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Abstract

Due to the efficiency of learning relationships and complex
structures hidden in data, graph-oriented methods have been
widely investigated and achieve promising performance in
multi-view learning. Generally, these learning algorithms con-
struct informative graph for each view or fuse different views
to one graph, on which the following procedure are based.
However, in many real world dataset, original data always
contain noise and outlying entries that result in unreliable and
inaccurate graphs, which cannot be ameliorated in the previ-
ous methods. In this paper, we propose a novel multi-view
learning model which performs clustering/semi-supervised
classification and local structure learning simultaneously. The
obtained optimal graph can be partitioned into specific clus-
ters directly. Moreover, our model can allocate ideal weight
for each view automatically without additional weight and
penalty parameters. An efficient algorithm is proposed to opti-
mize this model. Extensive experimental results on different
real-world datasets show that the proposed model outperforms
other state-of-the-art multi-view algorithms.

Introduction

In many real world applications, such as multi-camera surveil-
lance system, abundant data collected from different views
are available. Usually each view captures partial information
but they together admit the same clustering structure. Nowa-
days, we have easier access to data that contain heterogeneous
features representing samples from different views in many
scientific fields, such as pattern recognition, computer vision,
genetics, data mining, etc. For example, in visual data, an
image could be represented by different descriptors, such as
SIFT (Lowe 2004), HOG (Dalal, Triggs, and Schmid 2006),
GIST (Oliva and Torralba 2001), LBP (Ojala, Pietikäinen,
and Mäenpää 2002); in ResearchIndex network, the keywords
of a specific paper and its citations can be regarded as two
separate views; in biological data, each human gene can be
measured by gene expression, Array-comparative genomic
hybridization (arrayCGH), Single-nucleotide polymorphism
(SNP) and methylation.

Numerous clustering methods have been proposed in the
past decades, it might be satisfying for an individual view of
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data to accomplish some clustering work, but methods which
properly combine various views containing different frac-
tional information will improve the clustering performance.
Recently, varieties of multi-view clustering algorithms have
been proposed. (Selee et al. 2007) introduced a new tensor
decomposition called Implicit Slice Canonical Decomposi-
tion (IMSCAND) in which each similarity matrix is stored
as a slice in a tensor. (Chaudhuri et al. 2009) proposed multi-
view clustering method via Canonical Correlation Analysis
(CCA), it computes two sets of variables and maximizes the
correlation between them in the embedded space. (Kumar,
Rai, and III 2011) proposed a co-regularized approach for
multi-view spectral clustering in which they co-regularize the
clustering hypotheses to make different graphs agree with
each other. (Cai et al. 2011) proposed multi-modal spectral
clustering (MMSC) algorithm to integrate heterogeneous im-
age feature, it learns a commonly shared Laplacian matrix by
unifying different modals and add a non-negative relaxation
to improve the robustness of image clustering. (Li et al. 2015)
proposed a new large-scale multi-view spectral approach
(MVSC) based on bipartite graph. In general, graph-based
methods are pretty conspicuous for efficiency and excellent
clustering performance.

For multiple learning in semi-supervised learning, Co-
training (Blum and Mitchell 1998) is a representative
paradigm. It firstly trains two classifiers with labeled data,
and classifies the unlabeled data separately. Next some pre-
dicted data that are of most confidence are added to the other
classifier’s training set, then the procedure repeats. (Tian and
Kuang 2010) proposed an alignment-based semi-supervised
learning model to classify gene expression data samples by
seeking an optimal alignment between different samples’
probe series. Under the manifold assumption, graph-based
methods trade labeled and unlabeled examples as vertices of a
graph and utilize edges to propagate information from labeled
ones to unlabeled ones. (Cai et al. 2013) introduced an adap-
tive multi-modal semi-supervised classification (AMMSS)
algorithm which considers each type of feature as one modal-
ity, it learns a shared class indicator matrix and weights for
different modalities. (Karasuyama and Mamitsuka 2013) use
sparse weights to linearly combine different graphs to imple-
ment label propagation (SMGI).
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Although graph-based multi-view learning methods
achieve state-of-the-art performance, there still exist some
limits. For one thing, such methods conduct the following
procedure base on the constructed similarity matrix from
original data but rarely modify it. Real world datasets always
contain noise and outlying entries that result in the unreliable
similarity matrix which will impair the finally performance.
For another, those methods combining different views often
have additional weight parameters to set, which is unsatisfac-
tory especially in unsupervised clustering task.

