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Abstract

We model coherent conversation continuation via RNN-
based dialogue models equipped with a dynamic attention
mechanism. Our attention-RNN language model dynami-
cally increases the scope of attention on the history as the
conversation continues, as opposed to standard attention (or
alignment) models with a fixed input scope in a sequence-to-
sequence model. This allows each generated word to be asso-
ciated with the most relevant words in its corresponding con-
versation history. We evaluate the model on two popular dia-
logue datasets, the open-domain MovieTriples dataset and the
closed-domain Ubuntu Troubleshoot dataset, and achieve sig-
nificant improvements over the state-of-the-art and baselines
on several metrics, including complementary diversity-based
metrics, human evaluation, and qualitative visualizations. We
also show that a vanilla RNN with dynamic attention outper-
forms more complex memory models (e.g., LSTM and GRU)
by allowing for flexible, long-distance memory. We promote
further coherence via topic modeling-based reranking.

Introduction

Automatic conversational models (Winograd 1971), also
known as dialogue systems, are of great importance to a
large variety of applications, ranging from open-domain en-
tertaining chatbots to goal-oriented technical support agents.
An increasing amount of research has recently been done
to build purely data-driven dialogue systems that learn from
large corpora of human-to-human conversations, without us-
ing hand-crafted rules or templates. While most work in
this area formulates dialogue modeling in a sequence-to-
sequence framework (similar to machine translation) (Rit-
ter, Cherry, and Dolan 2011; Shang, Lu, and Li 2015;
Vinyals and Le 2015; Sordoni et al. 2015; Li et al. 2016a;
Dušek and Jurčı́ček 2016), some more recent work (Serban
et al. 2016; Luan, Ji, and Ostendorf 2016) instead trains a
language model over the entire dialogue as one single se-
quence. In our work, we empirically demonstrate that a
language model is better suited to dialogue modeling, as
it learns how the conversation evolves as information pro-
gresses. Sequence-to-sequence models, on the other hand,
learn only how the most recent dialogue response is gener-
ated. Such models are better suited to converting the same

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information from one modality to another, e.g., in machine
translation and image captioning.

We improve the coherence of such neural dialogue lan-
guage models by developing a generative dynamic attention
mechanism that allows each generated word to choose which
related words it wants to align to in the increasing conver-
sation history (including the previous words in the response
being generated). Neural attention (or alignment) has proven
very successful for various sequence-to-sequence tasks by
associating salient items in the source sequence with the
generated item in the target sequence (Mnih et al. 2014;
Bahdanau, Cho, and Bengio 2015; Xu et al. 2015; Mei,
Bansal, and Walter 2016a; Parikh et al. 2016). However,
such attention models are limited to a fixed scope of his-
tory, corresponding to the input source sequence. In con-
trast, we introduce a dynamic attention mechanism to a re-
current neural network (RNN) language model in which the
scope of attention increases as the recurrence operation pro-
gresses from the start through the end of the conversation.

The dynamic attention model promotes coherence of the
generated dialogue responses (continuations) by favoring
the generation of words that have syntactic or semantic asso-
ciations with salient words in the conversation history. Our
simple model shows significant improvements over state-of-
the-art models and baselines on several metrics (including
complementary diversity-based metrics, human evaluation,
and qualitative visualizations) for the open-domain Movi-
eTriples and closed-domain Ubuntu Troubleshoot datasets.
Our vanilla RNN model with dynamic attention outperforms
more complex memory models (e.g., LSTM and GRU) by
allowing for long-distance and flexible memory. We also
present several visualizations to intuitively understand what
the attention model is learning. Finally, we also explore a
complementary LDA-based method to re-rank the outputs
of the soft alignment-based coherence method, further im-
proving performance on the evaluation benchmarks.1

Related Work

A great deal of attention has been paid to developing data-
driven methods for natural language dialogue generation.

1Arxiv version with appendices: https://arxiv.org/abs/1611.
06997
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(a) RNN seq2seq (encoder-decoder) model (b) RNN language model

(c) Attention seq2seq (encoder-decoder) model (d) Attention language model

Figure 1: Comparing RNN language models to RNN sequence-to-sequence model, with and without attention.

