̂G(λl) =∑N

n=1 fG(n)ul(n), where f̂ , the transformed function of
f , is represented by a set of basis eigenvectors. The Par-
seval’s theorem also holds (i.e., the energy of the trans-
formed function is the same as that of the original func-
tion), and 〈f, g〉 = 〈f̂ , ĝ〉 for two functions f and g, verify-
ing the consistency between the two domains (Chung 1997;
Shuman, Ricaud, and Vandergheynst 2016).

This indicates that an input function defined on the ver-
tex domain of a graph can be converted into the correspond-
ing graph spectral domain by using the concept of Fourier
analysis on graphs. The generalized convolutional operation
(denoted by ∗G) of functions f and g can be defined by the
diagonalized linear multiplication in the spectral domain as
follows (Bruna et al. 2013; Henaff, Bruna, and LeCun 2015;
Shuman, Ricaud, and Vandergheynst 2016):

(f ∗G g)(n) =

N−1∑
l=0

f̂(λl)ĝ(λl)ul(n)

which can also be expressed as

f ∗G g = ĝ(L)f = U

⎡
⎢⎣

ĝ(λ0) . . . 0
...

. . .
...

0 . . . ĝ(λN−1)

⎤
⎥⎦UT f

(5)

where U is a matrix having the eigenvectors of the graph
Laplacian in its columns that quantify the intrinsic structural
geometry of the entire graph domain and serve as the spec-
tral bases of a graph. This matrix functions as the Fourier
transform into the graph spectral domain. In this regard, a
receptive filter learned through the convolution operation in
a convolution layer of a CNN in a regular grid domain can
be regarded as a matrix on g, which is diagonalized by ĝ(λi)
(0 ≤ i ≤ N − 1) elements on input f defined in the graph
domain provided by Eq. (5).

For conventional CNNs, the j-th output xk+1,j from the
k-th layer is defined as

xk+1,j = h

⎛
⎝

φk−1∑
i=1

Fk,i,j ∗ xk,i

⎞
⎠ , j = 1, . . . , φk (6)

where φk is the number of feature maps, xk is the input of
k-th layer, h is a nonlinear function, and Fk,i,j is the filter
matrix from the i-th feature map to the j-th feature map.

For the SCNN, the transform of input xk of size n×φk−1
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Figure 2: Overview of the proposed method.

into output xk+1 of size n× φk is given by

xk+1,j = h

⎛
⎝U

φk−1∑
i=1

Fk,i,jU
Txk,i

⎞
⎠ , j = 1, . . . , φk (7)

where h is a nonlinear function, and Fk,i,j is a diagonal ma-
trix. This implies that training the weights of learnable fil-
ters are the same as training the multipliers on the eigenval-
ues of the Laplacian (Bruna et al. 2013; Henaff, Bruna, and
LeCun 2015). This characterizes the SCNN, a generalized
CNN model that has several filter banks through generalized
convolutional operations on a graph.

We augment the SCNN model so that it can support
spatial locality, which is made independent of input size
by using windowed smoothing filters. They are defined as
P̂k(l) =

∑K
k=0 akλ

k
l for K < N , based on the polyno-

mial kernel ak with degree K (Shuman, Ricaud, and Van-
dergheynst 2016). This is based on the fact (originally ob-
served in signal processing) that the smoothness in the spec-
tral domain can have spatial decay or local features in the
original domain. We implement this idea using the eigen-
vectors of the subsampled Laplacian as the low-frequency
eigenvectors of the Laplacian (Boscaini et al. 2015).

C: Applying Convolutional Networks to Graphs

We train the SCNN model by using the information obtained
through the previous steps to represent the geometric infor-
mation of local behaviors from the surface of a structural
graph domain. The model has a hierarchical structure con-
sisting of layers for convolutional and pooling, and a fully
connected layer as shown in Fig. 2. The training determines
the weights of each layer by minimizing the task-specific
cost (loss) function. The model can learn various data-driven
features by re-defining the convolution operation with the
spectral information of the structural graph domain (Bruna
et al. 2013; Henaff, Bruna, and LeCun 2015).

D: Learning Transferable Features

Once the model training is completed, it contains data-
driven features for the graph-structured data derived from
the input in steps A and B. As stated in Introduction, the
core of our proposal is to transfer the information on struc-
tural characteristics of a graph learned by deep learning. The
features learned in step C provide this information.