In this paper, we propose a novel multi-view learning
model, named Multi-view Learning with Adaptive Neigh-
bours (MLAN). There are several benefits of our approach:
The proposed approach performs multi-view clustering/semi-
supervised classification and local manifold structure learn-
ing simultaneously, modifying similarity matrix during each
iteration until reach to the optimal one; No explicit weight
parameter in our model, it can learn the weight coefficient
automatically after finite iterations, which has conspicuous
advantage in unsupervised clustering work; Comprehensive
experiments on several real-world data sets show the effec-
tiveness of proposed approach, and demonstrate the advan-
tage over other state-of-the-art methods.

Methodology

In this section, we will firstly introduce the assignment of
adaptive neighbours. Then we will address the issue of ac-
quiring optimal linear combination of multiple graphs, the
weight coefficient and corresponding penalty parameter can
all be omitted.

Notations are summarized here throughout the paper. All
the matrices are written as uppercase. For a matrix M ∈
R

n×d, the i-th row and the (ij)-th element of M are denoted
by mi and mij , respectively. The transpose of matrix M is
denoted by MT . The trace of matrix M is denoted by Tr(M).
The �2-norm of vector v is denoted by ‖v‖2. 1 denotes a
column vector with all the elements as one, and the identity
matrix is denoted by I . x and σ(x) denote the average value
and standard deviation of vector x, respectively.

Adaptive Local Structure Learning

One important factor to the success of graph-based methods
is the preserving local manifold structure, high-dimensional
data is considered to contain low-dimensional manifold struc-
ture (Nie, Li, and Li 2016), so the obtained similarity matrix
is crucial to the ultimate performance. Given a set of data
points {x1, x2, · · · , xn}, denote data matrix X ∈ R

n×d,
where n is the number of data points and d is the dimension
of features, we adopt the data preprocessing proposed in (Liu
et al. 2013). In details, xi ← (xi − x))/σ(x). For each data
point xi, it belongs to one of the c classes, and can be con-
nected by all the data points with the probability sij , and
such probability can be seen as the similarity between them.
Closer samples should have larger probability, thus sij has
the negative correlation with the distance between xi and xj .
The determination of probability sij can be seen as solving

following problem:

min
si∈n×1

n∑
i,j

||xi − xj ||22sij + α||S||2F

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1

(1)

where si is a vector with j-th element as sij in similar-
ity matrix S. The second item is added for the considera-
tion that there would be a trivial solution where only the
nearest data point to the xi is assigned probability 1 and
all the other points’ similarity would be 0 without such
penalty item. In spectral analysis, LS = DS − (ST + S)

/
2

is called Laplacian matrix, where the degree matrix DS in
S ∈ R

n×n is the diagonal matrix whose i-th diagonal ele-
ment is

∑
j (sij + sji)/2. Given the class indicator matrix

F = [f1, · · · , fn], classical spectral clustering can be written
as

min
F∈Rn×c,FTF=I

Tr(FTLSF ) (2)

Since the similarity matrix S does not has exact c connected
components, previous methods have to resort to other dis-
cretization procedures like K-means performing on F to
obtain the final results (Huang, Nie, and Huang 2013). There
is an important property of Laplacian matrix (Mohar 1991),
(Chung 1997)

Theorem 1. The multiplicity c of the eigenvalue 0 of the
Laplacian matrix LS (nonnegative) is equal to the number of
connected components in the graph with the similarity matrix
S.

In view of the above consideration, (Nie, Wang, and Huang
2014) added a rank constrain to the LS in problem 1 accord-
ing to the Theorem 1:

min
si∈n×1

n∑
i,j

||xi − xj ||22sij + α||S||2F

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c

(3)

It assigns adaptive neighbours to each of samples, which
means that the similarity between data points will change, so
similarity matrix S will be modified until it contains exact c
connected component. Namely, not only the indicator matrix
F can be learned, different from the traditional spectral clus-
tering methods, our model can also learn similarity matrix
S simultaneously. The learned S can be used for clustering
directly according to Tarjan’s strongly connected components
algorithm (Tarjan 1972).