Conventional statistical approaches tend to rely extensively
on hand-crafted rules and templates, require interaction with
humans or simulated users to optimize parameters, or pro-
duce conversation responses in an information retrieval fash-
ion. Such properties prevent training on the large human
conversational corpora that are becoming increasingly avail-
able, or fail to produce novel natural language responses.

Ritter, Cherry, and Dolan (2011) formulate dialogue re-
sponse generation as a statistical phrase-based machine
translation problem, which requires no explicit hand-crafted
rules. The recent success of RNNs in statistical machine
translation (Sutskever, Vinyals, and Lee 2014; Bahdanau,
Cho, and Bengio 2015) has inspired the application of such
models to the field of dialogue modeling. Vinyals and Le
(2015) and Shang, Lu, and Li (2015) employ an RNN to gen-
erate responses in human-to-human conversations by treat-
ing the conversation history as one single temporally ordered
sequence. In such models, the distant relevant context in the
history is difficult to recall. Some efforts have been made
to overcome this limitation. Sordoni et al. (2015) separately
encode the most recent message and all the previous context
using a bag-of-words representation, which is decoded using
an RNN. This approach equates the distance of each word
in the generated output to all the words in the conversation
history, but loses the temporal information of the history.
Serban et al. (2016) design a hierarchical model that stacks
an utterance-level RNN on a token-level RNN, where the
utterance-level RNN reduces the number of computational
steps between utterances. Wen et al. (2015) and Wen et al.
(2016) improve spoken dialog systems via multi-domain and
semantically conditioned neural networks on dialog act rep-
resentations and explicit slot-value formulations.

Our work explores the ability of recurrent neural network
language models (Bengio et al. 2003; Mikolov 2010) to in-

terpret and generate natural language conversations while
still maintaining a relatively simple architecture. We show
that a language model approach outperforms the sequence-
to-sequence model at dialogue modeling. Recently, Tran,
Bisazza, and Monz (2016) demonstrated that the neural at-
tention mechanism can improve the effectiveness of a neural
language model. We propose an attention-based neural lan-
guage model for dialogue modeling that learns how a con-
versation evolves as a whole, rather than only how the most
recent response is generated, and that also reduces the num-
ber of computations between the current recurrence step and
the distant relevant context in the conversation history.

The attention mechanism in our model has the additional
benefit of favoring words that have semantic association
with salient words in the conversation history, which pro-
motes the coherence of the topics in the continued dialogue.
This is important when conversation participants inherently
want to maintain the topic of the discussion. Some past
studies have equated coherence with propositional consis-
tency (Goldberg 1983), while others see it as a summary
impression (Sanders 1983). Our work falls in the cate-
gory of viewing coherence as topic continuity (Crow 1983;
Sigman 1983). Similar objectives, i.e., generating dia-
logue responses with certain properties, have been addressed
recently, such as promoting response diversity (Li et al.
2016a), enhancing personal consistency (Li et al. 2016b),
and improving specificity (Yao et al. 2016). Concurrent with
this work, Luan, Ji, and Ostendorf (2016) improve topic
consistency by feeding into the model the learned LDA-
based topic representations. We show that the simple atten-
tion neural language model significantly outperforms such
a design. Furthermore, we suggest an LDA-based re-ranker
complementary to soft neural attention that further promotes
topic coherence.
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The Model

RNN Seq2Seq and Language Models

Recurrent neural networks have been successfully
used both in sequence-to-sequence models (RNN-
Seq2Seq, Fig. 1a) (Sutskever, Vinyals, and Lee 2014) and in
language models (RNN-LM, Fig. 1b) (Bengio et al. 2003;
Mikolov 2010). We first discuss language models for
dialogue, which is the primary focus of our work, then
briefly introduce the sequence-to-sequence model, and
lastly discuss the use of attention methods in both models.

The RNN-LM models a sentence as a sequence of tokens
{w0, w1, . . . , wT } with a recurrence function

ht = f(ht−1, wt−1) (1)

and an output (softmax) function

P (wt = vj |w0:t−1) =
exp g(ht, vj)∑
i exp g(ht, vi)

, (2)

where the recurrent hidden state ht ∈ R
d encodes all the

tokens up to t− 1 and is used to compute the probability of
generating vj ∈ V as the next token from the vocabulary V .

