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Abstract

Many machine learning tasks can be formulated as Regu-
larized Empirical Risk Minimization (R-ERM), and solved
by optimization algorithms such as gradient descent (GD),
stochastic gradient descent (SGD), and stochastic variance
reduction (SVRG). Conventional analysis on these optimiza-
tion algorithms focuses on their convergence rates during the
training process, however, people in the machine learning
community may care more about the generalization perfor-
mance of the learned model on unseen test data. In this paper,
we investigate on this issue, by using stability as a tool. In par-
ticular, we decompose the generalization error for R-ERM,
and derive its upper bound for both convex and nonconvex
cases. In convex cases, we prove that the generalization error
can be bounded by the convergence rate of the optimization
algorithm and the stability of the R-ERM process, both in ex-
pectation (in the order of O(1/n) + Eρ(T )), where ρ(T ) is
the convergence error and T is the number of iterations) and
in high probability (in the order of O

(
log 1/δ√

n
+ ρ(T )

)
with

probability 1 − δ). For nonconvex cases, we can also obtain
a similar expected generalization error bound. Our theorems
indicate that 1) along with the training process, the general-
ization error will decrease for all the optimization algorithms
under our investigation; 2) Comparatively speaking, SVRG
has better generalization ability than GD and SGD. We have
conducted experiments on both convex and nonconvex prob-
lems, and the experimental results verify our theoretical find-
ings.

1 Introduction

Many machine learning tasks can be formulated as Regu-
larized Empirical Risk Minimization (R-ERM). Specifically,
given a training dataset, the goal of R-ERM is to learn a
model from a hypothesis space by minimizing the regular-
ized empirical risk defined as the average loss on the training
data plus a regularization term.

In most cases, it is hard to achieve an exact minimiza-
tion of the objective function since the problem might be
too complex to have a closed-form solution. Alternatively,
we seek an approximate minimization by using some opti-
mization algorithms. Widely used optimization algorithms

∗This work was done when the author was visiting Microsoft
Research Asia.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

include the first-order methods such as gradient descent
(GD), stochastic gradient descent (SGD), stochastic vari-
ance reduction (SVRG) (Johnson and Zhang 2013), and the
second-order methods such as Newton’s methods and quasi-
Newton’s methods (Nocedal and Wright 2006). In this pa-
per, for ease of analysis and without loss of generality, we
will take GD, SGD and SVRG as examples. GD calculates
the gradient of the objective function at each iteration and
updates the model towards the direction of negative gradient
by a constant step size. It has been proved that, if the step
size is not very large, GD can achieve a linear convergence
rate (Nesterov 2013). SGD exploits the additive nature of
the objective function in R-ERM, and randomly samples an
instance at each iteration to calculate the gradient. Due to
the variance introduced by stochastic sampling, SGD has to
adopt a decreasing step size in order to guarantee the con-
vergence, and the corresponding convergence rate is sublin-
ear in expectation (Rakhlin, Shamir, and Sridharan 2011). In
order to reduce the variance in SGD, SVRG divides the opti-
mization process into multiple stages and updates the model
towards a direction of the gradient at a randomly sampled
instance regularized by a full gradient over all the instances.
In this way, SVRG can achieve linear convergence rate in
expectation with a constant step size (Johnson and Zhang
2013).

While the aforementioned convergence analysis can char-
acterize the behaviors of the optimization algorithms in
the training process, what the machine learning community
cares more is the generalization performance of the learned
model on unseen test data. 1 As we know, the generalization
error of a machine learning algorithm can be decomposed
into three parts, the approximation error, the estimation er-
ror, and the optimization error. The approximation error is
caused by the limited representation power of the hypothe-
sis space F ; the estimation error (which measures the dif-
ference between the empirical risk and the expected risk) is
caused by the limited amount of training data (Vapnik and
Kotz 1982; Bousquet and Elisseeff 2002); and the optimiza-
tion error (which measures the difference between expected

