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Abstract

We present a non-negative inductive latent factor model for
binary- and count-valued matrices containing dyadic data, with
side information along the rows and/or the columns of the ma-
trix. The side information is incorporated by conditioning the
row and column latent factors on the available side informa-
tion via a regression model. Our model can not only perform
matrix factorization and completion with side-information, but
also infers interpretable latent topics that explain/summarize
the data. An appealing aspect of our model is in the full local
conjugacy of all parts of the model, including the main latent
factor model, as well as for the regression model that lever-
ages the side information. This enables us to design scalable
and simple to implement Gibbs sampling and Expectation
Maximization algorithms for doing inference in the model.
Inference cost in our model scales in the number of nonzeros
in the data matrix, which makes it particularly attractive for
massive, sparse matrices. We demonstrate the effectiveness of
our model on several real-world data sets, comparing it with
state-of-the-art baselines.

Introduction

Matrix factorization of partially observed matrices having
binary- or count-valued observations is ubiquitous in many
applications involving dyadic data, such as recommender
systems (Gopalan, Hofman, and Blei 2013), text analy-
sis (Wang and Blei 2011; Gopalan, Charlin, and Blei 2014),
social/biological network analysis (Zhu 2012; Zhou 2015),
and so on. Often, in these applications, additional side infor-
mation may be available along the rows and/or the columns
of the data matrix (Wang and Blei 2011; Kim, Hughes, and
Sudderth 2012; Gopalan, Charlin, and Blei 2014). Leverag-
ing this information can be especially useful in cases when
the data matrix is highly sparse, and in handling the cold-
start problem where the data matrix may not have any ob-
servations along some of the rows/columns, a critical prob-
lem in modern recommender systems (Wang and Blei 2011;
Gopalan, Charlin, and Blei 2014).

Most of the existing methods assume the data and/or the
latent factors to be real-valued (Agarwal and Chen 2009;
Park, Kim, and Choi 2013; Kim and Choi 2014). Many ma-
trix factorization problems, however, involve discrete-valued
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data (e.g., binary or counts). Moreover, often we want in-
terpretability in the learned latent factors and real-valued
latent factors may not be useful. Although some recent meth-
ods (Wang and Blei 2011; Gopalan, Charlin, and Blei 2014)
have proposed methods to incorporate meta-data in specific
types of discrete data, e.g., ratings with text information
about products in recommender systems, a framework for
incorporating general types of side information for matrix
factorization of data is currently lacking.

We present a fully Bayesian framework for non-negative
matrix factorization of discrete data, where we also have
additional side information, in form of arbitrary types of
features, along the rows and/or the columns of the data matrix.
Our model is based on conditioning the row/column latent
factors on these observed features via a flexible regression
model. In addition to leveraging the side information, our
model has the following properties that distinguish it from
other existing methods for matrix factorization with side
information: (1) both count as well as binary matrices can
be handled under a unified approach which models count
data via a Poisson latent factor model and binary data via a
truncated Poisson latent factor model; (2) our model learns
non-negative latent factors which are easily interpretable (e.g.,
can be thought of as corresponding to genres or topics, when
modeling ratings or text data); (3) our model enjoys full local
conjugacy which allows designing an efficient Gibbs sampler
as well as Expectation Maximization algorithm for doing
inference; and (4) computational cost for both count as well
as binary data case scales in the number of nonzeros in the
data matrix, which makes it very efficient for sparse matrices.

Our framework is also sufficiently general and can be eas-
ily adapted to solve a number of other specialized problems,
such as link prediction with node features (Kim, Hughes,
and Sudderth 2012), topic modeling with document meta-
data (Mimno and McCallum 2008), or a generalized set-
ting of the well-studied multi-label learning problem (Yu
et al. 2014) where in addition to the example features, we
may also have label features. At the same time, our model
also generalizes recent line on work on Bayesian models for
count and binary matrices (Gopalan, Hofman, and Blei 2013;
Zhou 2015), which either cannot leverage side informa-
tion, or can do so only for very specific settings, e.g.,
count-valued matrix with text based meta-data along the
rows/columns (Gopalan, Charlin, and Blei 2014).
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The Model

We first briefly describe the basic setup of our framework,
which is based on a Poisson latent factor model (for count
matrices) and a truncated Poisson latent factor model (for bi-
nary matrices), and then describe how to design the inductive
counterpart of these latent factor models, in order to be able
to incorporate side information.

