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Abstract

Recent years have witnessed extensive attention in binary
code learning, a.k.a. hashing, for nearest neighbor search
problems. It has been seen that high-dimensional data points
can be quantized into binary codes to give an efficient simi-
larity approximation via Hamming distance. Among existing
schemes, ranking-based hashing is recent promising that tar-
gets at preserving ordinal relations of ranking in the Ham-
ming space to minimize retrieval loss. However, the size
of the ranking tuples, which shows the ordinal relations, is
quadratic or cubic to the size of training samples. By given
a large-scale training data set, it is very expensive to em-
bed such ranking tuples in binary code learning. Besides,
it remains a dificulty to build ranking tuples efficiently for
most ranking-preserving hashing, which are deployed over
an ordinal graph-based setting. To handle these problems, we
propose a novel ranking-preserving hashing method, dubbed
Ordinal Constraint Hashing (OCH), which efficiently learns
the optimal hashing functions with a graph-based approxi-
mation to embed the ordinal relations. The core idea is to
reduce the size of ordinal graph with ordinal constraint pro-
jection, which preserves the ordinal relations through a small
data set (such as clusters or random samples). In particular,
to learn such hash functions effectively, we further relax the
discrete constraints and design a specific stochastic gradient
decent algorithm for optimization. Experimental results on
three large-scale visual search benchmark datasets, i.e. La-
belMe, Tiny100K and GIST1M, show that the proposed OCH
method can achieve superior performance over the state-of-
the-arts approaches.

Introduction

Learning binary code, a.k.a. hashing, to preserve the data
similarity has recently been popular in various computer vi-
sion and artificial intelligence applications, e.g., image re-
trieval (Liu et al. 2016), objective detection (Dean et al.
2013), multi-task learning (Weinberger et al. 2009), linear
classifier training (Li et al. 2011; Lin et al. 2014), and active
learning (Liu et al. 2012b). In this setting, real-valued data
points are encoded into binary codes that are significantly ef-
ficient in storage and computation. In general, most hashing
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methods learn a set of hash functions hk : Rd → {0, 1}r.
It typically maps the d-dimensional data space into an r-bit
discrete Hamming space, such that the nearest neighbors can
be approximated by using the compact binary codes learned.

Recent advances in binary code learning can be catego-
rized into either data-independent or data-dependent ones
(Wang et al. 2016). The former typically refers to random
projection/partition of feature space, such as Locality Sensi-
tive Hashing (LSH) and Min-Hash (MinHash). It typically
requires long bits or multi-hash table to achieve satisfied
retrieval performance. Both supervised and unsupervised
hashing belong to data-dependent hashing. Unsupervised
hashing, learns hash functions by preserving the data struc-
ture, distribution, or topological information, e.g., Spectral
Hashing (SH) (Weiss, Torralba, and Fergus 2008), Anchor
Graph Hashing (AGH) (Liu et al. 2011), Isotropic Hashing
(IsoHash) (Kong and Li 2012), Iterative Quantization (ITQ)
(Gong et al. 2013), Discrete Graph Hashing (DGH) (Liu et
al. 2014), Spherical Hashing (SpH) (Heo et al. 2015), Scal-
able Graph Hashing (SGH) (Jiang and Li 2015), and Or-
dinal Embedding Hashing (OEH) (Liu et al. 2016). Differ-
ently, supervised hashing aims to learn more accurate hash
functions with label information. Representative works in-
clude, but not limited to, Binary Reconstructive Embed-
ding (BRE) (Kulis and Darrell 2009), Minimal Loss Hashing
(MLH) (Norouzi and Fleet 2011), Kernel-based Supervised
Hashing (KSH) (Liu et al. 2012a), Semi-Supervised Hashing
(SSH) (Wang, Kumar, and Chang 2012), Supervised Dis-
crete Hashing (SDH) (Shen et al. 2015).