1Under a related but different setting, i.e., the data instances
are successively generated from the underlying distribution, peo-
ple have proven regret bounds for algorithms like SGD (Kakade
and Tewari 2009; Cesa-Bianchi, Conconi, and Gentile 2004) and
SVRG (Frostig et al. 2015).
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risks of the model obtained by the optimization algorithm af-
ter T iterations and the true optimum of the regularized em-
pirical risk) is caused by the limited computational power. In
(Bousquet and Bottou 2008), Bottou and Bousquet proved
generalization error bounds for GD and SGD based on VC-
dimension (Kearns and Ron 1999), which unavoidably are
very loose in their nature.2 The goal of our paper is to de-
velop more general and tighter generalization error bounds
for the widely used optimization algorithms in R-ERM.

To this end, we leverage stability (Bousquet and Elisseeff
2002) as a tool and obtain the following results:

(1) For convex objective functions, we prove that, the gen-
eralization error of an optimization algorithm can be upper
bounded by a quantity related to its stability plus its con-
vergence rate in expectation. Specifically, the generalization
error bound is in the order of O(1/n + Eρ(T )), where ρ(T )
is the optimization convergence error and T is the number
of iterations. This indicates that along with the optimization
process on the training data, the generalization error will de-
crease, which is consistent with our intuition.

(2) For convex objective functions, we can also obtain
a high probability bound for the generalization error. In
particular, the bound is in the order of O

(
log 1/δ√

n
+ ρ(T )

)
with probability at least 1 − δ. That is, if an algorithm has
a high-probability convergence bound, we can get a high-
probability generalization error bound too, and our bound is
sharper than those derived in the previous literature.

(3) Based on our theorems, we analyze the time for dif-
ferent optimization algorithms to achieve the same gener-
alization error, given the same amount of training data. We
find that SVRG outperforms GD and SGD in most cases,
and although SGD can quickly reduce the test error at the
beginning of the training process, it slows down due to the
decreasing step size and can hardly obtain the same test error
as GD and SVRG when n is large.

(4) Some of our theoretical results can be extended to
the nonconvex objective functions, with some additional as-
sumptions on the distance between the global minimizer and
the stationary local minimizers.

We have conducted experiments on linear regression, lo-
gistic regression, and fully-connected neural networks to
verify our theoretical findings. The experimental results are
consistent with our theory: (1) when the training process
goes on, the test error decreases; (2) in most cases, SVRG
has better generalization performance than GD and SGD.

2 Preliminaries

In this section, we briefly introduce the R-ERM problem,
and popular optimization algorithms to solve it.

2.1 R-ERM and its Stability

Suppose that we have a training set S = {z1 =
(x1, y1), ..., zn = (xn, yn)} with n instances that are i.i.d.

2In (Hardt, Recht, and Singer 2015), Hardt et.al studied convex
risk minimization via stability, but they did not consider the influ-
ence of hypothesis space and the tradeoff between approximation
error and estimation error.

sampled from Z = X × Y according to an unknown dis-
tribution P . The goal is to learn a good prediction model
f ∈ F : X → Y , whose prediction accuracy at instance
(x, y) is measured by a loss function l(y, f(x)) = l(f, z).
Different learning tasks may use different loss functions,
such as the least square loss (f(x) − y)2 for regression, and
the logistic loss log (1 + e−yf(x)) for classification. We learn
the prediction model from the training set S, and will use
this model to give predictions for unseen test data.

R-ERM is a very common way to achieve the above goal.
Given loss function l(f, z), we aim to learn a model f∗ that
minimizes the expected risk

R(f) = Ez∼P l(f, z).

Because the underlying distribution P is unknown, in prac-
tice, we learn the prediction model by minimizing the reg-
ularized empirical risk over the training instances, which is
defined as below,

Rr
S(f) =

1

n

n∑
i=1

l(f, zi) + λN(f). (1)

Here, the regularization term λN(f) helps to restrict the
capacity of the hypothesis space F to avoid overfitting. In
this paper, we consider N(f) as a norm in a reproducing
kernel Hilbert space (RKHS): N(f) = ‖f‖2k where k refers
to the kernel (Wahba 2000).