Latent Factor Models for Count/Binary Data

We assume that we are given a partially observed count/binary
matrix X of size N ×M . We first discuss the case of count-
valued X (binary case discussed subsequently). For count-
valued X, we assume each entry of X to be drawn from a
Poisson latent factor model (Zhou et al. 2012; Gopalan, Char-
lin, and Blei 2014) as Xnm ∼ Poisson(

∑K
k=1 λkunkvmk) =

Poisson(u�
nΛvm),

where un and vm are K-dimensional non-negative latent
factors for row n and column m of X, respectively, and Λ is a
K×K non-negative diagonal matrix representing the weights
of each of the K latent factors. The same can be written in
a matrix notation as X ∼ Poisson(UΛV�), where U =

[u�
1 , . . . ,u

�
N ]� ∈ R

N×K
+ , V = [v�1 , . . . ,v

�
N ]� ∈ R

M×K
+ ,

and Λ = diag(λ1, . . . , λK), with λk ∈ R+, ∀k = 1, . . . ,K.
Gamma priors can be placed on un, vm, and Λ to yield a
non-negative factorization.

When X is a binary matrix, we model each binary
observation Xnm using a truncated Poisson latent factor
model (Zhou 2015; Hu, Rai, and Carin 2015), which first
draws a latent count Znm ∼ Poisson(

∑K
k=1 λkunkvmk) and

then thresholds it to generate Xnm as Xnm = 1(Znm ≥ 1).
These two steps can be equivalently expressed as Xnm ∼
Bernoulli

(
1− exp(−∑K

k=1 λkunkvmk)
)

. This model is re-
ferred to as the Bernoulli-Poisson link (Zhou 2015; Hu, Rai,
and Carin 2015). The same can be written in a matrix notation
as X ∼ Bernoulli(1− exp(−UΛV�)).

A particularly appealing aspect of the Bernoulli-Poisson
link function for binary data is that the conditional
posterior Znm can be written as Znm ∼ Xnm ·
Poisson+(

∑K
k=1 λkunkvmk), where Poisson+() denotes the

zero-truncated Poisson distribution. If Xnm = 0 then the la-
tent count Znm is also zero with probability one (Zhou 2015),
and therefore, during model inference, the latent counts Znm

only need to be estimated for the nonzero observations in
X. This can lead to huge computational savings for massive
but sparse matrices with very few nonzero observations. This
makes the Bernoulli-Poisson model especially attractive for
modeling binary data, as opposed to logistic/probit models
in which inference scales in the number of both zeros and
nonzeros in the data.

Inductive Non-negative Latent Factor Model

Although the Poisson and truncated Poisson latent factor
models provide a rich and flexible framework for learning
non-negative low-rank factorizations of count/binary matri-
ces, these models are unable to incorporate side information
that may be available along the rows and/or columns of the
matrix X. The ability of leveraging the side information may

be especially desirable in cases where the matrix X has a
significantly large fraction of entries as missing, or in cold-
start settings (Wang and Blei 2011; Gopalan, Charlin, and
Blei 2014) where some rows/columns in X may not have
any observations. Although some existing Poisson latent fac-
tor models can imcorporate specific types of side informa-
tion (e.g., text based side information (Wang and Blei 2011;
Gopalan, Charlin, and Blei 2014)), these models cannot in-
corporate more general types of features as side information
(the Related Work section discusses other models that can
incorporate side information in matrix factorization).

With this desideratum, we propose a generalization of the
models described in the previous section, which allows us to
incorporatw more general forms of side information given
as observed features along the rows and/or columns of X.
We accomplish this by augmenting the Poisson/truncated-
Poisson latent factor model with a regression model that
connects the observed features to the latent factors un, vm in
a statistically clean manner, while keeping inference simple
and computationally efficient.

We assume that the side information is given in form of
feature matrices (Fig. 1-left). Along the rows of X, we are
given an N ×Du feature matrix Φ = [φ1, . . . ,φN ]�, where
φn ∈ R

Du denotes the features given along row n in X.
Along the columns of X, we are given an M ×Dv feature
matrix Ψ = [ψ1, . . . ,ψM ]�, where ψm ∈ R

Dv denotes the
features given along column m in X.