Although promising performance has been shown from
these methods, we argue that, the relative order among
data must be preserved in the Hamming space rather than
pairwise relations. So, many ranking-based hashing algo-
rithms have been proposed to learn more discriminative hash
codes, e.g., Hamming Distance Metric Learning (HDML)
(Norouzi, Fleet, and Salakhutdinov 2012), Ranking-based
Supervised Hashing (RSH) (Wang et al. 2013a), Struct-
based Hashing (StructHash) (Lin, Shen, and Wu 2014), Top-
Rank Supervised Binary Coding (Top-RSBC) (Song et al.
2015). However, most of these methods adopt the stochastic
gradient decreasing (SGD) optimization under triplet ordi-
nal constraints, which needs massive iterations. On the other
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Figure 1: The Framework of our proposed Ordinal Con-
straint Hashing (OCH).

hand, such ranking-based hashing are categorized into su-
pervised hashing, which is typically labor-intensive to obtain
sufficient semantic labels in many real-world applications.

In this paper, we mainly focus on ranking preserved hash-
ing, termed Ordinal Constraint Hashing (OCH), with two
key innovations to address the issues raised above. Firstly,
OCH attempts to preserve the ordinal relation from the high-
dimensional feature space to the Hamming space. Our learn-
ing procedure takes into account the quartic ordinal rela-
tions, rather than the pairwise or triplet ordinal relations that
are widely used in the earlier works. To make use of the
quartic relations, the ranking lists for each individual queries
are converted to a quartic tuples representation that can be
presented as Eq. 1 below. Formally, let x be the data point, a
quartic tuples can be given as:
J={(q;xi, xj , xk)|D(q, xi)<D(q, xj)<D(q, xk)}, (1)

where D(·, ·) is the distance measure (e.g. Euclidean dis-
tance). To the best of our knowledge, none existing hash-
ing methods, even ranking-based hashing (Li et al. 2013;
Wang et al. 2013b; Liu et al. 2016), have considered such
ordinal relation among data points, which can be obtained
in a large-scale manner with extensive human labor.

Inspired by the recent work (Babenko, Arandjelović, and
Lempitsky 2016), OCH embeds in which the original quartic
order relation can hold as the triplet order relation. And the
size of order tuples can be reduced from the original [n4] to
[L3] (n << L) to avoid high complexity computation cost,
where n is the number of training data and L is the num-
ber of the sub-set (e.g. clusters). Then, we propose a general
method to construct the ordinal graph with tensor product
calculation. Such construction scheme avoids the time con-
suming selection way to represent the ordinal tuples. The
OCH minimizes the inconsistency between the given ordinal
relation tuples and the ones derived from the corresponding
hash codes. At last, due to the constraint of orthogonal pro-
jection, the hash functions are learned via a special SGD
algorithm, which formulate the problem as combing the tra-
ditional SGD with Stiefel manifold optimization. The whole

framework is shown in Fig. 1. We compare the proposed
OCH against various state-of-the-art unsupervised hashing
methods on three widely used similarity search benchmarks,
i.e., LabelMe, Tiny100K, and GIST1M. Quantitative ex-
periments demonstrate that OCH outperforms the existing
unsupervised hashing methods in terms of both accuracy and
efficiency.

The rest of this paper is organized as follows: In Section
2, we briefly overview the related works of the proposed
method. Section 3 and 4 describe the proposed OCH and
the iterative SGD based optimization. In Section 5, we show
and analyze the experimental results. Finally, we conclude
this paper in Section 6.

Background and Related Work

We briefly introduce the problem of binary code learning
and review related work as below:

Binary Code Learning aims to learn a set of hash func-
tions to encode real-valued feature points to compact bi-
nary codes. For a data point x ∈ Rd, the hash func-
tions H = {h1, ..., hr} produces a r-bit binary code y =
{y1, y2, ..., yr} for x as:

y = [h1(x), ..., hk(x), ..., hr(x)]. (2)

Therefore, the k-th hash bit yk is calculated by hk(x) =
sgn

(
fk(x)

)
, where sgn(·) is the sign function that returns

1 if fk(x) > 0 and -1 otherwise. Such hash functions are
encoded as a mapping process combining with quantization,
which has been widely used in many traditional hashing al-
gorithm, e.g., LSH. And the function fk : Rd → R is a
linear transformation, given by fk(x) = WT

k x + b with the
projection matrix Wk and an offset b ∈ R. Then given a set
of hash functions, the database X ∈ Rd×n with n samples
are mapped to the produced binary codes as

Y =
{
h1(X), ..., hk(X), ..., hr(X)

}
, (3)

where Y ∈ {0, 1}r×n is the hash code matrix of the database
X .