As aforementioned, our goal is expected risk minimiza-
tion but what we can do in practice is empirical risk mini-
mization instead. The gap between these two goals is mea-
sured by the so-called estimation error, which is usually
expressed in the following way: the expected risk is up-
per bounded by the empirical risk plus a quantity related
to the capacity of the hypothesis space (Vapnik and Kotz
1982)(Bousquet and Bottou 2008). One can choose differ-
ent ways to measure the capacity of the hypothesis space,
and stability is one of them, which is proved to be able to
produce tighter estimation error bound than VC dimension
(Kearns and Ron 1999). There has been a venerable line
of research on estimation error analysis based on stability,
dated back more than thirty years ago (Bousquet and Elisse-
eff 2002; Devroye and Wagner 1979; Kearns and Ron 1999;
Mukherjee et al. 2006; Shalev-Shwartz et al. 2010). The
landmark work by Bousquet and Elisseeff (Bousquet and
Elisseeff 2002) introduced the following definitions of uni-
form loss stability and output stability.

Definition 2.1 (Uniform Loss Stability) An algorithm A has
uniform stability β0 with respect to loss function l if the fol-
lowing holds ∀S ∈ Zn, ∀j ∈ {1, · · · , n},

|EA [l(AS , ·)]− EA [l(AS\j , ·)]| ≤ β0, (2)

where AS , AS\j are the outputs of algorithm A based on S
and S\j = {z1, · · · , zj−1, zj+1, · · · , zn}, respectively.

Definition 2.2 (Output Stability) An algorithm has out-
put stability β1 if the following holds ∀S ∈ Zn, ∀j ∈
{1, · · · , n},

‖AS −AS\j‖Fc ≤ β1, (3)

where ‖ · ‖Fc
denotes the norm in hypothesis space Fc.
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From the above definitions, we can see that stability mea-
sures the change of the loss function or the produced model
of a given learning algorithm if one instance in the training
set is changed. For example, if the loss function is convex
and L-Lipschitz w.r.t. f , the corresponding R-ERM algo-
rithm with regularization term N(f) = ‖f‖2k has stability
β0 ≤ L2K2

2λn and β1 ≤ LK
2λn , where K is the upper bound of

the kernel norm (Bousquet and Elisseeff 2002).

2.2 Optimization Algorithms

Many optimization methods can be used to solve the R-ERM
problem, including the first-order methods such as Gradient
Descent (GD) (Nesterov 2013), Stochastic Gradient Descent
(SGD) (Rakhlin, Shamir, and Sridharan 2011), and Stochas-
tic Variance Reduction (SVRG) (Johnson and Zhang 2013),
as well as the second-order methods such as Newton’s meth-
ods (Nocedal and Wright 2006) and quasi-Newton’s meth-
ods (Byrd et al. 2016). We will take the first-order methods
as examples in this paper, although many of our analysis can
be easily extended to other optimization algorithms.

Let us consider model f parameterized by w. The update
rules of GD, SGD, and SVRG are summarized as follows.
Gradient Descent (GD)

wt+1 = wt − η∇Rr
S(wt). (4)

Stochastic Gradient Descent (SGD)

wt+1 = wt − ηtg(wt). (5)

Stochastic Variance Reduced Gradient (SVRG)

vts = g(wt
s)−∇Rr

S(w
t
s) +∇Rr

S(w̃
t−1) (6)

wt
s+1 = wt

s − ηvts. (7)

where g(·) is the gradient of ∇Rr
S(·) at randomly sampled

training instances, wt
s is the output parameter at the s-th it-

eration in the t-th stage, and w̃t−1 is the final output in stage
t− 1.