Multi-view Data Fusion

For multi-view data, denote X1, X2, · · · , Xv be the data ma-
trix of each view. Xv ∈ R

n×dv

, where n is the number of
data and dv is the feature dimension of the v-th view. As
for graph-based methods, each view can construct similar-
ity graph and maximize the performance quality on its own.
In the context of multi-view clustering, there is an inherent
problem that all methods have to deal with elaborately: when
maximizing the within-view clustering quality, the cluster-
ing consistency across different views should be taken into
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consideration. The rough way that combining multiple views
directly through similarity matrix addition or feature concate-
nation would not help improve the clustering performance,
for fallible similarity matrix could lead to suboptimal result.
A more reasonable manner is to integrate these views with
suitable weights wv(v = 1, · · · , V ), and an extra parameter
γ is needed to keep weights distribution smooth. Basically,
there are two kind of models, if adding such parameters to
Eq. (3), it tunes to be:

min
S,wv

∑
v

(wv)
γ
∑
i,j

||xv
i − xv

j ||22sij + α||S||2F

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, wT
v 1 = 1, 0 ≤ wv ≤ 1,

rank(LS) = n− c

(4)

where γ is the non-negative scalar, it could be regularization
parameter in another model:

min
S,wv

∑
v

(wv

∑
i,j

||xv
i − xv

j ||22sij) + γ||wv||22) + α||S||2F

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, wT
v 1 = 1, 0 ≤ wv ≤ 1,

rank(LS) = n− c
(5)

For unsupervised learning methods, the less parameter to be
set, the strong robustness they possess. On the other hand,
since parameters can be searched in a large range, methods
with parameters like the above form often show better result
than parameter-free methods. It’s really elusive to pursue
good performance while rely less on parameter searching.
However, we will propose one to alleviate such challenging
problem in the next section.

Multi-view Learning with Adaptive Neighbours

In this paper, we propose a novel multi-view learning with
adaptive neighbours method as the following form:

min
S

∑
v

√∑
i,j

||xv
i − xv

j ||22sij + α||S||2F ,

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c

(6)

where each view shares the same similarity matrix, thus the
goal of assigning each data point to the most suitable cluster
in each view and ensuring clustering consistency across views
is achieved. There is no weight hyperparameter explicitly
defined in our model. The Lagrange function of Eq. (6) can
be written as∑

v

√∑
i,j

||xv
i − xv

j ||22sij + α||S||2F + G(Λ, S) (7)

where Λ is the Lagrange multiplier, G(Λ, S) is the formalized
term derived from constraints. Taking the derivative of Eq.
(7) w.r.t S and setting the derivative to zero, we have

∑
v

wv

∂
∑
i,j

||xv
i − xv

j ||22sij
∂S

+
α∂||S||2F

∂S
+

∂G(Λ, S)
∂S

= 0

(8)

where

wv = 1

/
2

√∑
i,j

||xv
i − xv

j ||22sij (9)

we can see that wv is dependent on the target variable S, so
that Eq. (8) cannot be directly solved. But if wv is set to be
stationary, Eq. (8) can be considered accounting for following
problem

min
S

∑
v

wv

∑
i,j

||xv
i − xv

j ||22sij + α||S||2F ,

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c

(10)

Under the assumption that wv is stationary, the Lagrange
function of Eq. (6) also apply to Eq. (10), if we calculate S
from Eq. (10), the value of wv can be updated correspond-
ingly, which inspires us to optimize Eq. (6) in an alternative
way. After optimization, S tune to be Ŝ, according to Eq. (8),
Ŝ is as least a local optimal solution to problem (6). Similarly,
wv tune to be ŵv, and they are exactly the learned weights
which linearly combining different graphs.

Optimization Algorithm

To solve the challenging problem (6), we should solve prob-
lem (10) iteratively. In the iterative procedure, parameters are
updated one by one. The specific parameter updated in the
last step could be seen as a constant during current step.

Clustering

Denote σi(LS) is the i-th smallest eigenvalue of LS , because
LS is positive semi-definite, σi(LS) ≥ 0. So the constraint
rank(LS) = n − c will be ensured if

∑c
i=1 σi(LS) = 0.