The functions f and g are typically defined as

f(ht−1, wt−1) = tanh(Hht−1 + PEwt−1) (3a)

g(ht, vj) = O�
vj
ht, (3b)

where H ∈ R
d×d is the recurrence matrix, Ewt−1 is a

column of word embedding matrix E ∈ R
de×V that corre-

sponds to wt−1, P ∈ R
d×de projects word embedding into

the space of the same dimension d as the hidden units, and
O ∈ R

d×V is the output word embedding matrix with col-
umn vector Ovj corresponding to vj .

We train the RNN-LM, i.e, estimate the parameters H ,
P , E and O, by maximizing the log-likelihood on a set of
natural language training sentences of size N

� =
1

N

N∑

n=1

Tn∑

t=0

logP (wt|w0:t−1) (4)

Since the entire architecture is differentiable, the objective
can be optimized by back-propagation.

When dialogue is formulated as a sequence-to-sequence
task, the RNN-Seq2Seq model can be used in order to pre-
dict a target sequence wT

0:L = {wT
0 , w

T
1 , . . . , w

T
L} given an

input source sequence wS
0:M = {wS

0 , w
S
1 , . . . , w

S
M}. In such

settings, an encoder RNN represents the input as a sequence
of hidden states hS

0:M = {hS
0 , h

S
1 , . . . , h

S
M}, and a separate

decoder RNN then predicts the target sequence token-by-
token given the encoder hidden states hS

0:M .

Attention in RNN-Seq2Seq Models

There are several ways by which to integrate the sequence of
hidden states hS

0:M in the decoder RNN. An attention mech-
anism (Fig. 1c) has proven to be particularly effective for
various related tasks in machine translation, image caption
synthesis, and language understanding (Mnih et al. 2014;
Bahdanau, Cho, and Bengio 2015; Xu et al. 2015; Mei,
Bansal, and Walter 2016a).

The attention module takes as input the encoder hidden
state sequence hS

0:M and the decoder hidden state hT
l−1 at

each step l − 1, and returns a context vector zl computed as
a weighted average of encoder hidden states hS

0:M

βlm = b� tanh(WhT
l−1 + UhS

m) (5a)

αlm = exp(βlm)/

M∑

m=0

exp(βlm) (5b)

zl =

M∑

m=0

αlmhS
m, (5c)

where parameters W ∈ R
d×d, U ∈ R

d×d, and b ∈ R
d are

jointly learned with the other model parameters. The context
vector zl is then used as an extra input to the decoder RNN
at step l together with wT

0:l−1 to predict the next token wT
l .

Attention in RNN-LM

We develop an attention-RNN language model (A-RNN-
LM) as illustrated in Figure 1d, and describe how it can be
used in the context of dialogue modeling. We then describe
its advantages compared to the use of attention in sequence-
to-sequence models.

As with the RNN-LM, the model first encodes the in-
put into a sequence of hidden states up to word t − 1
(Eqn. 1). Given a representation of tokens up to t − 1
{r0, r1, . . . , rt−1} (which we define shortly), the atten-
tion module computes the context vector zt at step t as a
weighted average of r0:t−1

βti = b� tanh(Wht−1 + Uri) (6a)

αti = exp(βti)/

t−1∑

i=0

exp(βti) (6b)

zt =

t−1∑

i=0

αtiri (6c)

We then use the context vector zt together with the hidden
state ht to predict the output at time t

g(ht, zt, vj) = O�
vj
(Ohht +Ozzt) (7a)

P (wt = vj |w0:t−1) =
exp g(ht, zt, vj)∑
i exp g(ht, zt, vi)

, (7b)

where Oh ∈ R
d×d and Oz ∈ R

d×dz project ht and zt, re-
spectively, into the same space of dimension d.

There are multiple benefits of using an attention-RNN
language model for dialogue, which are empirically sup-
ported by our experimental results. First, a complete dia-
logue is usually composed of multiple turns. A language
model over the entire dialogue is expected to better learn
how a conversation evolves as a whole, unlike a sequence-
to-sequence model, which only learns how the most recent
response is generated and is better suited to translation-
style tasks that transform the same information from one
modality to another. Second, compared to LSTM models,
an attention-based RNN-LM also allows for gapped con-
text and a flexible combination of conversation history for
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every individual generated token, while maintaining low
model complexity. Third, attention models yield inter-
pretable results—we visualize the learned attention weights,
showing how attention chooses the salient words from the
dialogue history that are important for generating each new
word. Such a visualization is typically harder for the hidden
states and gates of conventional LSTM and RNN language
models.