To incorporate the side information, we parameterize the
row and column latent factors un and vm (each of which
is given a gamma prior) by conditioning un and vm on the
row and column features φn and ψm, respectively (Fig. 1-
right). To this end, we parameterize the scale parameter of
the gamma priors on these row/column features. Specifically,
we model each row latent factor un as

unk|φn ∼ Gamma(r(u)n , p
(u)
nk /(1− p

(u)
nk ))

p
(u)
nk = σ(w

(u)
k

�
φn + b

(u)
k )

where the regression weight vector w
(u)
k ∈ R

Du , bias
b
(u)
k ∈ R, and σ() denotes the logistic function. Note that the

above can also be written as

unk|φn ∼ Gamma(r(u)n , exp(w
(u)
k

�
φn + b

(u)
k ))

Likewise, the column latent factors vm

vmk|ψm ∼ Gamma(r(v)m , p
(v)
mk/(1− p

(v)
mk))

p
(v)
mk = σ(w

(v)
k

�
ψm + b

(v)
k )

We collectively denote the regression weight vectors for
the row and the column latent factors by matrices W(u) =

{w(u)
k }Kk=1 and W(v) = {w(v)

k }Kk=1, respectively. These are
given zero mean, sparsity inducing ARD priors (Tipping
2001). Moreover, note that we also have separate shape pa-
rameters {r(u)n }Nn=1 and {r(v)m }Mm=1 in the gamma priors of
each of the row latent factors and each of the column latent
factors, to model the specificity of each row and each col-
umn latent factor. The full generative model described in the
next section. Finally, although not our focus in this work, our
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Figure 1: (Left) A high-level illustration of count/binary matrix factorization with side information given as features along rows
and columns (the ≈ is only meant to denote the underlying process). (Right) The graphical model for the proposed inductive
non-negative latent factor model (hyperparameters not shown for brevity).

framework can be readily extended into a deep architecture
by modeling the gamma-distributed shape parameters using
a gamma belief-net (Zhou, Cong, and Chen 2015).

The Full Generative Model

When X is a count matrix, we model it as

Xnm ∼ Poisson(
K∑

k=1

λkunkvmk) (1)

When X is a binary matrix, we model it as

Xnm ∼ Bernoulli(1− exp(−
K∑

k=1

λkunkvmk)) (2)

The generative model for the rest of the parameters is

unk ∼ Gamma(r(u)n , p
(u)
nk /(1− p

(u)
nk )) (3)

vmk ∼ Gamma(r(v)m , p
(v)
mk/(1− p

(v)
mk)) (4)

r(u)n ∼ Gamma(a0, 1/b0) (5)

r(v)m ∼ Gamma(c0, 1/d0) (6)

p
(u)
nk = σ(w

(u)
k

�
φn + b

(u)
k ) (7)

p
(v)
mk = σ(w

(v)
k

�
ψm + b

(v)
k ) (8)

w
(u)
k ∼ N (0,Γ

(u)
k ), w

(v)
k ∼ N (0,Γ

(v)
k ) (9)

λk ∼ Gamma(e0/K, 1/f0) (10)

In the above, Γ(u)
k and Γ

(v)
k denote the diagonal covariance

matrices of the Gaussian priors on the regression weight
vectors of row and column latent factors, respectively. Each
diagonal entry of Γ(u)

k and Γ
(v)
k is given an inverse-gamma

prior, resulting in an ARD-like prior (Tipping 2001) on the
regression weights, which gives the model robustness against
irrelevant/noisy features in the side information. The biases
b
(u)
k and b

(u)
k are also given Gaussian priors and their respec-

tive variances are given inverse-gamma priors and are learned
from data. The gamma shape/scale hyperparameters in Eq.
(5), (6), and (10) are set to yield uninformative gamma priors.

Note that, unlike existing inductive matrix completion
methods (Natarajan and Dhillon 2014), our model does not
solely rely on the side-information; the parametrization of the

scale parameters p(u)nk and p
(v)
mk also includes the bias terms

which allows capturing the structural properties (e.g., low-
rank) of X even when there is no side information. In this
case, the model reduces to a standard gamma-Poisson latent
factor model (Zhou et al. 2012).

Inference

Inference in our model require inferring the latent fac-
tors {un}Nn=1, {vm}Mm=1, the regression weight vec-
tors and biases {w(u)

k , b
(u)
k }Kk=1 and {w(v)

k , b
(v)
k }Kk=1, and

the other latent variables and hyperparameters {λk}Kk=1,
{r(u)n }Nn=1, {r(v)m }Mm=1, {Γ(u)

k ,Γ
(v)
k }Kk=1.