According to Ky Fan’s Theorem (Fan 1949), we have

c∑
i=1

σi(LS) = min
F∈Rn×c,FTF=I

Tr(FTLSF ) (11)

Then problem (10) is equivalent to the following problem

min
S,F

∑
v

wv

∑
i,j

||xv
i − xv

j ||22sij+α||S||2F +2λTr(FTLSF )

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, FTF = I
(12)

where λ is a very large number, the optimal solution to the
problem (12) will make equation

∑k
i=1 σi(LS) = 0 hold.

Fix S, update wv and F When S is fixed, we can easily
calculate the value of wv by Eq. (9). So the first and sec-
ond item of problem (12) could be seen as constant, then it
transforms into:

min
F∈Rn×c,FTF=I

Tr(FTLSF ) (13)

the optimal solution F is formed by the c eigenvectors
corresponding to the c smallest eigenvalues of LS .
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Fix wv and F , update S Since wv is fixed, the first item of
Eq. (10) can be replaced as

∑
i,j

∑
v
wv||xv

i − xv
j ||22sij . Denote

dxij =
∑
v
wv||xv

i − xv
j ||22, which represents the weighted dis-

tance between data points xi and xj . Then the problem (10)
becomes

min
S

∑
i,j

(dxijsij + αs2ij) + 2λTr(FTLSF )

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1

(14)

There is an elementary but very important equation in spectral
analysis ∑

i,j

||fi − fj ||22sij =2Tr(FTLSF ) (15)

Denote dfij = ||fi − fj ||22, note that the problem (14) is
independent between different i, we can deal with following
problem individually for each i:

min
si

n∑
j=1

(dxijsij + αs2ij + λdfijsij)

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1

(16)

Denote di ∈ R
n×1 is a vector with the j-th element as dij =

dxij + λdfij , then the above problem can be written as follow:

min
si

||si + 1

2α
di||22 s.t. sTi 1 = 1, 0 ≤ sij ≤ 1 (17)

The intermediate variable α can be determined using the
number of adaptive neighbours, by saying adaptive, we mean
that the k nearest neighbours to any data point xi are not
steady, they change in every iteration since the weighted
distance dxij between every pair of xi and xj is updated. The
determination of the α value will be described in the next
section.

Extend to Semi-supervised Classification

Denote l and u are the number of labeled and unlabeled
points. Denote Yl = [y1, · · · , yl]T , where yi ∈ R

c×1 is the
known indicator vector for the i-th sample, yi is one-hot and
the element yij = 1 means that the i-th sample belongs to
the j-th class. Without loss of generality, we rearrange all
the points and let the front l points be labeled. We split LS

and F into blocks, so they could be expressed respectively

as LS =

[
Lll Llu

Lul Luu

]
and F = [Fl;Fu], Fl = Yl. The

optimization procedure is just the same as clustering depicted
above, the only difference is updating the class indicator
matrix F . When λ is a very large number, problem (10) is
equivalent to the following problem

min
S,F

∑
v

wv

∑
i,j

||xv
i − xv

j ||22sij+α||S||2F +2λTr(FTLSF )

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, Fl = Yl

(18)

Algorithm 1 Multi-view Learning with Adaptive Neighbours
Input:
X = {X1, X2, · · · , Xv} , Xv ∈ R

n×dv

, number of
classes c, parameter λ, label matrix Yl.

Output:
Clustering: similarity matrix S ∈ R

n×n with exact c con-
nected components
Classification: the predicted label matrix F ∈ R

n×c for all
data points.
Initial the weight for each view, wv = 1

v , then each row si
of S can be initialized by solving the following problem:

min
sTi 1=1,0≤sij≤1

n∑
j=1

( 1
wv

∑
v
||xv

i − xv
j ||22sij + αs2ij).

repeat
Update wv by using Eq. (9)
Clustering: update F by solving the problem (13)/ Semi-
supervised Classification: update the unlabeled fraction
of F by Eq. (20)
Update each row of S by solving the problem (17)

until converge
Semi-supervised Classification: Assign the single class
label to unlabeled point by Eq. (21).