When the loss function is strongly convex and smooth
with respect to the model parameters, GD can achieve lin-
ear convergence rate; SGD can only achieve sublinear con-
vergence rate due to the variance introduced by stochastic
sampling (but in each iteration, it only needs to compute the
gradient over one instance and thus can be much faster in
speed); SVRG can achieve linear convergence rate by re-
ducing the variance and in most iterations it only needs to
compute the gradient over one instance. 3 When the loss
functions are nonconvex w.r.t. the model parameters (e.g.,
neural networks), GD (Nesterov 2013), SGD (Ghadimi and
Lan 2013), and SVRG (Reddi et al. 2016) still have con-
vergence properties (although regarding a different measure
of convergence). For ease of reference, we summarize the
convergence rates of the aforementioned optimization algo-
rithms in both convex and nonconvex cases in Table 1.

3The second-order methods can get quadratic convergence rate
(Nocedal and Wright 2006). However, as compared with the first-
order methods, the computation complexity of the second-order
methods could be much higher due to the calculation of the second-
order information.

3 Generalization Analysis
In this section, we will analyze the generalization error
for optimization algorithms by using stability as a tool.
Firstly, we introduce the definition of generalization error
and its decomposition. Then, we prove the generalization
error bounds of optimization algorithms in both convex and
nonconvex cases. The proof details of all the lemmas and
theorems are placed in the supplementary materials due to
space limitation.

3.1 Generalization Error and its Decomposition

As we mentioned in Section 2, R-ERM minimizes the regu-
larized empirical risk, i.e.,

f∗
S,r := argminf∈FRr

S(f) (8)
as an approximation of the expected risk minimization:

f∗ := argminfR(f). (9)

Denote the empirical risk RS(f) = 1
n

∑n
i=1 l(f, zi). It is

clear that, the minimization of Rr
S(f) in F is equivalent to

the minimization of RS(f) in Fc = {f ∈ F , N(f) ≤ c} for
some constant c. That is,

f∗
S,r = f∗

S,Fc
:= argminf∈Fc

RS(f). (10)

Denote the minimizer of the expected risk R(f) in the
hypothesis space Fc as f∗

Fc
, i.e.,

f∗
Fc

:= argminf∈FcR(f). (11)

In many practical cases, neither f∗
S,r nor f∗

S,Fc
has a closed

form. What people do is to implement an iterative optimiza-
tion algorithm A to produce the prediction model. We denote
the output model of algorithm A at iteration T over n train-
ing instances as fT (A, n,Fc). We use generalization error
to denote the difference between the expected risk of this
learnt model and the optimal expected risk, as follows,

E(A, n,Fc, T ) = R(fT (A, n,Fc))−R(f∗). (12)
As known, the generalization error can be decomposed

into the three components,
E(A,n,Fc, T ) (13)

= R(fT )−R(f∗
S,Fc

) +R(f∗
S,Fc

)−R(f∗
Fc

) (14)
+R(f∗

Fc
)−R(f∗)

:= Eopt(A,n,Fc, T ) + Eest(n,Fc) + Eapp(Fc). (15)

The item Eapp(Fc) := R(f∗
Fc

) − R(f∗), is called approxi-
mation error, which is caused by the limited representation
power of the hypothesis space Fc. With the hypothesis space
increasing, (i.e., c is increasing), the approximation error
will decrease. The item Eest(n,Fc) := R(f∗

S,Fc
) − R(f∗

Fc
),

is called estimation error, which is caused by the limited
amount of the training data (which leads to the gap be-
tween the empirical risk and the expected risk). It will de-
crease with the increasing training data size n, and the
decreasing capacity of the hypothesis space Fc. The item
Eopt(A,n,Fc, T ) := R(fT )−R(f∗

S,Fc
), is called optimization

error, which measures the sub-optimality of the optimiza-
tion algorithms in terms of the expected risk. It is caused by
the limited computational resources. 4

4For simplicity, we sometimes denote fT (A,n,Fc),
E(A,n,Fc, T ), Eapp(Fc), Eest(n,Fc), Eopt(A,n,Fc, T ) as
fT , E , Eapp, Eest, Eopt, respectively.
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Convex Convex Nonconvex Nonconvex
Number of iterations Number of data passes Number of iterations Number of data passes

GD O(κ log (1/ε)) O (nκ log (1/ε)) O(1/ε) O (n(1/ε))
SGD O(κ2/ε) O (

κ2/ε
) O(1/ε2) O (

1/ε2
)

SVRG O(κ log (1/ε)) O (n+ κ log (1/ε)) O(1/ε) O (
n+ n2/3(1/ε)

)

Table 1: Convergence rate of GD, SGD, SVRG in convex and nonconvex cases, where ε is the targeted accuracy, κ is the
condition number.