An appealing aspect of our framework is simplicity of the
model inference despite the richness of the model. In partic-
ular, as we will show, using data augmentation techniques
allows us to derive closed form Gibbs sampling updates for
all the model parameters. Also, as we will show, inference in
our model scales in the number of nonzeros in X, for both
count as well as binary X, which leads to excellent scalability
even on large but sparse matrices which usually have very
few nonzero entries. In contrast, other likelihood models for
binary matrices (e.g., logistic/probit) scale in the total number
of observations, which includes both zeros and nonzeros.

In the rest of this section, when giving the inference update
equations for various model parameters, we will assume X
to be count-valued. If X is binary then we will maintain
another latent count Znm associated with the corresponding
entry Xnm in X (cf, Fig. 1, right). This latent count Znm

will be drawn from a truncated Poisson distribution and it
only needs to be done for the nonzero entries in X. For the
binary case, quantities with notation X’s in equations below
will be replaced by corresponding Z’s.

Gibbs Sampling

Sampling Latent Factors. Inferring the latent factors
{un}Nn=1 and {vm}Mm=1 is straightforward in our model due
to the Poisson-gamma conjugacy. In particular, using Poisson
additivity, each count-valued Xnm can be written as a sum of
K smaller counts; e.g., Xnm =

∑K
k=1 Xnmk which in turn

can be thought of as draws from another Poisson (Dunson
and Herring 2005)
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Xnmk ∼ Poisson(λkunkvmk) (11)

Moreover, using the Poisson-multinomial equivalence (Zhou
et al. 2012), given Xnm, the latent counts {Xnmk}Kk=1 can
be also drawn from a multinomial as

[Xnm1, . . . , XnmK ] ∼ Mult(Xnm; ζnm1, . . . , ζnmK)

where ζnmk = λkunkvmk∑K
k=1 λkunkvmk

. Here Xnm (cf, Znm when
Xnm is binary) itself is drawn from a Poisson (cf., truncated
Poisson) distribution with rate

∑K
k=1 λkunkvmk. Again note

that this needs to be done only for the nonzeros observations
in X, which makes inference very efficient.

Using Eq. 11, we define Xn.k =
∑M

m=1 Xnmk ∼
Poisson(λkunk

∑M
m=1 vkm). Using gamma-Poisson conju-

gacy, we draw each row latent factors unk as unk ∼
Gamma

(
r
(u)
n +Xn.k,

p
(u)
nk

(1−p
(u)
nk )+p

(u)
nk

∑M
m=1 λkvmk)

)
, where

p
(u)
nk = σ(w

(u)
k

�
φn). The posterior distribution over the col-

umn latent factors vmk has the same form. We provide the
detailed equations in the Supplementary Material.

Sampling Regression Weights. The Gaussian priors on
the regression weight vectors {w(u)

k ,w
(v)
k }Kk=1 are not read-

ily conjugate to the Poisson likelihood. However, note that
we have Xn.k ∼ Poisson(λkunk

∑M
m=1 vkm), and if we in-

tegrate out unk which, in turn, is drawn from a gamma, we
get a negative Binomial marginal distribution for Xn.k (note:
this negative Binomial distribution will be on Zn.k when X
is binary). For models with Gaussian priors on the latent vari-
ables, and non-conjugate negative Binomial likelihoods that
have the log-odds expressible as a linear function of the latent
variables, we can use the Pólya-Gamma (PG) strategy (Pol-
son, Scott, and Windle 2013) to transform the non-conjugate
likelihood into a conjugate Gaussian likelihood using a set
of Pólya-Gamma auxiliary variables, and get closed form
Gaussian posterior over the latent variables (more details in
the Supplementary Material).

The other model parameters can also be sampled easily
due to conjugacy (or conjugacy obtained via appropriate data-
augmentation techniques (Zhou and Carin 2015)). We skip
the sampling equations here for brevity and provide these in
the Supplementary Material.

An Expectation Maximization Algorithm

The Gibbs sampler described above is easy to implement and
is efficient to run. However, for very large data sets, Gibbs
sampling can still be slow and it may take a long time for
the Markov chain to mix. Moreover, note that the Gibbs sam-
pler, for sampling the regression weights, requires sampling
the Pólya-Gamma auxiliary variables which can be slow for
large data sets. A more efficient alternative can be an Expec-
tation Maximization (EM) algorithm, which is particularly
more efficient for our model bacause the Pólya-Gamma ran-
dom variables have expectations that can be efficiently and
analytically computed (Scott and Sun 2013).