With an attention mechanism, there are multiple options
for defining the token representation r0:t−1. The original
attention model introduced by Bahdanau, Cho, and Ben-
gio (2015) uses the hidden units h0:t−1 as the token rep-
resentations r0:t−1. Recent work (Mei, Bansal, and Walter
2016a; 2016b) has demonstrated that performance can be
improved by using multiple abstractions of the input, e.g.,
ri = (E�

wi
, h�

i )
�, which is what we use in this work.

LDA-based Re-Ranking

While the trained attention-RNN dialogue model generates
a natural language continuation of a conversation while
maintaining topic concentration by token association, some
dialogue-level topic-supervision can help to encourage gen-
erations that are more topic-aware. Such supervision is
not commonly available, and we use unsupervised meth-
ods to learn document-level latent topics. We employ the
learned topic model to select the best continuation based on
document-level topic-matching.

We choose Latent Dirichlet Allocation (LDA) (Blei, Ng,
and Jordan 2003; Blei and Lafferty 2009) due to its demon-
strated ability to learn a distribution over latent topics given
a collection of documents. This generative model assumes
documents {w0:Tn

}Nn=1 arise from K topics, each of which
is defined as a distribution over a fixed vocabulary of terms,
which forms a graphical structure L that can be learned from
the training data. The topic representation θ̂ of a (possi-
bly unseen) dialogue w0:T can then be estimated with the
learned topic structure L as θ̂(w0:T ) = L(w0:T ).

Given a set of generated continuations {cm}Mm=1 for each
unseen dialogue w0:T , the topic representations of the di-
alogue and its continuations are θ̂(w0:T ) = L(w0:T ) and
θ̂(cm) = L(cm), respectively. We employ a matching score
Sm = S

(
θ̂(w0:T ), θ̂(cm)

)
to compute the similarity between

θ̂(w0:T ) and each θ̂(cm). In the end, a weighted score is
computed as S̄m = λSm + (1− λ)�(cm|w0:T ), where λ ∈
[0, 1] and �(cm|w0:T ) is the conditional log-likelihood of the
continuation cm. The hyper-parameters K and λ are tuned
on a development set.

Concurrent with our work, Luan, Ji, and Ostendorf (2016)
use learned topic representations θ̂ of the given conversation
as an extra feature in a language model to enhance the topic
coherence of the generation. As we show in the Results sec-
tion, our model significantly outperforms this approach.

Experimental Setup

Dataset We train and evaluate the models on two large
natural language dialogue datasets, MovieTriples (pre-
processed by Serban et al. (2016)) and Ubuntu Troubleshoot

(pre-processed by Luan, Ji, and Ostendorf (2016)). The di-
alogue within each of these datasets consists of a sequence
of utterances (turns), each of which is a sequence of tokens
(words).2 The arxiv version’s appendix provides the statis-
tics for these two datasets.

Evaluation Metrics For the sake of comparison, we
closely follow previous work and adopt several standard
(and complementary) evaluation metrics: perplexity (PPL),
word error rate (WER), recall@N, BLEU, and diversity-
based Distinct-1. We provide further discussion of the var-
ious metrics and their advantages in the arxiv version’s ap-
pendix. On the MovieTriples dataset, we use PPL and WER,
as is done in previous work. Following Serban et al. (2016),
we adopt two versions for each metric: i) PPL as the word-
level perplexity over the entire dialogue conversation; ii)
PPL@L as the word-level perplexity over the last utterance
of the conversation; iii) WER; and iv) WER@L (defined
similarly).

On the Ubuntu dataset, we follow previous work and use
PPL and recall@N. Recall@N (Manning et al. 2008) eval-
uates a model by measuring how often the model ranks the
correct dialogue continuation within top-N given 10 candi-
dates. Additionally, we also employ the BLEU score (Pap-
ineni et al. 2001) to evaluate the quality of the generations
produced by the models. Following Luan, Ji, and Osten-
dorf (2016), we perform model selection using PPL on the
development set, and perform the evaluation on the test set
using the other metrics. We also present evaluation using
the Distinct-1 metric (proposed by Li et al. (2016a)) to mea-
sure the ability of the A-RNN to promote diversity in the
generations, because typical neural dialogue models gener-
ate generic, safe responses (technically appropriate but not
informative, e.g., “I dont know”). Finally, we also present a
preliminary human evaluation.