Ordinal Embedding Hashing (Liu et al. 2016) aims to
learn a set of hash functions as Eq. 3. Such functions can
preserve the ordinal relations between δij and δkl, where
δij is the dissimilarity between the i-th and the j-th item.
Its goal is to make sure the ordinal relation can be pre-
served in the produced Hamming space: δij < δkl :
‖H(xi)−H(xj)‖1 < ‖H(xk)−H(xl)‖1 . To embed such
ordinal relations, OEH first constructs a directed unweighted
ordinal graph G = (V,E) = [n4], where each node vij is the
dissimilar degree δij , and each directed edge is defined via
e(i,j,k,l) = (vij → vkl) ⊆ E. Then the objective function
is to minimize the inconsistency between the given ordinal
relation graph and the ones generated from the correspond-
ing hash codes. At last, by using the landmark-based ordi-
nal graph, the quartic ordinal relation is transformed to the
triplet ordinal relation, which transforms the target of OEH
to δij < δik : ‖H(xi)−H(lj)‖1 < ‖H(xi)−H(lk)‖1
where lj and lk are the landmark points.
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Figure 2: The ordinal relation for a training data.

Ordinal Constraint Hashing
In this section, we describe the proposed OCH in detail. Let
X = {x1, x2, ..., xn} ∈ Rd×n be the data matrix with n
samples, where xi is the i-th column of X with d dimen-
sions.1 As the same definition as δij before, we suppose that
δii = 0 and δij = δji, the comparison δij < δkl reflects
the data pair (i, j) is more similar than pair (k, l). Then
an oridinal relation set C can be given as: {δij < δik <
δil | ∀(i; j, k, l) ∈ C}. We further define a K-means centers
points matrix L = {l1, l2, ..., lL} ∈ Rd×L, where L << n.

The proposed OCH aims to learn the hash functions by
embedding the ordinal relation. To this end, a straightfor-
ward method is to maximize the loss function between the
ordinal relation set C and the corresponding relation in the
Hamming space. This can be defined by the following ob-
jective function:

max
∑

(i;j,k,l)∈C

I
(
DH(bi, bj) ≤ DH(bi, bk) ≤ DH(bi, bl)

)
s.t. bi = sgn(WTxi), WTW = I, W ∈ R

d×r,
(4)

where I(·) is an indicator function which returns 1 if the
condition is satisfied and 0 otherwise, and DH(bi, bj) re-
turns the Hamming distance between hash code bi and bj .

The first key problem of OCH is how to represent the ordi-
nal relation set directly. In the previous works, the ordinal re-
lation is represented with the triplet data (xi, xj , xk), where
the pair (xi, xj) is formed by two nearest neighbors under
Euclidean distance, and (xi, xk) is dissimilar pair. This or-
dinal relation is shown in Fig. 2 (a), where red line repre-
sent the dissimilar pair and blue line represent the similar
pair. However, this triplet representation needs to randomly
select the corresponding triplet tuples and compare all the
data points side by side, which time consuming and mem-
ory costly. Even, it is hard to define the similar and dissimi-
lar data pairs for unsupervised learning problems.

In this paper, we address the above issue by proposing
a novel ordinal graph model with tensor product calcula-
tion, in which triplet or even quartic ordinal relation can
be efficiently represented. Given a dataset X and the sim-
ilarity measure (e.g. Euclidean Distance), the affinity graph
S ∈ Rn×n is constructed as follows:

S(i, j) =

{
0, i = j,

e−‖xi−xj‖2
2/2σ

2

, otherwise,
(5)

1Without loss of generality, assume that the data X is normal-
ized and mean-centered.

where S(i, j) represents the similarity between two data
points. We further define a dissimilarity graph DS ∈ Rn×n,
with each entry as DS(i, j) = 1/S(i, j) and DS(i, i) = 0
(which is the definition of δij).