E: Transfer Learning in Spectral Domain

According to (Pan and Yang 2010), a domain in the context
of transfer learning consists of a feature space X and a prob-
ability distribution P (X), where X ∈ X . Given a domain
D = {X , P (X)}, we can denote a task by T = {Y, f(·)}
with a label space Y and a predictive function f(·) that is
learned from training data {x, y} where x ∈ X and y ∈ Y .
The objective of general transfer learning is then to improve
learning fT (·) in the target domain DT by exploiting the
knowledge in the source domain DS and task TS .

In the present context, we transfer the intrinsic geometric
information learned from the graph GS encoding the knowl-
edge in DS and TS in steps A–D. We skip the steps to gener-
ate GT for TT in DT as well as the steps to extract the struc-
tural characteristics therefrom. Under the condition that GS

and GT bear structural similarities, we can directly build a
model for TT by (1) copying the convolutional and pooling
layers that contain the features trained for TS in DS , and by
(2) training the fully connected layer of the model for fine
tuning weights for TT in DT .

This way of transfer learning provides efficiency in learn-
ing and also helps to minimize the problems resulting from
lack of data and imperfect structural information for the new
task. Note that the proposed method guarantees the spectral
homogeneity of graphs by using the union of node sets on
the heterogeneous source and target datasets. In our method,
it is possible to utilize the spectral features of graphs from
heterogeneous datasets.
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Table 1: Details of the real-world datasets used
AG DBP YELP AMAZ

Train 120, 000 560, 000 580, 000 3, 600, 000
Test 7, 600 70, 000 38, 000 400, 000
#class 4 14 2 2

Name sim(G1, G2)
∗

[corr(wv1, wv2)
†
]

AG 0.37[0.45] 0.28[0.36] 0.35[0.42]
DBP 0.37[0.45] 0.23[0.29] 0.33[0.40]
YELP 0.28[0.36] 0.23[0.29] 0.50[0.58]
AMAZ 0.35[0.42] 0.33[0.40] 0.50[0.58]

AG: a corpus of news articles on the web; DBP: ontology data from DBpedia;
YELP: reviews from Yelp; AMAZ: reviews from Amazon.

∗
sim(G1, G2) = 0 indicates that two graphs G1 and G2 are structurally
complementary, whereas the value of 1 means that they are identical.

†
corr(wv1, wv2) represents the correlation between the log-normalized bag
of words extracted from each of the text corpora.

Results and Discussion

We tested the proposed method by performing topic classi-
fication of text documents. Text data carry information on
not only individual words but also on their relationships,
and graph-based methods are widely used for text mining.
We utilized large-scale public NLP data (Zhang, Zhao, and
LeCun 2015), which contained multiple corpora of news ar-
ticles, Internet reviews, or ontology entries (Table 1). For
controlled experiments, we also generated two pairs of syn-
thetic datasets by random sampling of the real corpora. One
pair consisted of two corpora with high similarity, and the
other pair consisted of two corpora with low similarity.

For measuring the structural similarity between graphs, as
shown in Table 1 and Fig. 3, we used the methods reported
by existing studies (Koutra, Vogelstein, and Faloutsos 2013;
Lee, Kim, and Yoon 2015); refer to the note below Table 1
for more details. Note that YELP and AMAZ bear the high-
est similarity in terms of the metrics used.

We implemented the deep networks with Torch and Cuda
using AdaGrad as the optimizer and ReLU as the activation.
We carried out 10-fold cross validation. Note that the pro-
posed method can offer an efficient training scheme with
relatively low computation cost of O(n2.376) by leaving out
the eigenvalue decomposition on the SCNN and re-using the
model trained by the data in the source domain. In our ex-
periments, the proposed method provided more than 10%
reduction in the average training time.

Using the above setting, we first carried out comprehen-
sive experiments to determine what factors affected the per-
formance of the SCNN model for graph modeling. Table 2
lists part of the results we obtained by varying the net ar-
chitecture, the method to generate graphs, and the type of
Laplacian matrix along with the resulting classification ac-
curacy for each combination. We can observe from Table 2
that the Laplacian methods do not significantly affect the
performance, but Lrwr had the benefit in terms of computa-
tional complexity. SGE tended to give more accurate results
than CoGE, which implies that the initial graph generation
affected the model training more critically than structural

Table 2: Performance of SCNN model with various hyper-
parameters for text topic classification task