The expectations of other variables are also easy to com-
pute in closed form. In the M step, we can estimate the
regression weightsw(u)

k by solving a simple linear system or

using conjugate gradients. More details are provided in the
Supplementary Material.

Dyad Predictions along New Rows/Columns in X

An appealing aspect of our model is that, given V, and given
a new row in X with features φ∗, we can directly predict
the dyads along this row without inferring the corresponding
row latent factors u∗, by marginalizing out u∗. This property
makes prediction efficient at test time. For example, for the
binary case, the dyad prediction for the m-th entry in this
row

p(X∗m = 1|φ∗,V) = 1−
K∏

k=1

[
vmk exp(w

(u)
k

�
φ∗) + 1

]−r
(u)
k

The above equation can be easily obtained by integrating
out the embedding u∗ from the Bernoulli-Poisson likelihood.
Predicting the dyads along a new columns given its features
ψ∗ can be done in a similar manner.

Related Work

Matrix factorization in the presence of side information has
also been investigated in other prior works such as regres-
sion based latent factor models (Agarwal and Chen 2009),
Inductive matrix completion (Natarajan and Dhillon 2014;
Chiang, Hsieh, and Dhillon 2015), and other extensions of
latent factor models (Park, Kim, and Choi 2013; Kim and
Choi 2014; Adams, Dahl, and Murray 2010). However, most
of these methods usually have one or more of the following
limitations: (1) the data is assumed to be real-valued; (2)
inference cost depends on the size of the matrix rather than
just on the number of nonzeros; and (3) the factors do not
have nice “topic like” interpretability unlike our model.

Relatively much less work exists on matrix factorization
of discrete-valued data with side information. Some of the
existing methods include Poisson matrix factorization with
text-based meta-data (Gopalan, Charlin, and Blei 2014) or
specialized extensions of topic models (Wang and Blei 2011).
However, these methods can either be only applied to very
specific settings (e.g., ratings data with specific types of side
information such as text (Gopalan, Charlin, and Blei 2014;
Wang and Blei 2011)), and/or require computationally inten-
sive inference (Kim, Hughes, and Sudderth 2012).

Side information in the context of matrix factoriza-
tion/completion problems can also be incorporated using
methods based on collective matrix factorization (CMF)
methods (Bouchard, Yin, and Guo 2013) or multiview matrix
factorization with the side information representing another
view of the data. However, these methods tend to work well
when the side information is very informative and the main
matrix as well as the side information be explained by a set
of common latent factors. This may not be the case when the
side information is usually a limited and noisy set of features.

Our approach of conditioning gamma distributed latent
factors using features was also considered recently in (Rai
et al. 2015) in the context multi-label learning, whereas our
focus here is on the more general problem setting of inductive
non-negative latent factor models and matrix completion.
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In contrast to the methods described above, our framework
is significantly more general (handles both count and binary
matrices in a unified manner via Poisson/truncated Poisson
factor models), handles missing data easily, allows incorpo-
rating arbitrary types of row/column features via a regression
model in a robust manner, and has computational cost that
scales only in the number of nonzeros in the data matrix.
Moreover, our framework is fully Bayesian with a simple
to implement Gibbs sampling as well as EM algorithm, and
the inference method can be easily extended to online Gibbs
sampling (Guhaniyogi, Qamar, and Dunson 2014) or online
EM (Scott and Sun 2013) for better efficiency.

Experiments

We evaluate our model by performing experiments on a wide
variety of data sets, on both quantitative tasks (matrix com-
pletion with side information) as well as qualitative analy-
ses (interpretability of the inferred latent factors). We com-
pare our model with three baselines: (1) gamma-Poisson
latent factor model (GPLFM) (Zhou et al. 2012) which is
similar in construction to our model but cannot leverage
side information; (2) Regression-based Latent Factor Model
(RLFM) (Agarwal and Chen 2009); and (3) inductive matrix
completion (Chiang, Hsieh, and Dhillon 2015), a state-of-
the-art model, which is similar in spirit to our model and can
leverage side information. We denote our model by NILFM
(for Non-negative Inductive Latent Factor Model). The data
sets used in our experiments include:

Drug-Target: The drug-target interaction network 1 repre-
sents binary-valued interactions between 200 drug molecules
and 150 target proteins. As the side information, we have drug
and target features representing information from chemical
structure similarity and amino acid sequence, respectively.