Then, a tensor ordinal graph (TOG) G is defined as:
G = S ⊗DS, (6)

where ⊗ is the Kronecker product of matrices defined as
G(ij, kl) = S(i, j) · DS(k, l). Thus, each entry of G re-
lates to four data points. When S and DS are two n × n
matrices, G is an n2 × n2 matrix. Therefore, the ordinal re-
lation between the quartic items in (i, j, k, l) ∈ C can be
represented through the TOG, as following:{

δij < δkl, G(ij, kl) > 1,

δij > δkl, G(ij, kl) ≤ 1.
(7)

Fig.2 (b) shows a toy example. Under such a circum-
stance, the ordinal relation in original feature space is δij <
δik < δjk, which can be simply calculated and compared
with Euclidean distance. And for the quartic item (i, k, i, j),
the (ik, ij)-th entry is G(ik, ij) = S(i, k) · DS(i, j) =
S(i, k)/S(i, j). Due to the relation of S(i, k) < S(i, j),
we can get G(ik, ij) < 1, which reflects the truth ordinal
relation δik > δij in the original space. In such way, the pro-
posed TOG can represent the ordinal relation simply with
tensor product scheme.

Although the TOG approximates the relation set C eas-
ily, it is not expect that the larger size of TOG makes the
calculation time consuming. To solve this problem, accord-
ing to the relation in set C, we transform the constraint
{δij < δik < δil | ∀(i; j, k, l) ∈ C} as follows:

O =
∑

∀(i�=j,k,l)

I
(
(‖xi−xj‖22 − ‖xi − xk‖22)2

− (‖xi − xj‖22 − ‖xi − xl‖22)2
)
.

(8)
That is to say, minimizing Eq. 8 is to approximate the ordi-
nal constraint set C over all dataset. Since the points in the
dataset have been normalized, we rewrite Eq. 8 as:

O =
∑

∀(i�=j,k,l)

I
(
(xT

i xj − xT
i xk)

2 − (xT
i xj − xT

i xl)
2
)

=
∑

∀(j,k,l)
I
(
(xj − xl)

TM(xj − xl)

− (xj − xk)
TM(xj − xk)

)
,
(9)

where M =
∑

i x
T
i xi is a positive semi-definite symmetri-

cal matrix. So it is convenient to use SVD to decompose it
into Z ∈ Rdsvd×d such that M = ZTΛZ. Then a mapping
function can be defined as ui = Zxi ∈ Rdsvd , and Eq. 9 is
written as following:

O =
∑

∀(j,k,l)
I
(
(uj−ul)

TΛ(uj − ul)

− (uj − uk)
TΛ(uj − uk)

)
≤

∑
∀(j,k,l)

I
(‖Λ 1

2 ‖22 · (‖uj − ul‖22 − ‖uj − uk‖22)
)

∝
∑

∀(j,k,l)
I
(‖uj − ul‖22 − ‖uj − uk‖22

)
.

(10)
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By means of this mapping, termed ordinal constraint pro-
jection (OCP), we have projected the original ordinal re-
lation to an approximation ordinal relation set {δ̂ij <

δ̂ik | ∀(i, j, i, k) ∈ Ĉ}, which can be generated from the
TOG easily.

On the other hand, the total number of ordinal constraints
is still too large to be used for training. Inspired by the
Product Quantization (Jegou, Douze, and Schmid 2011),
the distance D(ui, uj) can be approximated by the distance
D(ui, uj) ≈ D(ai, aj), where ai = Zli is the embedding
center point. In our setting, we further approximate the orig-
inal ordinal set C by a sub-set of ordinal relation set after
the aforementioned OCP. Then the size of the tensor ordi-
nal graph can be reduced to [L4] (L << n), where L is the
number of K-means centers. From Eq. 10, we can use the
triplet relation among centers for the original quartic rela-
tion approximation, which significantly reduce the scale of
ordinal graph from [n4] to [L3].

Therefore, the overall objective function in Eq. 4 for the
proposed OCH approach is rewritted as follows:

min
∑

(i,j,i,k)∈Ĉ

I
(
DH(bi, bj) ≥ DH(bi, bk)

)
s.t. bi = sgn(V Tai), V V T = I, V ∈ R

dsvd×r.

(11)

Due to WTW = I with W = ZTV , we can easily get the
new orthogonal constraint in Eq. 11, which needs to be hold
during optimization. Meanwhile our target is to learning the
hash functions that hold the ordinal relations in the Ham-
ming space. As a result, a new optimization scheme should
be designed, which is introduced subsequently in Section 4.

Optimization

Directly minimizing the objective function in Eq. 11 is in-
tractable, as the coding function is discrete while the Ham-
ming space is not continuous. To solve this problem, we re-
lax the discrete constraints from the Hamming space to an
approximated continuous space.