Please note that, the optimization error under our study
differs from the target in the conventional convergence anal-
ysis of optimization algorithms. In the optimization commu-
nity, the following two objectives

ρ0(T ) = RS(fT )−RS(f
∗
S,Fc

); ρ1(T ) = ‖fT − f∗
S,Fc

‖2Fc
(16)

are commonly used in convex cases, and

ρ2(T ) = ‖∇Rr
S(fT )‖2 (17)

is commonly used in nonconvex cases. To avoid confusion,
we call them convergence error and their corresponding up-
per bounds convergence error bounds. Please note although
convergence error is different from optimization error, hav-
ing a convergence error bound plays an important role in
guaranteeing a generalization error bound. In the following
subsections, we will prove the generalization error bound for
typical optimization algorithms, by using the stability tech-
niques, based on their convergence error bounds.

3.2 Expected Generalization Bounds for Convex
Case

The following theorem gives an expected generalization er-
ror bounds in the convex case.

Theorem 3.1 Consider an R-ERM problem, if the loss func-
tion is L-Lipschitz continuous, γ-smooth, and convex with
respect to the prediction output vector, we have

ES,AE ≤ Eapp + 2β0 + ES,Aρ0(T ) +
γES,Aρ1(T )

2

+

√
ES,Aρ1(T )

(
L2

2n
+ 6Lγβ1

)
, (18)

where β0, β1 are the uniform stability and output stability
of the R-ERM process as defined in 2.1 and 2.2, ρ0(T ) and
ρ1(T ) are the convergence errors defined in Eqn 16.

From Theorem 3.1, we can see that the generalization er-
ror can be upper bounded by the stability β0 and β1, the
convergence errors of the optimization algorithms ρ0(T )
and ρ1(T ), and the well-studied approximation error (Vap-
nik and Vapnik 1998). As the training process goes on, both
Eρ0(T ) and Eρ1(T ) will decrease. Therefore, the expected
generalization error will decrease too. This is consistent with
our intuition. Better optimizations will lead to better ex-
pected generalization performance.

In order to prove Theorem 3.1, we need the following two
lemmas, whose proofs are placed in the supplementary ma-
terials due to space restrictions.

Lemma 3.2 For R-ERM problems, we have ∀j ∈
{1, · · · , n}:

ES

[
R(f∗

S,Fc
)−RS(f

∗
S,Fc

)
]

= ES

[
l(f∗

S,Fc
, z′j)− l(f∗

Sj ,Fc
, z′j)

]
(19)

and ES [∇R(f∗
S,Fc

)−∇RS(f
∗
S,Fc

)]

= ES [∇f l(f
∗
S,Fc

, z′j)−∇f l(f
∗
Sj ,Fc

, z′j)], (20)

where Sj = {z1, · · · , zj−1, z
′
j , zj+1, · · · , zn}, and f∗

Sj ,Fc

is the minimizer of RSj (f) in Fc .

Lemma 3.3 Assume that the loss function is L-Lipschitz
and γ-smooth w.r.t. the prediction output vector, we have

ES [∇R(f∗
S,Fc

)−∇RS(f
∗
S,Fc

)]2 ≤ L2

2n
+ 6Lγβ1. (21)

Proof Sketch of Theorem 3.1:
Step 1: Since the loss function is convex and γ-smooth

w.r.t. f , we can get that R(f) is γ-smooth and RS(f) is
convex w.r.t f . We decompose Eopt as below:

Eopt ≤ (∇R(f∗
S,Fc

)−∇RS(f
∗
S,Fc

)
)T

(fT − f∗
S,Fc

)

+RS(fT )−RS(f
∗
S,Fc

) +
γ

2
‖fT − f∗

S,Fc
‖2Fc

,

We can use ρ0(T ), ρ1(T ) and Lemma 3.3, to get an upper
bound of ES,AEopt.