Lazega-Lawyers: We consider the “advising” relation in
the Lazega lawyers dataset 2 consisting of 71 partners and
associates. In addition to advising relation, each entity in the
network is described by 7 features such as gender, office-
location, age, years employed, etc.

Movielens 3: We use two versions of this data: Movielens-
100K and Movielens-1M. Movielens-100K is a 943× 1682
matrix containing 100K ratings by 943 users on 1682 movies.
Movielens-1M is a 6040× 3942 matrix containing 1 million
ratings by 6040 users on 3942 movies. In addition, we have
29 features for each user and 18 features for each movie. This
data contains ratings on a scale of 1-5 which we convert to
0-1 based on whether it is greater than 2.

NIPS-1-17: This data set contains a list of all the papers
and authors from the collection NIPS 1-17, along with the
list of keywords in each paper. We have the document-author
binary matrix of size 2484× 2865. In addition, we also have
the list of keywords associated with each paper and with each
author. We perform an SVD on papers-words and authors-
words matrices to construct 100 features that we use as side
information for the papers and the authors.

1http://www.genome.jp/tools/dinies/help.html
2https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_

data.htm
3http://grouplens.org/datasets/movielens/

Cora 4: This data set is a citation network consisting of a
total of 2708 research papers. In addition, for each paper, a
label denoting its research area is also given as side informa-
tion. We convert the label of each paper to a one-hot encoding
and use it as the side information associated with that paper.

Experimental Settings. For NILFM, we use Gibbs sam-
pling for model inference. For NILFM as well as GPLFM,
the Gibbs sampler is run for 2000 iterations with 1000 post-
burnin collection samples. Our EM based inference algorithm
also yields almost similar results as Gibbs sampling based in-
ference (while being much faster); however, since the Gibbs
sampler for our model is fast enough, we only used this in our
experiments. In all our experiments, K was set to 20 which
worked well in practice for all the data sets. Note that the
shrinkage prior on λk effectively prunes out the uncessarily
components by shrinking λk to close to zero (Zhou et al.
2012). All the model parameters for GPLFM as well as for
our model NILFM are initialized randomly.

Purely Inductive Matrix Completion

We first perform an experiment with the purely inductive
setting of matrix completion (or the so-called “cold-start”
setting) where we train the model using 20% of the rows
and 20% of the columns in X, and predict the dyads corre-
sponding to the rows and columns that remain unseen during
training time, using only the side information available for
these rows and columns. For Cora data, however, we used
50% as the performance of other baselines was unstable when
using only 20% training data. Each experiment is repeated
5 times with different training/test splits and we report the
averaged area under the ROC curve (AUC) for all the data
sets. Table 1 shows the results on this task.

As Table 1 shows, NILFM is the best performing method
on almost all the data sets. Also note that NIFLM performs
consistently better than GPLFM (which cannot incorporate
side information) by a large margin in most cases, especially
Cora data where the class-id of each paper seems to turn
out to be a strong source of side information. NILFM also
outperforms IMC on most of the cases, as well as RLFM.
Note that IMC strongly relies on features being strongly in-
formative, which may not always be the case (Chiang, Hsieh,
and Dhillon 2015). This can be the reason why IMC does not
perform so well as compared to our method which can lever-
age both the structural information in the matrix (low-rank)
as well as the side information, to yield considerably better
matrix completion accuracies than IMC.

Standard Matrix Completion with Side-Info

We next evaluate the performance of our model in the stan-
dard binary matrix completion setting where we do have data
from all rows and all columns but each row/column may
have a significant amount of data is missing and needs to be
predicted. For this experiment, we specifically compare our
model with GPLFM (which cannot leverage the side infor-
mation) to assess how much our model additionally benefits
using the side information as compared to an otherwise simi-
lar model GPLFM which cannot handle the side information.