Training Details For the MovieTriples dataset, we follow
the same procedure as Serban et al. (2016) and first pre-
train on the large Q-A SubTitle dataset (Ameixa et al. 2014),
which contains 5.5M question-answer pairs from which we
randomly sample 20000 pairs as the held-out set, and then
fine-tune on the target MovieTriples dataset. We perform
early-stopping according to the PPL score on the held-out
set. We train the models for both the MovieTriples and
Ubuntu Troubleshoot datasets using Adam (Kingma and Ba
2015) for optimization in RNN back-propagation. The arxiv
version’s appendix provides additional training details, in-
cluding the hyperparameter settings.

Results and Analysis

Primary Dialogue Modeling Results

In this section, we compare the performance on several met-
rics of our attention-based RNN-LM with RNN baselines
and state-of-the-art models on the two benchmark datasets.

2Following Luan, Ji, and Ostendorf (2016), we randomly sam-
ple nine utterances as negative examples of the last utterance for
each conversation in Ubuntu Troubleshoot for the development set.
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Figure 2: A visualization of attention on the (a) MovieTriples and (b) Ubuntu Troubleshooting datasets, showing which words
in the conversation history are being aligned to, for each generated response word. Shaded intervals indicate the strength with
which the corresponding words in the conversation history and response are attend to when generating the bolded word in the
response. We show this for two generated words in the same response (left and right column).

Table 1: Results on the MovieTriples test set. The HRED
results are from Serban et al. (2016).

Model PPL PPL@L WER WER@L

RNN 27.09 26.67 64.10% 64.07%
HRED 26.81 26.31 63.93% 63.91%
A-RNN 25.52 23.46 61.58% 60.15%

Table 1 reports PPL and WER results on the MovieTriples
test set, while Table 2 compares different models on Ubuntu
Troubleshoot in terms of PPL on the development set and
recall@N (N = 1 and 2) on the test set (following what
previous work reports). In the tables, RNN is the plain
vanilla RNN language model (RNN-LM), as defined in
The Model section, and LSTM is an LSTM-RNN language
model, i.e., an RNN-LM with LSTM memory units. A-
RNN refers to our main model as defined in the Atten-
tion in RNN-LM section. HRED in Table 1 is the hier-
archical neural dialogue model proposed by Serban et al.
(2016).3 LDA-CONV in Table 2 is proposed by Luan, Ji,
and Ostendorf (2016), which integrates learned LDA-topic-
proportions into an LSTM language model in order to pro-
mote topic-concentration in the generations. Both tables
demonstrate that the attention-RNN-LM (A-RNN) model
achieves the best results reported to-date on these datasets
in terms all evaluation metrics. It improves the ability of
an RNN-LM to model continuous dialogue conversations,
while keeping the model architecture simple.

We also evaluate the effectiveness of the RNN-LM and
RNN-Seq2Seq models on both the MovieTriples and Ubuntu

3We compare to their best-performing model version, that
adopts bidirectional gated-unit RNN (GRU).

Table 2: Ubuntu Troubleshoot PPL and recall@N, with
LSTM and LDA-CONV results from Luan et al. (2016).

Model PPL recall@1 recall@2

RNN 56.16 11% 22%
LSTM 54.93 12% 22%
LDA-CONV 51.13 13% 24%
A-RNN 45.38 17% 30%

Table 3: RNN-LM vs. RNN-Seq2Seq

PPL MovieTriples Ubuntu Troubleshoot

RNN-Seq2Seq 35.10 104.61
RNN-LM 27.81 56.16

Troubleshoot development sets. As shown in Table 3, the
RNN language model yields lower perplexity than the RNN
sequence-to-sequence model on both datasets. Hence, we
present all primary results on our primary A-RNN attention-
based RNN language model.4

Generation Diversity Results

Next, we investigate the ability of the A-RNN to promote
diversity in the generations, compared to that of the vanilla
RNN using the Distinct-1 metric proposed by Li et al.
(2016a). Distinct-1 is computed as the number of distinct
unigrams in the generation scaled by the total number of
generated tokens. Table 5 shows that our attention-based
RNN language model (A-RNN) yields much more diversity