Step 2: Since RS(f
∗
S,Fc

) ≤ RS(f
∗
Fc
), we have

Eest ≤
[
R(f∗

S,Fc
)−RS(f

∗
S,Fc

)
]
+ [RS(f

∗
Fc

)−R(f∗
Fc

)] .

We have ES

[
RS(f

∗
Fc

)−R(f∗
Fc

)
]
= 0. By using Lemma 3.2,

we can bound ESEest. By combining the upper bounds of
ES,AEopt and ESEopt, we can get the results.

After proving the general theorem, we consider a spe-
cial case - an R-ERM problem with kernel regularization
term λ‖f‖2k. In this case, we can derive the concrete expres-
sions of the stability and convergence error. In particular,
β0 = O(1/λn), β1 = O(1/λn) and ρ1(T ) is equivalent to
‖wT − w∗

S,r‖2. If the loss function is convex and smooth
w.r.t. parameter w, Rr

S(w) with N(f) = ‖f‖2k is strongly
convex and smooth w.r.t w. In this case, ρ0(T ) dominates
ρ1(T ), i.e., ρ0(T ) is larger than ρ1(T ) w.r.t the order of T .
Therefore, we can obtain the following corollary.

Corollary 3.4 For an R-ERM problem with a regularization
term λ‖f‖2k, under the same assumptions in Theorem 3.1,
and further assuming that the loss function is convex and
smooth w.r.t parameter w, we have

ES,AE ≤ Eapp +O
(

1

λn
+ ES,Aρ0(T )

)
. (22)
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3.3 High-Probability Generalization Bounds for
Convex Case

The following theorem gives a high-probability bound of E
in the convex case.
Theorem 3.5 For an R-ERM problem, if the loss function is
L-Lipschitz continuous, γ-smooth and convex with respect to
the prediction output vector, and 0 ≤ l(f∗

S,Fc
, z) ≤ M for

arbitrary z ∈ Z and S ∈ Zn, then with probability at least
1− δ, we have

E ≤ Eapp + 2β0 + ρ0(T ) +
γ

2
ρ1(T ) + 2γβ1

√
ρ1(T )

+
(
4nβ0 + 2M + (4nγβ1 + L)

√
ρ1(T )

)√
log 4/δ

2n
.

The high-probability bound is consistent with the expected
bound given in the previous subsection. That is, the high-
probability generalization bound will decrease along with
the training process. In addition, we can also get a corollary
for the special case of R-ERM with kernel regularization.
Corollary 3.6 For an R-ERM problem with kernel regular-
ization term λ‖f‖2k, under the same assumptions in Theorem
3.5, and further assuming that the loss function is convex
and smooth w.r.t parameter w, we have, with probability at
least 1− δ,

E ≤ Eapp +O
(√

log 1/δ

n
+ ρ(T )

)
.

(Rakhlin, Shamir, and Sridharan 2011) proved a high-
probability convergence rate for SGD. For GD, the training
process is deterministic. By plugging the order of β0 and β1

in SGD and GD, we have the following corollary.
Corollary 3.7 For an R-ERM problem with kernel regular-
ization, under the assumptions in Corollary 3.6, with proba-
bility at least 1−δ, the generalization error of SGD and GD
can be upper bounded as follows,

ESGD ≤ Eapp +O
(√

log 1/δ

n

)
+O

(
κ2 log( log(T )

δ
)

T

)

EGD ≤ Eapp +O
(√

log 1/δ

n

)
+O

(
e−κT

)
,

where κ is the condition number.