4https://relational.fit.cvut.cz/dataset/CORA
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Lawyers Drug ML-100K ML-1M NIPS Cora
GPLFM 0.6879 0.8002 0.8564 0.8252 0.8131 0.6034
RLFM 0.6892 0.7644 0.9082 0.7424 0.8292 0.8602
IMC 0.6301 0.7040 0.9023 0.6685 0.8312 0.8606

NILFM 0.7752 0.8249 0.9202 0.8382 0.8260 0.8652

Table 1: AUC scores obtained by our method NILFM and the two baselines

Authors (Kernels and Learning Theory) Papers (Kernels and Learning Theory)

J. Weston, J. Shawe-Taylor, T. Darrell, R. Herbrich,
O. Chapelle, B. Scholkopf T. Graepel, G. Cottrell,
G. Ratsch, A.J. Smola, N. Cristianini, A. Elisseeff,
T. Poggio, M.E. Tipping, B. Moghaddam, V. Vapnik,
A. Pentland, P. Vincent, P. Niyogi, O Bousquet

- Kernel Dependency Estimation
- Learning with Local and Global Consistency
- Learning to Find Pre-Images
- Sampling Techniques for Kernel Methods
- On the Complexity of Learning the Kernel Matrix

Table 2: Top few authors and papers in the topic “kernels and learning theory”

Authors (Probabilistic Models) Papers (Probabilistic Models)

G. Hinton, J. Tenenbaum, R. Zemel, T. Jaakkola,
L. Hansen, T. Anastasio, P. Smyth, S. Hanson, D.
Dong, J. McClelland, O. Winther, A.J. Storkey,
D. Haussler, S. Schreiner, M. Gluck, D. Lee, H.
Steck

- Discovering Hidden Variables..
- Learning Representations by Recirculation
- Unsupervised learning of distributions on binary..
- Spherical Units as Dynamic Consequential Regions
- On the Dirichlet Prior and Bayesian Regularization

Table 3: Top few authors and papers in the topic “probabilistic models”

We use 50% data to train and test on the rest 50%. As
Fig. 2 shows, our model NILFM achieves better AUC scores
than GPLFM in all the cases. As in the case of purely in-
ductive matrix completion. In some cases where the AUC
improvements are marginal, this can be attributed to the fact
that the side information is not very strong.

Drug Lawyers ML-100K ML-1M NIPS-1-17 Cora
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Figure 2: Comparison of GPLFM and NILFM on standard
matrix completion with side information

Qualitative Results: Latent Factors as Topics

We next perform an experiment to evaluate our model in
terms of the interpretability of the inferred latent factors
(which are non-negative in our model). The interpretability
may be useful for tasks such as identifying clusters/topics in
the data based on the inferred latent factors.

For this experiment, we run NILFM (with K = 10) on
NIPS-1-17 data and take the output of the model and look at
each latent factor (which can be treated as a topic). For each
row factor (rows correspond to papers) and the corresponding
column factor (columns correspond to authors), both of which
can be thought of as a “topic”, we rank the papers and the

authors based on the (non-negative) factor scores. This gives
us a ranked list of papers and authors in each topic.

Table 2 and 3 show two of the topics inferred by the model
and shows the list of the top few authors and papers within
each topic for the NIPS-1-17 corpus. The result shows that
the latent factors inferred by our model not only have good
predictive power (as shown by the matrix completion experi-
ments) but are also interpretable with clear semantics.

Gibbs Sampling vs EM

Finally, we also perform another experiment to compare the
running times of our model using the Gibbs sampler vs using
the EM variant. We run our model with each of these infer-
ence methods on Cora and Movielens-1M data sets. Fig. 3
shows the per-iteration running times. Note that the numbers
reported are obtained using unoptimized MATLAB imple-
mentations of these algorithms, and further implementation
based optimizations would speed up either variant equally.
As Fig. 3 shows, EM is much faster, while giving similar
AUC scores on all the data sets (for example, Gibbs sampling
on Cora gave an AUC = 0.9012 while EM on Cora gave an
AUC = 0.8956).

Conclusion

We have presented a probabilistic, non-negative latent factor
model for count/binary matrices, where additional side infor-
mation may be available along the rows and/or columns of the
matrix. Our model scales in the number of non-zeros in the
data, and can not only perform matrix factorization and com-
pletion with side-information, but also infers interpretable
latent topics that explain/summarize the data. It is broadly
applicable to a large class of problems such as recommender
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Figure 3: Timings of Gibbs sampler (orange) and EM (blue)

systems and link prediction in networks, while leveraging
side information in a simple and clean way, without compli-
cating model inference. Our model can be easily generalized
for non-negative tensor decomposition where additional side
information may be available in one or more tensor dimen-
sions. Moreover, it can also be applied to other problems
such zero-shot, multilabel learning problems where previ-
ously unseen classes can be predicted based on the feature
descriptions available for such unseen classes.
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