To that effect, we first relax the hashing function H(ai) =
sgn(V Tai) as follows:

Ĥ(ai) = tanh(V Tai), (12)

where tanh(·) is a good approximation for sign(·) that
transforms the binary codes from {0, 1} to {−1, 1}. Cor-
respondingly, the Hamming distance is calculated as:

DH(bi, bj) =
1

2

(
r − ĤT (ai) · Ĥ(aj)

)
. (13)

Finally, we use the Sigmoid function to replace the indicator
function for convenient optimization and avoid overfitting.
Based upon the above relaxations, the objective function in
Eq. 11 can be rewritten as:

F (V |G) =
∑

(i,j,i,k)∈Ĉ

p(i, j, i, k), s.t. V V T = I, (14)

where the p(·, ·, ·, ·) is the Sigmoid function defined as fol-
lows:

p(i, j, i, k) =
1

1 + exp
(
DH(bi, bk)−DH(bi, bj)

) .

Algorithm 1 Ordinal Embedding Hashing (OEH)
Input: Data set X = {x1, x2, ..., xn}, parameters γ and η.
Output: The hash function H(xi) = sgn(V TZxi).

1: Generate centers L by K-means algorithm;
2: Generate matrix Z and embed Z into the L;
3: Generate ordinal relations set Ĉ by Tensor Ordinal

Graph in Eq. 7;
4: repeat

5: Randomly select a subset c from set Ĉ;
6: Calculate the gradient according to Eq. 16;
7: Update V according to Eq. 15;
8: until convergence or reaching the maximum iteration

number.

Intuitively, the gradient descent approach can be used to
carry out an iterative optimization for Eq. 14. However, due
to the orthogonal constraints of projection matrix V , the ob-
jective function is non-convex, which is also hard to opti-
mize. In the following, we further introduce an alternative
stochastic gradient descent algorithm on Stiefel Manifold to
solve this problem efficiently.

Stochastic Gradient Descent on Stiefel Manifold

Optimization with respect to the orthogonal constraints has
been recently studied in (Wen and Yin 2013; Ge et al. 2014).
In particular, to solve Eq. 14, most straightforward method
uses gradient descent on the Stiefel manifold defined by
O = {V ∈ Rdsvd×r, V V T = I} (Absil, Mahony, and
Sepulchre 2007). An off-the-shelf iterative solver has been
developed in (Wen and Yin 2013), which is however sensi-
tive to the initialization and hard to integrated into our opti-
mization.

Recent advances in (Cunningham and Ghahramani 2015)
are to calculated the objective F , gradients ∇F together in
the full space Rdsvd×r. These gradients are then projected
into a tangent space T with the transformation P : R → T,
and a retraction R : T → O is adopted to map the gra-
dients from tangent space to the targeted Stiefel manifold
space2. Therefore, this generic algorithm offers a global con-
vergence proof for such a method by a line search (Absil,
Mahony, and Sepulchre 2007). Finally, the updating rule of
the optimal projection matrix can be defined as:

V = R
(
ηP(−∇F )

)
(15)

where η is the choice of convergence parameter, which is
widely used for first-order optimization. In this way, the gra-
dient of Eq. 14 in the full space is given by:

∇F =∑
c⊂Ĉs

(
p(c)(1−p(c))

)·[∂DH(bi, bk)

∂V
− ∂DH(bi, bj)

∂V

]
,

(16)

where I is an identity matrix, c is a subset random selected

2Both two transformation functions have been defined in the
appendix of (Cunningham and Ghahramani 2015).
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Table 1: The mAP and Precision Comparison Using Hamming Ranking on Two Benchmark with Different Hash Bits

Methods
LabelMe Tiny100K

mAP Pre@100 mAP Pre@100
32 64 128 32 64 128 32 64 128 32 64 128

LSH 0.1582 0.2563 0.3555 0.2894 0.4233 0.5543 0.1231 0.1831 0.2323 0.2524 0.3845 0.4626
AGH 0.2099 0.2349 0.2297 0.3895 0.4424 0.4730 0.1176 0.1350 0.1221 0.4286 0.3751 0.3687

IsoHash 0.2606 0.3225 0.3883 0.4486 0.5211 0.5939 0.1864 0.2295 0.2599 0.4107 0.4906 0.5064
SpH 0.2481 0.3096 0.3859 0.4476 0.5244 0.6232 0.1931 0.2541 0.3193 0.4404 0.5599 0.6755