3.4 Expected Generalization Bounds for
Nonconvex Case

In this subsection, we consider the case in which the loss
function is convex w.r.t. the prediction output vector, but
nonconvex w.r.t. the model parameter. This case can cover
deep neural networks, which are state-of-the-art AI tech-
niques nowadays. For the nonconvex case, the definition of
convergence error is a little different, as shown by Eq. (17).
It measures whether the solution is close to a critical point,
which is defined and further categorized as follows.
Definition 3.8 Consider the objective Rr

S and parameter w.
If ∇Rr

S(w) = 0, we say w is a critical point of Rr
S; if

∇Rr
S(w) has at least one strictly negative eigenvalue, we

say w is a strict saddle point. If each critical point w is ei-
ther a local minimum or a strict saddle point, we say that
Rr

S satisfies the strict saddle property.

The following theorem gives the expected generaliza-
tion error bound for nonconvex cases under the widely
used assumptions (Lian et al. 2015; Reddi et al. 2016;
Lee et al. 2016; Panageas and Piliouras 2016).

Theorem 3.9 If Rr
S is μ-strongly convex in the ε0- neigh-

borhood of arbitrary local minimum wloc, satisfies strict
saddle point property, L- Lipschitz continuous, γ-smooth
and continuously twice differential w.r.t the model param-
eter w, and the loss function is convex w.r.t f , then we have

ES,AE ≤ Eapp + 2β0 +R(wloc)−R(w∗
S,Fc

)

+L
μ

√
mint=1,··· ,T ES,Aρ2(t),

where T ≥ T1 and T1 is the number of iterations to achieve
mint=1,··· ,T1 ES,A [ρ2(t)] ≤ γ2ε20.

Similarly to the convex case, Theorem 3.9 shows that with
the training process going on, the generalization error in the
nonconvex case will also decrease.

4 Sufficient Training and Optimal

Generalization Error

In this section, we make further discussions on the gener-
alization bound. In particular, we will explore the sufficient
training iterations, and the optimal generalization error given
the training data size.

As shown in Section 3, the generalization error bounds
consist of an estimation error related to the training data size
n and an optimization error related to the training iteration
T . Given a machine learning task with fixed training size
n, at the early stage of the training process (i.e., T is rela-
tively small), the optimization error will dominate the gener-
alization error; when T becomes larger than a threshold, the
optimization error will decrease to be smaller than the esti-
mation error, and then the estimation error will dominate the
generalization error. We call this threshold sufficient train-
ing iteration and the corresponding training time sufficient
training time. The generalization error with the optimization
algorithm sufficiently trained is called optimal generaliza-
tion error. Given the generalization error bound, we can de-
rive the sufficient training iteration/time. For ease of analy-
sis, we list the sufficient training iteration/time of GD, SGD,
and SVRG for both convex and nonconvex cases in Table 2.

From Table 2, we have the following observations. For the
convex case, when the condition number κ is much smaller
than n, GD, SGD and SVRG have no big differences from
each other in their sufficient training iterations; when κ is
comparable with n, e.g., κ = O(

√
n), 5 the sufficient train-

ing time for GD, SGD and SVRG is O(n
√
nd log n), O(n2d),

O(nd log n), respectively. That is, SVRG corresponds to a
shorter sufficient training time than GD and SVRG. For the
nonconvex case, if ε0 ≤ O(1/n), which is more likely to hap-
pen for small data size n, the first term in the sufficient train-
ing time dominates, and it is fine to terminate the training
process at T = T1. SVRG requires shorter training time than

5In some cases, κ is related to the regularization coefficient
λ and λ is determined by the data size n (Vapnik and Vapnik
1998)(Shamir, Srebro, and Zhang 2014).
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Cost Convex Convex Nonconvex Nonconvex
per Iteration Iterations Time Iterations Time

GD O(nd) O (κ log n) O (ndκ log n) O (
1/ε20 + n2

) O (
n/ε20 + n3

)
SGD O(d) O (

κ2n
) O (

ndκ2
) O (

1/ε40 + n4
) O (

1/ε40 + n4
)