4Experiments also demonstrate significant improvements for
the Attention-RNN-LM over the Attention-RNN-Seq2Seq.
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Table 4: BLEU score on Ubuntu Troubleshoot

Model dev BLEU test BLEU

RNN 0.1846 0.1692
A-RNN 0.2702 0.3713
T-A-RNN 0.2908 0.3128
A-RNN-RR 0.4696 0.4279
T-A-RNN-RR 0.4895 0.3971

History:
A: person , but this time i got the money .
R: if you give it to me , i might forget i found you .

A-RNN: A: i ’ ll give it to you .
RNN: A: i don ’ t know .
Reference: A: i don ’ t have it with me . tell person .

(a) MovieTriples

History:
A: i have really choppy streaming video in 9.10, any way to fix that?
A: any way to fix choppy streaming video in 9.10 ?
R: what kind of video

A-RNN: A: what video card do you have ?
RNN: A: what are you trying to do ?
Reference: A: what cpu do you have

(b) Ubuntu Troubleshoot

Figure 3: Examples of responses generated by the A-RNN.

in its generations as compared to the vanilla RNN baseline.

Topic Coherence Results

Next, we investigate the ability of the different mod-
els to promote topic coherence in the generations in
terms of BLEU score. In addition to the RNN and A-
RNN models, we consider T-A-RNN, a method that in-
corporates LDA-based topic information into an A-RNN
model, following the approach of Luan, Ji, and Os-
tendorf (2016). We also evaluate our LDA-based re-
ranker, A-RNN-RR, which re-ranks according to the score
S̄m = λSm + (1− λ)�(cm|w0:T ), where we compute the
log-likelihood �(cm|w0:T ) based upon a trained A-RNN-M
model and validate the weight λ on the development set. We
also consider a method that combines the T-A-RNN model
with an LDA-based re-ranker (T-A-RNN-RR).5 Table 4 re-
ports the resulting BLEU scores for each of these methods
on the development and test sets from the Ubuntu Trou-
bleshoot dataset. We make the following observations based
upon these results: (1) The A-RNN performs substantially
better than the RNN with regards to BLEU; (2) using our
LDA-based re-ranker further improves the performance by
a significant amount (A-RNN v.s. A-RNN-RR); (3) as op-
posed to our LDA-based re-ranker, adopting the LDA de-
sign of Luan, Ji, and Ostendorf (2016) only yields marginal
improvements on the development set, but does not general-

5Since Luan, Ji, and Ostendorf (2016) do not publish BLEU
scores or implementations of their models, we can not compare
with LDA-CONV on BLEU. Instead, we demonstrate the effect of
adding the key component of LDA-CONV on top of the A-RNN.

Table 5: Generation Diversity Results: A-RNN vs. RNN

Distinct-1 MovieTriples Ubuntu Troubleshoot

RNN 0.0004 0.0007
A-RNN 0.0028 0.0104

ize well to the test set (A-RNN v.s. T-A-RNN and A-RNN-
RR v.s. T-A-RNN-RR). Also, our LDA re-ranker results in
substantial improvements even on top of their topic-based
model (T-A-RNN v.s. T-A-RNN-RR).

Preliminary Human Evaluation

In addition to multiple automatic metrics, we also report a
preliminary human evaluation. On each dataset, we manu-
ally evaluate the generations of both the A-RNN and RNN
models on 100 examples randomly sampled from the test
set. For each example, we randomly shuffle the two response
generations, anonymize the model identity, and ask a human
annotator to choose which response generation is more topi-
cally coherent based on the conversation history. As Table 6
shows, the A-RNN model wins substantially more often than
the RNN model.