SGH 0.3012 0.3849 0.4477 0.4899 0.5920 0.6589 0.2054 0.2637 0.3038 0.4444 0.5380 0.5969
ITQ 0.3059 0.3753 0.4210 0.5012 0.5724 0.6176 0.2039 0.2436 0.2612 0.3044 0.4912 0.5164
OEH 0.2111 0.3546 0.4449 0.3693 0.5642 0.6500 0.1650 0.2495 0.3086 0.3635 0.4986 0.5954
OCH 0.3140 0.3947 0.4620 0.5072 0.6028 0.6713 0.2297 0.2919 0.3379 0.4805 0.5785 0.6314

from the whole ordinal relations Ĉ, and the gradient of Ham-
ming distance is formulated as:

∂DH(bi, bj)

∂V
= −1

2

{
ai ·

[(
1-Ĥ2(ai)

)
 Ĥ(aj)

]T
+ aj ·

[(
1-Ĥ2(aj)

)
 Ĥ(ai)

]T }
.

(17)

In Eq. (17),  is the Hadamard product which represents the
element-wise product.

The details of the proposed SGD on Stiefel manifold is
shown in Algorithm 1. The overall training complexity of
the proposed algorithm is O(trL3dsvd+nL), where t is the
number of iterations. It is linear to the training set and re-
lated to the complexity of the K-means step, which is faster
than the previous work (Liu et al. 2016) in ranking preserved
hashing. The experiments shown in the next section prove
that the proposed OCH has superior performance for large-
scale similarity retrieval with high efficiency in training.

Experiments

In this section, we evaluate the proposed Ordinal Constraint
Hashing on three large-scale benchmarks, i.e., LableMe,
Tiny100K, and GIST1M, which are widely used for eval-
uating nearest neighbor search algorithms.

Datasets

We briefly summarize the datasets used as below: The La-
belMe dataset consists of 22, 019 images, each of which is
represented by a 512-dimensional GIST feature (Oliva and
Torralba 2001). The Tiny-100K-384D dataset consists of
100K images sampled from the TinyImages dataset (Tor-
ralba, Fergus, and Weiss 2008), each of which is represented
by a 384-dimensional GIST descriptors. The GIST-1M-
960D dataset is introduced in (Jegou, Douze, and Schmid
2011), which consists of one million images described by
GIST descriptors.

Baseline Methods

We compared the proposed OCH with several representa-
tive and state-of-the-art unsupervised hashing methods, in-
cluding Local Sensitive Hashing (LSH) (Datar et al. 2004),
Anchor Graph Hashing (AGH) (Liu et al. 2011), Isotropic
Hashing (IsoHash) (Kong and Li 2012), Iterative Quanti-
zation (ITQ) (Gong et al. 2013), Spherical Hashing (SpH)

(Heo et al. 2015), Scalable Graph Hashing (SGH) (Jiang and
Li 2015), and Ordinal Embedding Hashing (OEH) (Liu et al.
2016).3 For all the compared methods, we carefully follow
the original parameter setting in respective datasets. We im-
plement our OCH hashing using MATLAB on a single PC
with Duo-Core I7-3421 and 75G memory, where the com-
plete data set can be stored.

Evaluation Protocols

To evaluate the proposed hashing algorithm, we adopt a set
of widely used protocols in recent papers (Jiang and Li 2015;
Park, Cafarella, and Mozafari 2015; Liu et al. 2016). For a
given query, the top 2% ranking items with Euclidean dis-
tances are defined as with the same label of the query. Then,
based on the Euclidean ground-truth, we compute the recall
curve, precision@100 ranking curve, and mean average pre-
cision. For all the experiments, 2, 000 data points are ran-
domly selected as test set, and the remaining are used as the
dataset. To avoid the overfitting, we randomly select 10, 000
points as the training set for all the algorithms, which has
been used in (He, Wen, and Sun 2013). We run all the exper-
iments 10 times and report the average performance.