It could be written as

min
F∈Rn×c,Fl=Yl

Tr(FTLSF ) (19)

According to the (Zhu, Ghahramani, and Lafferty 2003), the
optimal solution to problem (19) can be calculated as

Fu = −L−1
uuLulYl (20)

After iteration, the final single class label could be assigned
to unlabeled data points by following decision function:

yi = argmax
j

Fij ,

∀i = l + 1, l + 2, ..., n.∀j = 1, 2, ..., c
(21)

By iteratively solving problem (10), the final S and F
in the objective function Eq. (6) can be obtained and could
be used for clustering and classification respectively. The
Algorithm is summarized in Alg. 1.

Convergence Analysis

The proposed algorithm can find a local optimal solution, to
prove its convergence, we need to utilize the lemma introduce
by (Nie et al. 2010)

Lemma 1 For any positive real number u and v, the fol-
lowing inequality holds:

√
u− u

2
√
v
≤ √

v − v

2
√
v
. (22)

Theorem 2. In Alg. 1, updated S will decrease the objective
value of problem (6) until converge.

Proof. Suppose the updated S is S̃ in each iteration, it’s easy
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to know that: ∑
v

∑
i,j

||xv
i −xv

j ||22s̃ij

2
√∑

i,j
||xv

i −xv
j ||22sij

+ α||S̃||2F

≤ ∑
v

∑
i,j

||xv
i −xv

j ||22sij

2
√∑

i,j
||xv

i −xv
j ||22sij

+ α||S||2F
(23)

According to Lemma 1, we have

∑
v

√∑
i,j

||xv
i − xv

j ||22s̃ij −
∑
v

∑
i,j

||xv
i −xv

j ||22s̃ij

2
√∑

i,j
||xv

i −xv
j ||22sij

≤ ∑
v

√∑
i,j

||xv
i − xv

j ||22sij −
∑
v

∑
i,j

||xv
i −xv

j ||22sij

2
√∑

i,j
||xv

i −xv
j ||22sij

(24)

Sum over Eq. (23) and Eq. (24) in the two sides, we arrive at:∑
v

√∑
i,j

||xv
i − xv

j ||22s̃ij + α||S̃||2F
≤ ∑

v

√∑
i,j

||xv
i − xv

j ||22sij + α||S||2F
(25)

which completes the prove.

Determine α using Adaptive Neighbours

The value of regularization parameter α could be from zero
to infinite, it’s difficult to tune in experiment. Let us recall
the original intention of introducing parameter α. In problem
(1), it determines number of the neighbour to data point xi:
neighbour number will be one if α equal to zero, n − 1 if
α becomes infinite. We assign k nearest neighbours to each
point, for any xi, the Lagrangian Function of problem (17)
is:

L(si, φ, ϕi) =
1

2
||si+ 1

2αi
di||22−φ(sTi 1−1)−ϕT

i si (26)

where φ, ϕi ≥ 0 are Lagrangian multipliers and dij =∑
v
wv||xv

i − xv
j ||22 + λ||fi − fj ||22. According to KKT condi-

tion (Lemaréchal 2006), the optimal solution of si is:

sij = (− dij
2αi

+ φ)+ (27)

where φ = 1
k+

1
2kαi

∑k
j=1 dij (Nie, Wang, and Huang 2014).

That xi have k neighbours can be translate into sij > 0, ∀1 �
j � k and si,k+1 = 0. According to Eq. 27 and substitution
φ, we have

k

2
dik − 1

2

k∑
j=1

dij < αi ≤ k

2
di,k+1 − 1

2

k∑
j=1

dij (28)

where di1, di2, · · · , din are sorted in ascending order. Hence,
to make most of si has exact k non-zeros elements, we let αi

equal to the right item and set the final α be the average of
them:

α =
1

n

n∑
i=1

αi =
1

n

n∑
i=1

(
k

2
di,k+1 − 1

2

k∑
j=1

dij) (29)

Experiment

Since our MLAN is kind of graph-based learning model, we
will perform the proposed methods on four benchmark data
sets, compared with other related graph based state-of-the-
art multi-view clustering and semi-supervised classification
methods.

Data Set Descriptions

MSRC-v1 data set contain 240 images in 8 class as a whole.
Following (Cai et al. 2011), we select 7 classes composed of
tree, building, airplane, cow, face, car, bicycle and each class
has 30 images. We extract three visual features from each
image: colour moment (CM) with dimension 24, GIST with
512 dimension, CENTRIST feature with 254 dimension, and
local binary pattern (LBP) with 256 dimension.