Table 6: Human Evaluaton: A-RNN vs. RNN

MovieTriples Ubuntu Troubleshoot

Not distinguishable 48% 74%
RNN wins 6% 5%
A-RNN wins 46% 21%

Qualitative Analysis

Next, we qualitatively evaluate the effectiveness of our A-
RNN model through visualizations of the attention and out-
puts on both datasets. Figure 2 provides a visualization of
the attention for a subset of the words in the generation for
the two datasets. The last line in both Figure 2a and Figure
2b presents the generated response and we highlight in bold
two output words (one on the left and one on the right) for
two time steps. For each highlighted generated word, we vi-
sualize the attention weights for words in the conversation
history (i.e., words in the preceding turns and those previ-
ously generated in the output response), where darker shades
indicate larger attention weights. As the figure indicates,
the attention mechanism helps learn a better RNN language
model that promotes topic coherence, by learning to asso-
ciate the currently-generated word with informative context
words in the conversation history. As shown in Figure 3a,
the A-RNN generates meaningful and topically coherent re-
sponses on the MovieTriples dataset. In comparison, the
vanilla RNN tends to produce generic answers, such as “i
don’t know”. Similarly, the A-RNN follows up with useful
questions on the Ubuntu Troubleshoot dataset (Fig. 3b).

Conclusion

We present an attention-RNN dialogue language model that
increases the scope of attention continuously as the conver-
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sation progresses (which distinguishes it from standard at-
tention with fixed scope in a sequence-to-sequence models)
to promote topic coherence, such that each generated word
can be associated with its most related words in the conver-
sation history. We evaluate this simple model on two large
dialogue datasets (MovieTriples and Ubuntu Troubleshoot),
and achieve the best results reported to-date on multiple
dialogue metrics (including complementary diversity-based
metrics), performing better than gate-based RNN memory
models. We also promote topic concentration by adopting
LDA-based reranking, further improving performance.

Acknowledgments

We thank Iulian Serban, Yi Luan, and the anonymous re-
viewers for sharing their datasets and for their helpful dis-
cussion. We thank NVIDIA Corporation for donating GPUs
used in this research.

References
Ameixa, D.; Coheur, L.; Fialho, P.; and Quaresma, P. 2014. Luke,
I am your father: dealing with out-of-domain requests by using
movies subtitles. In Intelligent Virtual Agents, 13–21. Springer.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. In ICLR.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003. A
neural probabilistic language model. Journal of Machine Learning
Research.
Blei, D. M., and Lafferty, J. D. 2009. Topic models. Text mining:
Classification, clustering, and applications 10(71):34.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent Dirichlet
allocation. the Journal of machine Learning research.
Crow, B. 1983. Topic shifts in couples’ conversations. Conversa-
tional coherence: Form, structure, and strategy 136–156.
Dušek, O., and Jurčı́ček, F. 2016. A context-aware natural language
generator for dialogue systems. In Proceedings of SIGDIAL.
Goldberg, J. 1983. A move towards describing conversational co-
herence. Conversational coherence: Form, structure, and strategy
25–45.
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proceedings of the International Conference on
Learning Representations (ICLR).
Li, J.; Galley, M.; Brockett, C.; Gao, J.; and Dolan, B. 2016a.
A diversity-promoting objective function for neural conversation
models. In NAACL.
Li, J.; Galley, M.; Brockett, C.; Gao, J.; and Dolan, B. 2016b.
A persona-based neural conversation model. arXiv preprint
arXiv:1603.06155.
Luan, Y.; Ji, Y.; and Ostendorf, M. 2016. LSTM based conversa-
tion models. arXiv preprint arXiv:1603.09457.
Manning, C. D.; Raghavan, P.; Schütze, H.; et al. 2008. Intro-
duction to information retrieval, volume 1. Cambridge university
press Cambridge.
Mei, H.; Bansal, M.; and Walter, M. R. 2016a. Listen, attend,
and walk: Neural mapping of navigational instructions to action
sequences. In Proceedings of the National Conference on Artificial
Intelligence (AAAI).
Mei, H.; Bansal, M.; and Walter, M. R. 2016b. What to talk about
and how? Selective generation using LSTMs with coarse-to-fine
alignment. In Proceedings of the Conference of the North American

Chapter of the Association for Computational Linguistics Human
Language Technologies (NAACL HLT).
Mikolov, T. 2010. Recurrent neural network based language
model. In Proceedings of Interspeech.
Mnih, V.; Hees, N.; Graves, A.; and Kavukcuoglu, K. 2014. Recur-
rent models of visual attention. In Advances in Neural Information
Processing Systems (NIPS).
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2001. BLEU:
a method for automatic evaluation of machine translation. In Pro-
ceedings of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 311–318.
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