Parameter Tunning

In particular, V is randomly initialized with a Gaussian dis-
tribution of mean 0 and standard deviation 1, which fol-
lows the standard settings. For the constraints in Eq. 11, for
each dataset the centers are formed of 300 points obtained
by K-means clustering. We also give experimental analy-
sis on whether the number of centers affects the retrieval
performance in Fig. 4 (a). It is worth to note that centers
generated by K-means reflect the distribution and structure
of data points, which can approximate the original ordinal
graph without performance reduction. For the SVD dimen-
sion, we set 16 to the parameter dsvd, which can get the com-
petitive performance by reducing data noise. The number of
centers generated by K-means Clustering is set to 300, and
the corresponding analysis will be given in below section.

Quantitative Results

As shown in Tab. 1 and Fig. 3 with hash code varied from
32 to 128, the proposed OCH consistently achieves superior

3The source codes of all the above methods are provided by
authors kindly.
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Figure 3: The mAP and Recall Curves of all the algorithms on three benchmarks. ( (b)-(d) are all evaluated on 64 bit.)

Table 2: The Training Time (s) comparing with different al-
gorithms on both datasets.

LabelMe Tiny100K GIST1M
Methods 32 64 32 64 32 64

LSH 0.01 0.01 0.04 0.04 0.01 0.01
ITQ 0.47 1.02 0.46 0.78 0.64 0.97
SGH 1.61 3.25 1.62 3.21 1.81 4.43
OEH 49.00 83.79 48.38 80.90 62.2 4 115.53
OCH 29.07 35.01 28.89 35.93 29.11 36.69

performance over all baselines among all datasets, especially
when the hash bit is short.

Most previous hashing works always quantize the hash
code by minimizing the loss between Euclidean distance
and Hamming distance. But in OCH, we change to mini-
mize the inconsistency between original loss before and af-
ter learning binary codes. Compared to the previous works,
it is quantitatively demonstrated that preserving such ordi-
nal cues in hashing is a more fundamental goal for nearest
neighbor search. As for the comparison between our work
and the most recent works in ranking preserve hashing OEH
(Liu et al. 2016), in comparison, both OEH and OCH adopt
a two-step projection to find the optimal binary quantization
space. For OEH, the PCA dimension reduction is used as
the first step, which cannot reduce the scale of training and
still needs about nL2 triplet order tuples to train the over-
all model. On the contrary for the proposed OCH, we use
the ordinal constraint projection in the first step, which not
only reduces the original feature dimension, but also reduces
the scale of training. Tab. 2 further shows the comparison of
training time between the above methods, in which OCH
costs about half training time of OEH but achieves better
performance on all the three datasets. Moreover, OEH needs
to construct the ordinal relations during each iteration, which
is time consuming. In contrast, our OCH constructs the or-
dinal relations by TOG only once before iteration, which is
very convenient and efficient in iterative training.

At last, we discuss the influence of centers and the num-
ber of relations used in each iteration. Note that the centers
are generated by K-means, and the final mAP result in Fig. 4
(a) is shown with the number of centers increasing from 100
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Figure 4: The parameter analysis when hash bit is 64.

to 800 among three datasets. We find that the performances
rarely change with the number increasing of centers. As a re-
sult, only a small number of centers is used to approximate
the overall ordinal relations, which is set to 300 for all the
datasets. As in Fig. 4 (b), we show the relation between mAP
and the training time by increasing the number k(L − k)
of randomly selected ordinal relations during each iteration.
The result shows that the training time is linear to the num-
ber of ordinal relations, but the mAP does not change too
much. Therefore, we can use a small set of ordinal relations
in each iteration, while maintaining the overall search preci-
sion.

Conclusion

In this paper, we proposed a novel unsupervised hashing
approach, dubbed Ordinal Constraint Hashing (OCH), for
large-scale similarity retrieval. Unlike most previous unsu-
pervised hashing, the proposed approach exploits the or-
dinal information between data points, and embeds such
relations into a Hamming space. Firstly, a tensor ordinal
graph was proposed to approximate the ordinal relations
efficiently. Then, OCH adopted an ordinal constraint pro-
jection scheme to significantly reduce the scale of ordinal
graph, which preserves the overall ordinal relation through
a small centers set (such as K-means centers). In optimiza-
tion, a novel iterative stochastic gradient descent algorithm
on Stiefel manifold was developed. Extensive experiments

2243



on three benchmark datasets demonstrated that the proposed
OCH approach achieves the best performance in contrast
with representative and state-of-the-art hashing methods. In
our future work, we will further extend the proposed method
with deep learning, as well as investigating the possibility of
large-scale binarized optimization in binary code learning.
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