Handwritten numerals (HW) data set is comprised of
2,000 data points for 0 to 9 digit classes, 200 data points for
each class. There are Six public features are available: 76
Fourier coefficients of the character shapes (FOU), 216 pro-
file correlations (FAC), 64 Karhunen-love coefficients (KAR),
240 pixel averages in 2× 3 windows (PIX), 47 Zernike mo-
ment (ZER) and 6 morphological (MOR) features.

Caltech101 is an object recognition data set containing
101 categories of images. We follow previous work (Li et al.
2015) and select the widely used 7 classes, i.e. Dolla-Bill,
Face, Garfield, Motorbikes, Snoopy, Stop-Sign and Windsor-
Chair and get 1474 images. Six features are extracted from
all the images: i.e. 48 dimension Gabor feature, 40 dimension
wavelet moments (WM), 254 dimension CENTRIST feature,
1984 dimension HOG feature, 512 dimension GIST feature,
and 928 dimension LBP feature.

NUS-WIDE is a real-world web image dataset for object
recognition problem. We select the front 25 from the all
31 categories in alphabetical order (bear, bird,...,tower), and
choose the first 120 images for each class. Five low-level
features are extracted to represent each image: 64 color his-
togram, 144 color correlogram, 73 edge direction histogram,
128 wavelet texture, and 225 block-wise color moment.

Experiment Setup

The classic single-view approach: Spectral Clustering (SC)
(Ng, Jordan, and Weiss 2001) and Label Propagation (LP)
(Zhu, Ghahramani, and Lafferty 2003) are conducted on each
of view as the baseline. Then we compare the proposed meth-
ods with six other state-of-art clustering and semi-supervised
classification approaches: (a) Co-trained spectral clustering
(Co-train) (Kumar and III 2011), (b) Co-regularized Spec-
tral Clustering (Co-reg) (Kumar, Rai, and III 2011), (c)
Multi-view Spectral Clustering (MVSC) (Li et al. 2015), (d)
Multi-Modal Spectral Clustering (MMSC)(Cai et al. 2011),
(e) Adaptive Multi-Model Semi-Supervised classification
(AMMSS) (Cai et al. 2013), (f) Sparse Multiple Graph Inte-
gration (SMGI) (Karasuyama and Mamitsuka 2013).

There is only one parameter λ in our model, brought by the
Laplacian matrix rank constrain. Considering of simpleness
and accelerating the convergence procedure, we can initialize
λ to a random positive value, 1 to 30 in our experiment, and
decrease it (λ = λ/4) if the connected components of S
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is greater than class number c or increase it (λ = λ ∗ 4) if
smaller than c in each iteration. For other compared methods,
we set their parameters to the optimal value if they have. To
all dataset, each sample is assigned 9 nearest neighbours to
construct graph. In terms of semi-supervised classification,
we choose the front 20% data for as labeled sample to mimic
the real situation (l 
 u). Since the compared clustering
methods are spectral related, the performance varies because
the required k-means procedure is dependent on the choose
of initial centroids, so we perform 50 times experiments for
all methods on each dataset.

Table 1: Clustering result in terms of accuracy (mean and
standard deviation).

Data set MSRC-v1 Caltech101 HW
SC(1) 0.364(0.009) 0.346(0.025) 0.726(0.058)
SC(2) 0.542(0.046) 0.448(0.041) 0.658(0.051)
SC(3) 0.566(0.046) 0.529(0.049) 0.690(0.056)
SC(4) 0.575(0.045) 0.607(0.053) 0.670(0.042)
SC(5) 0.672(0.040) 0.715(0.056)
SC(6) 0.591(0.029) 0.218(0.024)
Co-train 0.634(0.014) 0.620(0.004) 0.824(0.010)
Co-reg 0.724(0.049) 0.657(0.032) 0.889(0.070)
MVSC 0.623(0.047) 0.725(0.046) 0.756(0.074)
MMSC 0.688(0.028) 0.745(0.012) 0.934(0.016)
MLAN 0.738(0.000) 0.780(0.000) 0.973(0.000)

Table 2: Clustering result in terms of NMI (mean and standard
deviation).