SVRG O(d) O (κ log nκ) O ((nd+ dκ) log nκ) O (
1/ε20 + n2

) O(n2/3/ε20 + n8/3)

Table 2: Sufficient training iteration/time for convex and nonconvex case

GD and SGD by at least an order of O(n1/3) and O(n4/3), re-
spectively. If ε0 is larger than O(1/n), which is more likely
to happen for large data size n, the sufficient training time
for GD, SGD, and SVRG is O(n3), O(n4), and O(n8/3), re-
spectively. In this case, SVRG requires shorter training time
than GD and SGD by an order of O(n1/3) and O(n4/3).

5 Experiments

In this section, we report experimental results to validate
our theoretical findings. We conducted experiments on three
tasks: linear regression, logistic regression, and fully con-
nected neural networks, whose objective functions are least
square loss, logistic loss, and cross-entropy loss respectively,
plus an L2 regularization term with λ = 1/

√
n. The three

tasks are used to verify our results for convex problems, and
nonconvex problems. For each task, we report three figures.
The horizontal axis of each figure corresponds to the number
of data passes and the vertical axis corresponds to the train-
ing loss, test loss, and log-scaled test loss, respectively. For
linear regression, we independently sample data instances
from a Gaussian distribution. We set the step size for GD,
SGD, SVRG as 0.032, 0.01/t and 0.005, respectively, ac-
cording to the condition number κ. For our simulated data,
the condition number κ ≈ 116. For logistic regression, we
conduct binary classification on benchmark dataset rcv1. We
set the step sizes for GD, SGD, SVRG as 400, 200/t and 1,
respectively. For neural networks, we work on a model with
one fully connected hidden layer of 100 nodes, ten softmax
output nodes, and sigmoid activation. We tune the step size
for GD, SGD, SVRG and eventually choose 0.03, 0.25/

√
t

and 0.001, respectively, which correspond to the best perfor-
mances in our experiments. The inner loop size for SVRG
for convex problems is set as 2n and that for nonconvex
problem is set as 5n. The results are shown in Fig.1.

From the results for all the three tasks, we have the follow-
ing observations. (1) As training error decreases, the test er-
ror also decreases. (2) According to Fig.1(c), SVRG is faster
than GD by a factor of O(κ) and faster than SGD by a factor
of more than O(κ). (3) According to Fig. 1(c)1(f)1(i), SGD
is the slowest although it is fast in the beginning, which is
consistent with our discussions in Section 4.

By comparing the results of logistic regression and linear
regression, we have the following observations. (1) The test
error for logistic regression converges after fewer rounds of
data passes than linear regression. This is because the con-
dition number κ for logistic regression is smaller than linear
regression. (2) SVRG is faster than GD and SGD but the
differences between them are less significant for logistic re-
gression, due to a smaller κ. As compared to the results for
logistic regression and linear regression, we have the follow-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Experimental Results

ing observations on the results of neural networks. (1) The
convergence rate is slower and the accuracy is lower. This is
because of the nonconvexity and the gap between global op-
timum and local optimum. (2) SVRG is faster than GD and
SGD but the differences between them are not as significant
as in the convex cases, which is consistent with our discus-
sions in Section 4 by considering the data size of CIFAR 10.

6 Conclusion

In this paper, we have studied the generalization error
bounds for optimization algorithms to solve R-ERM prob-
lems, by using stability as a tool. For convex problems, we
have obtained both expected bounds and high-probability
bounds. Some of our results can be extended to the non-
convex case. Roughly speaking, our theoretical analysis has
shown: (1) Along with the training process, the general-
ization error will decrease; (2) SVRG outperforms GD and
SGD in most cases. We have verified the theoretical findings
by using experiments on linear regression, logistic regres-
sion and fully connected neural networks. In the future, we
plan to study the stability of R-ERM with other regulariza-
tion terms, e.g., the L1 regularizer.
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