Model Graph L Classification accuracy
architecture

∗
gener. type AG DBP YELP AMAZ

GC8-FC500 CoGE Lbasic 0.89 0.95 0.91 0.88
GC8-FC500 CoGE Lrw 0.89 0.95 0.91 0.88
GC8-FC500 CoGE Lrwr 0.89 0.93 0.90 0.88
GC8-FC500 SGE Lbasic 0.91 0.97 0.91 0.89
GC8-FC500 SGE Lrw 0.91 0.97 0.91 0.88
GC8-FC500 SGE Lrwr 0.89 0.95 0.91 0.89
GC8-FC1K CoGE Lbasic 0.90 0.95 0.93 0.88
GC8-FC1K CoGE Lrw 0.90 0.97 0.92 0.89
GC8-FC1K CoGE Lrwr 0.89 0.96 0.92 0.89
GC8-FC1K SGE Lbasic 0.91 0.97 0.92 0.88
GC8-FC1K SGE Lrw 0.91 0.97 0.92 0.88
GC8-FC1K SGE Lrwr 0.89 0.96 0.91 0.88
GC8-GC8-FC1K CoGE Lbasic 0.89 0.96 0.92 0.89
GC8-GC8-FC1K CoGE Lrw 0.89 0.97 0.92 0.89
GC8-GC8-FC1K CoGE Lrwr 0.89 0.97 0.92 0.88
GC8-GC8-FC1K SGE Lbasic 0.91 0.97 0.92 0.88
GC8-GC8-FC1K SGE Lrw 0.91 0.97 0.92 0.88
GC8-GC8-FC1K SGE Lrwr 0.89 0.97 0.92 0.89
∗ For training, we set the kernel degree K = 60, learning rate to 0.01 and used

cross-entropy cost function with AdaGrad optimizer. GC8 means the use of
graph convolutional layers with 8 feature maps, and FC500/FC1K means the
use of fully connected layer with 500/1000 hidden units.

feature extraction. For the experiments shown in Table 2,
the GC8-GC8-FC1K model (refer to the note below Table 2
for notation) gave the best results, and we used this model
as our main learning model in the following experiments.

We then performed experiments to determine the effec-
tiveness of transfer learning using the synthetic datasets.
The results are shown in Fig. 3; the plots in the top row
are from the pair of synthetic corpora with high similar-
ity [sim(G1, G2) = 0.75 and corr(wv1, wv2) = 0.95]
for varying quantities of fine-tuning data for training the
transferred model in the target domain (1%, 3%, 5%, and
10% of the entire target data). The plots in the bottom row
of Fig. 3 correspond to the results from the pair of syn-
thetic corpora with low similarity [sim(G1, G2) = 0.30 and
corr(wv1, wv2) = 0.50]. We can observe that transfer learn-
ing is more effective for the higher similarity case, in which
the test accuracy of the transferred model increased signif-
icantly faster than that of the source domain model. Using
only 1% of the target domain data was sufficient for train-
ing, and using more data did not provide a noticeable differ-
ence. For the lower similarity case, the training in the target
domain was limited and could not deliver the same level of
accuracy in the source domain due to discrepancies in the
underlying structure between the source and target domains.

Finally, we tested our approach with four corpora (AG,
DBP, YELP, and AMAZ) as shown in Fig. 4. The plots in
the top row represent the test accuracy of the model trained
with the original data (solid line) and those of the transferred
model trained with each of the other data (dotted line). The
bottom plots represent the test loss. For the two corpora with
the highest level of similarity (YELP and AMAZ), the effect
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Figure 3: Results of intrinsic geometric information transfer learning for synthetic datasets (best viewed in color). Top: source
and target datasets have high similarity in graph representations. Bottom: source and target datasets have low similarity. Each
column: the percentage (1%, 3%, 5% and 10%) of the target dataset used for training the transferred model (fine tuning the
fully connected layer). We repeated every experiment 10 times, and each data point shows a boxplot; red (source domain) and
blue (target domain) lines connect the median locations of the boxplots.

of transfer learning was most salient. The test accuracy of
the transferred model was comparable to that of the source
model (for YELP) or was only 5–8% lower (for AMAZ).
For the other cases with lower similarity than YELP and
AMAZ, transfer learning was less effective. These results
again confirmed our observation that the knowledge transfer
is most successful when the source and target domains have
high level of structural similarity between underlying graph
representations.

Conclusion

We have proposed a new transfer learning framework for
deep learning on graph-structured data. Our approach can
transfer the intrinsic geometric information learned from
the graph representation of the source domain to the target
domain. We observed that the knowledge transfer between
tasks domains is most effective when the source and target
domains possess high similarity in their graph representa-
tions. We anticipate that adoption of our methodology will
help extend the territory of deep learning to data in non-grid
structure as well as to cases with limited quantity and quality
of data. To prove this, we are planning to apply our approach
to diverse datasets in different domains.
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