Data set MSRC-v1 Caltech101 HW
SC(1) 0.292(0.023) 0.142(0.011) 0.795(0.030)
SC(2) 0.499(0.040) 0.279(0.012) 0.700(0.029)
SC(3) 0.477(0.029) 0.338(0.027) 0.727(0.034)
SC(4) 0.487(0.027) 0.492(0.054) 0.681(0.023)
SC(5) 0.507(0.051) 0.786(0.025)
SC(6) 0.451(0.047) 0.143(0.022)
Co-train 0.553(0.011) 0.561(0.003) 0.798(0.004)
Co-reg 0.653(0.038) 0.549(0.017) 0.814(0.043)
MVSC 0.553(0.037) 0.586(0.067) 0.830(0.051)
MMSC 0.612(0.024) 0.605(0.014) 0.893(0.010)
MLAN 0.734(0.004) 0.630(0.000) 0.939(0.001)

Performance Evaluation

For clustering results, three evaluation metric are adopted,
namely, accuracy, normalized mutual information (NMI),
and purity; for semi-supervised classification, the evaluation
metric is accuracy (the proportion of the correct-classified
data points in all unlabeled data).

Table 1, Table 2, and Table 3 show the clustering accuracy,
NMI, and Purity respectively, and Table 4 show the accuracy
of semi-supervised classification. Generally, almost all multi-
view clustering methods achieve superior result than the best
of single-view approaches. We can see that the proposed
method MLAN outperform other state-of-the-art methods in
almost all experiments. In addition, MLAN is very robust

Table 3: Clustering result in terms of purity (mean and stan-
dard deviation).

Data set MSRC-v1 Caltech101 HW
SC(1) 0.418(0.018) 0.622(0.021) 0.832(0.045)
SC(2) 0.624(0.040) 0.772(0.013) 0.702(0.038)
SC(3) 0.577(0.034) 0.792(0.024) 0.736(0.042)
SC(4) 0.617(0.035) 0.747(0.037) 0.708(0.033)
SC(5) 0.765(0.043) 0.823(0.044)
SC(6) 0.725(0.046) 0.237(0.026)
Co-train 0.652(0.012) 0.810(0.002) 0.846(0.007)
Co-reg 0.758(0.038) 0.792(0.010) 0.866(0.055)
MVSC 0.662(0.041) 0.826(0.062) 0.884(0.062)
MMSC 0.718(0.026) 0.876(0.001) 0.934(0.010)
MLAN 0.805(0.000) 0.889(0.000) 0.973(0.000)

Table 4: Semi-supervised classification performance (mean
accuracy and deviation).

Data set MSRC-v1 NUS-WIDE HW
LP(1) 0.369(0.000) 0.172(0.000) 0.925(0.000)
LP(2) 0.304(0.000) 0.121(0.000) 0.804(0.000)
LP(3) 0.244(0.000) 0.104(0.000) 0.763(0.000)
LP(4) 0.226(0.000) 0.097(0.000) 0.693(0.000)
LP(5) 0.085(0.000) 0.691(0.000)
LP(6) 0.473(0.000)
SMGI 0.799(0.054) 0.226(0.030) 0.973(0.004)
AMMSS 0.821(0.000) 0.237(0.000) 0.976(0.000)
MLAN 0.863(0.000) 0.238(0.000) 0.977(0.000)

to the parameter λ, it nearly can be seen parameter-free ap-
proach. By contrast, the parameter-free method Co-train is
robust to some extent, but the performance is not satisfactory.
In MSRC-v1 dataset, Co-reg method beat MLAN in terms of
accuracy, however its’ result is not steady in duplicate test,
with average 5% deviation in all results. Thus the proposed
MLAN approach notably alleviates the challenging problem
that parameter-free methods cannot achieve better result than
those with one or two to be searched. The convergence curves
of the objective value are shown in Figure 1.
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Figure 1: Convergence speed of MLAN in terms of clustering
task.

Conclusions

In this paper, we introduce a novel multi-view learning model
named MLAN, which performs clustering/semi-supervised
classification and local structure learning simultaneously.
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With the reasonable rank constrain, the obtained optimal
graph can be partitioned into specific clusters directly. Due
to the robustness to the only parameter, MLAN nearly can
be seen as parameter-free method, which is very commend-
able, especially for unsupervised clustering task. Extensive
experimental results show that the proposed model achieve
superiors performances. The future work can be the extension
of the data fusion form, using cube root or other elementary
functions.
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